
Miguel Monge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7024117/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Size- and Shape-Control of Crystalline Zinc Oxide Nanoparticles: A New Organometallic Synthetic Method. Advanced Functional Materials, 2005, 15, 458-468.	7.8	226
2	Room-Temperature Organometallic Synthesis of Soluble and Crystalline ZnO Nanoparticles of Controlled Size and Shape. Angewandte Chemie - International Edition, 2003, 42, 5321-5324.	7.2	215
3	{Tl[Au(C6Cl5)2]}n:Â A Vapochromic Complex. Journal of the American Chemical Society, 2003, 125, 2022-2023.	6.6	207
4	Combining Aurophilic Interactions and Halogen Bonding To Control the Luminescence from Bimetallic Goldâ^'Silver Clusters. Journal of the American Chemical Society, 2010, 132, 456-457.	6.6	188
5	Optical Properties of Zinc Oxide Nanoparticles and Nanorods Synthesized Using an Organometallic Method. ChemPhysChem, 2006, 7, 2392-2397.	1.0	146
6	Luminescent Characterization of Solution Oligomerization Process Mediated Goldâ^'Gold Interactions. DFT Calculations on [Au2Ag2R4L2]nMoieties. Journal of the American Chemical Society, 2000, 122, 7287-7293.	6.6	140
7	Vapochromic Behavior of {Ag ₂ (Et ₂ O) ₂ [Au(C ₆ F ₅) ₂] _{ with Volatile Organic Compounds. Inorganic Chemistry, 2008, 47, 8069-8076.}	.2}<	supratoi>u
8	Silver nanoparticles: synthesis through chemical methods in solution and biomedical applications. Open Chemistry, 2011, 9, 7-19.	1.0	108
9	A Detailed Study of the Vapochromic Behavior of {Tl[Au(C6Cl5)2]}n. Inorganic Chemistry, 2004, 43, 3573-3581.	1.9	104
10	New Palladium(II) and Platinum(II) Complexes with 9-Aminoacridine: Structures, Luminiscence, Theoretical Calculations, and Antitumor Activity. Inorganic Chemistry, 2008, 47, 6990-7001.	1.9	89
11	Heteropolynuclear Complexes with the Ligand Ph2PCH2SPh: Theoretical Evidence for Metallophilic Auâ^'M Attractions. Chemistry - A European Journal, 2000, 6, 636-644.	1.7	88
12	Theoretical Evidence for Transannular Metalâ^'Metal Interactions in Dinuclear Coinage Metal Complexesâ€. Inorganic Chemistry, 1998, 37, 6002-6006.	1.9	86
13	Organometallic chemistry: an alternative approach towards metal oxide nanoparticles. Journal of Materials Chemistry, 2009, 19, 4044.	6.7	84
14	Do Aurophilic Interactions Compete against Hydrogen Bonds? Experimental Evidence and Rationalization Based on ab Initio Calculations. Journal of the American Chemical Society, 2002, 124, 6781-6786.	6.6	83
15	Synthesis, Structure, and Photophysical Studies of Luminescent Two- and Three-Dimensional Goldâ^'Thallium Supramolecular Arrays. Inorganic Chemistry, 2002, 41, 1056-1063.	1.9	79
16	Photophysical and Theoretical Studies on Luminescent Tetranuclear Coinage Metal Building Blocks. Organometallics, 2006, 25, 3639-3646.	1.1	79
17	Experimental and Theoretical Studies of the d8â^'d10Interaction between Pd(II) and Au(I):Â Bis(chloro[(phenylthiomethyl)diphenylphosphine]gold(I))â^'dichloropalladium(II) and Related Systems. Inorganic Chemistry, 2000, 39, 4786-4792.	1.9	75
18	Theoretical and Photoluminescence Studies on the d10–s2 Aul–Tll Interaction in Extended Unsupported Chains. Chemistry - A European Journal, 2003, 9, 456-465.	1.7	75

#	Article	IF	CITATIONS
19	Comparative study of (N, Fe) doped TiO2 photocatalysts. Applied Surface Science, 2015, 327, 490-497.	3.1	73
20	Spontaneous Formation of Ordered 2D and 3D Superlattices of ZnO Nanocrystals. Small, 2005, 1, 221-224.	5.2	71
21	[Au2Tl2(C6Cl5)4]·(CH3)2CO: A Luminescent Loosely Bound Butterfly Cluster with a Tl(I)â^'Tl(I) Interaction. Journal of the American Chemical Society, 2002, 124, 5942-5943.	6.6	66
22	Photocatalytic degradation of ibuprofen in water using TiO2/UV and g-C3N4/visible light: Study of intermediate degradation products by liquid chromatography coupled to high-resolution mass spectrometry. Chemosphere, 2019, 215, 605-618.	4.2	65
23	Luminescentnido-Carboraneâ~'Diphosphine Anions [(PR2)2C2B9H10]-(R = Ph,iPr). Modification of Their Luminescence Properties upon Formation of Three-Coordinate Gold(I) Complexes. Inorganic Chemistry, 2003, 42, 2061-2068.	1.9	63
24	Experimental and theoretical evidence of the first Au(i)⋯Bi(iii) interaction. Chemical Communications, 2007, , 571-573.	2.2	62
25	Ultrasmall NHC-coated gold nanoparticles obtained through solvent free thermolysis of organometallic Au(i) complexes. Dalton Transactions, 2014, 43, 15713-15718.	1.6	59
26	The preparation of highly active antimicrobial silver nanoparticles by an organometallic approach. Nanotechnology, 2008, 19, 185602.	1.3	56
27	Luminescent aryl–group eleven metal complexes. Dalton Transactions, 2017, 46, 2046-2067.	1.6	55
28	Golden Metallopolymers with an Active T ₁ State via Coordination of Poly(4-vinyl)pyridine to Pentahalophenyl-Gold(I) Precursors. Journal of the American Chemical Society, 2009, 131, 3824-3825.	6.6	53
29	Unsupported Au(i)⋯Cu(i) interactions: influence of nitrile ligands and aurophilicity on the structure and luminescence. Dalton Transactions, 2009, , 7509.	1.6	51
30	Shedding light on an ultra-bright photoluminescent lamellar gold thiolate coordination polymer [Au(p-SPhCO ₂ Me)] _n . Chemical Communications, 2016, 52, 9063-9066.	2.2	50
31	Unsupported Gold(I)â^'Copper(I) Interactions through η1Au-[Au(C6F5)2]-Coordination to Cu+Lewis Acid Sites. Inorganic Chemistry, 2005, 44, 1163-1165.	1.9	48
32	Thallium(I) Acetylacetonate as Building Blocks of Luminescent Supramolecular Architectures. Organometallics, 2004, 23, 774-782.	1.1	47
33	A Study of the Interactions in an Extended Unsupported Gold-Silver Chain. European Journal of Inorganic Chemistry, 2002, 2002, 750-753.	1.0	45
34	Amalgamating at the molecular level. A study of the strong closed-shell Au(i)â< Hg(ii) interaction. Chemical Communications, 2011, 47, 6795.	2.2	45
35	A luminescent double helical gold(<scp>i</scp>)–thiophenolate coordination polymer obtained by hydrothermal synthesis or by thermal solid-state amorphous-to-crystalline isomerization. Journal of Materials Chemistry C, 2015, 3, 4115-4125.	2.7	44
36	Photophysical Studies and Excited-State Structure of a Blue Phosphorescent Goldâ^'Thallium Complex. Inorganic Chemistry, 2007, 46, 2953-2955.	1.9	42

#	Article	IF	CITATIONS
37	Novel biocompatible silver nanoparticles for controlling the growth of lactic acid bacteria and acetic acid bacteria in wines. Food Control, 2015, 50, 613-619.	2.8	40
38	Tunable Photoluminescence of Closed-Shell Heterobimetallic Auâ^'Ag Dicyanide Layered Systems. Journal of Physical Chemistry B, 2005, 109, 4317-4323.	1.2	38
39	A novel hexanuclear silver(i) cluster containing a regular Ag6 ring with short Ag–Ag distances and an argentophilic interaction. Dalton Transactions, 2013, 42, 5916.	1.6	38
40	The gold(<scp>i</scp>)â <lead(<scp>ii) interaction: a relativistic connection. Chemical Science, 2015, 6, 2022-2026.</lead(<scp>	3.7	37
41	Study of intermediate by-products and mechanism of the photocatalytic degradation of ciprofloxacin in water using graphitized carbon nitride nanosheets. Chemosphere, 2020, 247, 125910.	4.2	37
42	Multiple Evidence for Gold(I)â‹â‹â‹Silver(I) Interactions in Solution. Chemistry - A European Journal, 2009, 15, 6222-6233.	1.7	36
43	Experimental and Theoretical Study of the Reactivity of Gold Nanoparticles Towards Benzimidazoleâ€2â€ylidene Ligands. Chemistry - A European Journal, 2016, 22, 10446-10458.	1.7	36
44	Phosphorescent Excited State of [Au2{(Ph2Sb)2O}3]2+:Â Jahnâ^'Teller Distortion at Only One Gold(I) Center. Journal of the American Chemical Society, 2005, 127, 11564-11565.	6.6	35
45	The key role of Au-substrate interactions in catalytic gold subnanoclusters. Nature Communications, 2017, 8, 1657.	5.8	35
46	Unequivocal Experimental Evidence of the Relationship between Emission Energies and Aurophilic Interactions. Inorganic Chemistry, 2019, 58, 4954-4961.	1.9	35
47	Tuning the Luminescent Properties of a Ag/Au Tetranuclear Complex Featuring Metallophilic Interactions via Solvent-Dependent Structural Isomerization. Inorganic Chemistry, 2016, 55, 11299-11310.	1.9	33
48	Perhalophenyl(tetrahydrothiophene)gold(I) Complexes as Lewis Bases in Acidâ^'Base Reactions with Silver Trifluoroacetate. Organometallics, 2007, 26, 5931-5939.	1.1	32
49	The photocatalytic degradation of sodium diclofenac in different water matrices using g-C3N4 nanosheets: A study of the intermediate by-products and mechanism. Journal of Environmental Chemical Engineering, 2021, 9, 105827.	3.3	32
50	Pyridine gold complexes. an emerging class of luminescent materials. Gold Bulletin, 2007, 40, 172-183.	3.2	31
51	Copper(<scp>i</scp>)-assisted red-shifted phosphorescence in Au(<scp>i</scp>)â<¯Cu(<scp>i</scp>) heteropolynuclear complexes. Dalton Transactions, 2014, 43, 16486-16497.	1.6	31
52	Dithiocarbamate Ligands as Building-Blocks in the Coordination Chemistry of Gold. Inorganic Chemistry, 1998, 37, 5532-5536.	1.9	30
53	Experimental and Theoretical Comparison of the Metallophilicity between d ¹⁰ –d ¹⁰ Au ^I –Hg ^{II} and d ⁸ –d ^{10Au^{III}–Hg^{II} Interactions. Inorganic Chemistry, 2014, 53, 1275-1277.}	sup1>9	30
54	An intrinsic dual-emitting gold thiolate coordination polymer, [Au(+I)(p-SPhCO ₂ H)] _n , for ratiometric temperature sensing. Journal of Materials Chemistry C, 2017, 5, 9843-9848.	2.7	30

#	Article	IF	CITATIONS
55	Synthesis, Photochemical, and Redox Properties of Gold(I) and Gold(III) Pincer Complexes Incorporating a 2,2′:6′,2″-Terpyridine Ligand Framework. Inorganic Chemistry, 2015, 54, 10667-10677.	1.9	29
56	Synthesis of water-soluble gold–aryl nanoparticles with distinct catalytic performance in the reduction of the environmental pollutant 4-nitrophenol. Catalysis Science and Technology, 2019, 9, 6059-6071.	2.1	29
57	A step forward in gold–silver metallophilicity. An AuAg4moiety with a square pyramidal arrangement. Dalton Transactions, 2005, , 1162-1164.	1.6	28
58	Synthesis and plasmonic properties of monodisperse Au–Ag alloy nanoparticles of different compositions from a single-source organometallic precursor. Journal of Materials Chemistry C, 2014, 2, 2975.	2.7	28
59	Experimental and Theoretical Study of Gold(III)-Catalyzed Hydration of Alkynes. Organometallics, 2014, 33, 3823-3830.	1.1	27
60	Study of the Nature of Closed-Shell Hg ^{II} ···M ^I (M = Cu, Ag, Au) Interactions. Organometallics, 2015, 34, 3029-3038.	1.1	27
61	Influence of the Electronic Characteristics of N-Donor Ligands in the Excited State of Heteronuclear Gold(I)–Copper(I) Systems. Inorganic Chemistry, 2011, 50, 6910-6921.	1.9	25
62	Experimental and Theoretical Evidence of the Existence of Gold(I)â‹â‹â‹Mercury(II) Interactions in Solution through Fluorescenceâ€Quenching Measurements. Chemistry - A European Journal, 2013, 19, 4754-4766.	1.7	25
63	Study of the Coordination Abilities of Stibine Ligands to Gold(I). Inorganic Chemistry, 2010, 49, 5530-5541.	1.9	24
64	A Dinuclear Gold(I)–Silver(I) Derivative of 2â€Cyclopentylideneâ€2â€sulfanylacetic Acid and Related Complexes: Synthesis, Crystal Structures, Properties and Antitumor Activity. European Journal of Inorganic Chemistry, 2011, 2011, 1322-1332.	1.0	23
65	Tailor-Made Luminescent Polymers through Unusual Metallophilic Interaction Arrays Au···Au···Ag···Ag. Inorganic Chemistry, 2017, 56, 9281-9290.	1.9	23
66	Stimuli-Responsive Solvatochromic Au(I)–Ag(I) Clusters: Reactivity and Photophysical Properties Induced by the Nature of the Solvent. Inorganic Chemistry, 2019, 58, 1501-1512.	1.9	23
67	Some new findings on the potential use of biocompatible silver nanoparticles in winemaking. Innovative Food Science and Emerging Technologies, 2019, 51, 64-72.	2.7	23
68	Room temperature ferromagnetism and absorption red-shift in nitrogen-doped TiO2 nanoparticles. Journal of Alloys and Compounds, 2014, 612, 450-455.	2.8	22
69	New Insights into the Au(I)···Pb(II) Closed-Shell Interaction: Tuning of the Emissive Properties with the Intermetallic Distance. Inorganic Chemistry, 2016, 55, 10523-10534.	1.9	22
70	Luminescent Gold(I)-Thallium(I) Arrays through N-Bidentate Building Blocks. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2004, 59, 1379-1386.	0.3	22
71	Tetranuclear (Phosphane)(thiolato)gold(I) Complexes: Synthesis, Characterization and Photoluminescent Properties. European Journal of Inorganic Chemistry, 2007, 2007, 4001-4005.	1.0	21
72	Synthesis of gold organometallics at the nanoscale. Journal of Organometallic Chemistry, 2018, 877, 1-11.	0.8	21

#	Article	IF	CITATIONS
73	Gold complexes of 3,4-bis(diphenylphosphinoamino)toluene and 1,2-bis(diphenylphosphinoamino)benzene. A comparative study â€. Journal of the Chemical Society Dalton Transactions, 1999, , 4009-4017.	1.1	20
74	Gold- and silver-based ionic liquids: modulation of luminescence depending on the physical state. Dalton Transactions, 2010, 39, 10574.	1.6	20
75	Synthesis of thiolate-protected silver nanocrystal superlattices from an organometallic precursor and formation of molecular di-n-alkyldisulfide lamellar phases. Journal of Nanoparticle Research, 2011, 13, 791-801.	0.8	20
76	Homopolynuclear TII and Heteropolynuclear Aul-TII Complexes with Organodiselone Ligands: Activation of Luminescence by Intermetallic Interactions. European Journal of Inorganic Chemistry, 2011, 2011, 2288-2297.	1.0	20
77	Heterometallic gold(i)–thallium(i) compounds with crown thioethers. Dalton Transactions, 2013, 42, 11559.	1.6	20
78	Very Short Metallophilic Interactions Induced by Three-Center–Two-Electron Perhalophenyl Ligands in Phosphorescent Au–Cu Complexes. Organometallics, 2012, 31, 3720-3729.	1.1	19
79	Double Photoinduced Jahn–Teller Distortion of Tetrahedral Au ^I Sn ^{II} Complexes. ChemPlusChem, 2014, 79, 67-76.	1.3	19
80	Influence of the Number of Metallophilic Interactions and Structures on the Optical Properties of Heterometallic Au/Ag Complexes with Mixed-Donor Macrocyclic Ligands. Inorganic Chemistry, 2018, 57, 11099-11112.	1.9	19
81	Trinuclear Gold(I) Complexes with Various Coordination Modes of N,N-dimethyldithiocarbamate. Journal of Cluster Science, 2000, 11, 153-167.	1.7	18
82	Au(I)···Ag(I) Metallophilic Interactions between Anionic Units: Theoretical Studies on a AuAg4Square Pyramidal Arrangement. Journal of Physical Chemistry B, 2005, 109, 20652-20656.	1.2	17
83	Different phosphorescent excited states of tetra- and octanuclear dendritic-like phosphine gold(i) thiolate complexes: photophysical and theoretical studies. Dalton Transactions, 2011, 40, 3287.	1.6	17
84	Fine-Tuning the Luminescence and HOMO–LUMO Energy Levels in Tetranuclear Gold(I) Fluorinated Amidinate Complexes. Inorganic Chemistry, 2012, 51, 2010-2015.	1.9	17
85	Luminescent gold–silver complexes derived from neutral bis(perfluoroaryl)diphosphine gold(i) precursors. Dalton Transactions, 2013, 42, 4267.	1.6	17
86	Luminescence of five-coordinated nickel(ii) complexes with substituted-8-hydroxyquinolines and macrocyclic ligands. Dalton Transactions, 2010, 39, 1797-1806.	1.6	16
87	Highly emissive dinuclear complexes [Au2{μ-(PPh2)2C2B9H10}(C6F5)(PR3)] with different gold fragments coordinated to an anionic diphosphine. Dalton Transactions, 2011, 40, 10038.	1.6	16
88	Organometallic approach to polymer-protected antibacterial silver nanoparticles: optimal nanoparticle size-selection for bacteria interaction. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	16
89	Influence of Crown Thioether Ligands in the Structures and of Perhalophenyl Groups in the Optical Properties of Complexes with Argentoaurophilic Interactions. Inorganic Chemistry, 2014, 53, 10471-10484.	1.9	16
	Synthesis of the molecular amalgam		

90 [{AuHg₂(o-C₆F₄)₃}{Hg₃(o-C₆F<subx4</sub>3</sub>3</sub>a rare example of a heterometallic homoleptic metallacycle. Dalton Transactions, 2016, 45, 6334-6338.

#	Article	IF	CITATIONS
91	Theoretical study of the closed-shell d10–d10 Au(I)–Cu(I) attraction in complexes in extended unsupported chains. Computational and Theoretical Chemistry, 2011, 965, 163-167.	1.1	15
92	Cooperative Au(I)···Au(I) Interactions and Hydrogen Bonding as Origin of a Luminescent Adeninate Hydrogel Formed by Ultrathin Molecular Nanowires. Inorganic Chemistry, 2018, 57, 3805-3817.	1.9	15
93	Lead encapsulation by a golden clamp through multiple electrostatic, metallophilic, hydrogen bonding and weak interactions. Chemical Communications, 2018, 54, 295-298.	2.2	15
94	Perhalophenyl Three-Coordinate Gold(I) Complexes as TADF Emitters: A Photophysical Study from Experimental and Computational Viewpoints. Inorganic Chemistry, 2020, 59, 14236-14244.	1.9	15
95	Coordination modes of diphenylphosphinothioformamide in its neutral and deprotonated forms at gold(i). Dalton Transactions, 2003, , 1076-1082.	1.6	14
96	Intermetallic coinage metal-catalyzed functionalization of alkanes with ethyl diazoacetate: Gold as a ligand. Inorganica Chimica Acta, 2011, 369, 146-149.	1.2	14
97	Theoretical study of the aggregation of d10–s2 Au(I)–Tl(I) complexes in extended unsupported chains. Computational and Theoretical Chemistry, 2008, 851, 121-126.	1.5	13
98	Metal-Induced Phosphorescence in (Pentafluorophenyl)gold(III) Complexes. Organometallics, 2011, 30, 4486-4489.	1.1	13
99	Tuning Au(I)···Tl(I) Interactions via Mixed Thia–Aza Macrocyclic Ligands: Effects on the Structural and Luminescence Properties. Inorganic Chemistry, 2017, 56, 12551-12563.	1.9	13
100	The photocatalytic degradation of naproxen with g-C3N4 and visible light: Identification of primary by-products and mechanism in tap water and ultrapure water. Journal of Environmental Chemical Engineering, 2022, 10, 106964.	3.3	12
101	An organometallic approach for the preparation of Au–TiO2 and Au-g-C3N4 nanohybrids: improving the depletion of paracetamol under visible light. Photochemical and Photobiological Sciences, 2022, 21, 337-347.	1.6	12
102	Synthesis and characterization of perhalophenyltin derivatives. Study of their reactivity toward phosphine gold(I) chlorides. Journal of Organometallic Chemistry, 2010, 695, 2385-2393.	0.8	11
103	The effect of gold(<scp>i</scp>) coordination on the dual fluorescence of 4-(dimethylamino)pyridine. Dalton Transactions, 2015, 44, 11029-11039.	1.6	11
104	The spontaneous formation and plasmonic properties of ultrathin gold–silver nanorods and nanowires stabilized in oleic acid. Chemical Communications, 2015, 51, 16691-16694.	2.2	11
105	1D and 2D Silver-Based Coordination Polymers with Thiomorpholine-4-carbonitrile and Aromatic Polyoxoacids as Coligands: Structure, Photocatalysis, Photoluminescence, and TD-DFT Study. Crystal Growth and Design, 2020, 20, 4461-4478.	1.4	11
106	Rational Assembly of Metallophilic Gold(I)–Lead(II) and Gold(I)–Gold(I) Puzzle Pieces. Angewandte Chemie - International Edition, 2021, 60, 640-644.	7.2	11
107	Combination of Au-Ag Plasmonic Nanoparticles of Varied Compositions with Carbon Nitride for Enhanced Photocatalytic Degradation of Ibuprofen under Visible Light. Materials, 2021, 14, 3912.	1.3	11
108	Dendritic (phosphine)gold(i) thiolate complexes: assessment of the molecular size through PCSENMR studies. Dalton Transactions, 2009, , 474-480.	1.6	10

#	Article	IF	CITATIONS
109	Analysis of fluorescence quenching of naphthalene by two mercury containing organometallic complexes. Journal of Luminescence, 2014, 154, 322-327.	1.5	10
110	Applications of Nanotechnology in Wine Production and Quality and Safety Control. , 2016, , 51-69.		10
111	Structural and Luminescence Properties of Heteronuclear Gold(I)/Thallium(I) Complexes Featuring Metallophilic Interactions Tuned by Quinoline Pendant Arm Derivatives of Mixed Donor Macrocycles. Inorganic Chemistry, 2020, 59, 6398-6409.	1.9	10
112	Single-step assembly of gold nanoparticles into plasmonic colloidosomes at the interface of oleic acid nanodroplets. Nanoscale Advances, 2021, 3, 198-205.	2.2	10
113	Synthesis, coordination to Au(i) and photophysical properties of a novel polyfluorinated benzothiazolephosphine ligand. Dalton Transactions, 2006, , 3672-3677.	1.6	9
114	Basicity of bisperhalophenyl aurates toward closed-shell metal ions: metallophilicity and additional interactions. Theoretical Chemistry Accounts, 2011, 129, 593-602.	0.5	9
115	[AuHg(o-C6H4PPh2)2I]: A Dinuclear Heterometallic Blue Emitter. Inorganics, 2015, 3, 27-39.	1.2	9
116	1,4-Bis(2′-pyridylethynyl)benzene as a ligand in heteronuclear gold–thallium complexes. Influence of the ancillary ligands on their optical properties. Dalton Transactions, 2015, 44, 6719-6730.	1.6	9
117	Dispersive Forces and Dipole Moment Increase as Driving Forces for the Formation of an Unprecedented Metallophilic Heterotrimetallic System. Chemistry - A European Journal, 2018, 24, 13740-13743.	1.7	9
118	Magnetically Separable Photocatalyst Fe ₃ O ₄ /SiO ₂ /N-TiO ₂ Hybrid Nanostructures. IEEE Transactions on Magnetics, 2014, 50, 1-4.	1.2	8
119	Synthesis and Plasmonic Properties of Core–Shell Bimetallic Silver–Gold Nanoprisms Obtained through an Organometallic Route. European Journal of Inorganic Chemistry, 2014, 2014, 2383-2388.	1.0	8
120	Theoretical studies on an unusual [Ag]+â<¯[Au]â˜`â<¯[Au]â˜`â<¯[Ag]+ metallophilic pattern: Dispersive forces vs. classical coulomb forces. Computational and Theoretical Chemistry, 2014, 1030, 53-58.	1.1	8
121	Experimental and Theoretical Study of the Effectiveness and Stability of Gold(I) Catalysts Used in the Synthesis of Cyclic Acetals. Organometallics, 2016, 35, 732-740.	1.1	8
122	Designing heterostructured core@satellite Prussian Blue Analogue@Au–Ag nanoparticles: Effect on the magnetic properties and catalytic activity. Inorganic Chemistry Frontiers, 2021, 8, 2248-2260.	3.0	8
123	New Au(<scp>i</scp>)–Cu(<scp>i</scp>) heterometallic complexes: the role of bridging pyridazine ligands in the presence of unsupported metallophilic interactions. Dalton Transactions, 2017, 46, 10941-10949.	1.6	7
124	Metallophilic Au(<scp>i</scp>)⋯M(<scp>i</scp>) interactions (M = Tl, Ag) in heteronuclear complexes with 1,4,7-triazacyclononane: structural features and optical properties. Dalton Transactions, 2020, 49, 10983-10993.	1.6	7
125	Versatile coordinative abilities of perhalophenyl-gold(I) fragments to Xantphos: Influence on the emissive properties. Journal of Organometallic Chemistry, 2020, 913, 121198.	0.8	7
126	Influence of perhalophenyl groups in the TADF mechanism of diphosphino gold(<scp>i</scp>) complexes. Journal of Materials Chemistry C, 2022, 10, 4894-4904.	2.7	7

#	ARTICLE	IF	CITATIONS
127	Zn(<scp>ii</scp>) complexes with thiazolyl–hydrazones: structure, intermolecular interactions, photophysical properties, computational study and anticancer activity. CrystEngComm, 2022, 24, 5194-5214.	1.3	7
128	Double Jahn–Teller Distortion in AuGe Complexes Leading to a Dual Blue–Orange Emission. ChemPlusChem, 2016, 81, 176-186.	1.3	6
129	Balancing ionic and H-bonding interactions for the formation of Au(<scp>i</scp>) hydrometallogels. Dalton Transactions, 2019, 48, 7519-7526.	1.6	6
130	Temperature-assisted formation of reversible metallophilic Au–Ag interaction arrays. Dalton Transactions, 2019, 48, 5149-5155.	1.6	6
131	An improved plasmonic Au–Ag/TiO2/rGO photocatalyst through entire visible range absorption, charge separation and high adsorption ability. New Journal of Chemistry, 2021, 45, 11727-11736.	1.4	6
132	Dual fluorescence of 4-(dimethylamino)-pyridine: a comparative linear response TDDFT versus state-specific CASSCF study including solvent with the PCM model. Theoretical Chemistry Accounts, 2015, 134, 1.	0.5	5
133	Multidisciplinary study on the hydrogelation of the digold(<scp>i</scp>) complex [{Au(⁹ <i>N</i> -adeninate)} ₂ (μ-dmpe)]: optical, rheological, and quasi-elastic neutron scattering perspectives. Inorganic Chemistry Frontiers, 2021, 8, 3707-3715.	3.0	5
134	Solvent Induced Luminescence in Supramolecular Heterobimetallic Gold(I)-Copper(I) Complexes with a Bidentate Nitrile Ligand. Open Inorganic Chemistry Journal, 2008, 2, 73-79.	0.3	5
135	Size and shape assessment of organometallic gold(I) metallodendrimers through PGSE-NMR and molecular dynamics simulations. Inorganica Chimica Acta, 2012, 380, 31-39.	1.2	4
136	Unequal coordination environment in complexes of the type [Au2Ag2(R)4(L)2]n. An immiscible solvent mixture as a key point in the control of ligand replacement. Dalton Transactions, 2018, 47, 3231-3238.	1.6	4
137	Time-Dependent Molecular Rearrangement of [Au(<i>N</i> ⁹ -adeninate)(PTA)] in Aqueous Solution and Aggregation-Induced Emission in a Hydrogel Matrix. Inorganic Chemistry, 2021, 60, 3667-3676.	1.9	4
138	Optical Properties in Heteronuclear Gold(I)/Silver(I) Complexes of Aliphatic Mixedâ€Donor Macrocycles Featuring Metallophilic Interactions. European Journal of Inorganic Chemistry, 2021, 2021, 4552-4559.	1.0	4
139	[Tl(OPPh3)2][Au(C6F5)2]: the first extended unsupported gold–thallium linear chain. Chemical Communications, 1998, , 2223-2224.	2.2	2
140	Zigzag vs Helicoidal Gold–Silver 1D Chains: Influence of Subtle Interactions in the Spatial Arrangement of Supramolecular Systems. Inorganic Chemistry, 2020, 59, 9443-9451.	1.9	2
141	Rational Assembly of Metallophilic Gold(I)–Lead(II) and Gold(I)–Gold(I) Puzzle Pieces. Angewandte Chemie, 2021, 133, 650-654.	1.6	2
142	Computational prediction of Au(<scp>i</scp>)–Pb(<scp>ii</scp>) bonding in coordination complexes and study of the factors affecting the formation of Au(<scp>i</scp>)–E(<scp>ii</scp>) (E = Ge, Sn, Pb) covalent bonds. Physical Chemistry Chemical Physics, 2021, 23, 10174-10183.	1.3	2
143	Heteropolynuclear Complexes with the Ligand Ph2PCH2SPh: Theoretical Evidence for Metallophilic Auâ^'M Attractions. Chemistry - A European Journal, 2000, 6, 636-644.	1.7	2
144	Spontaneous <i>in situ</i> generation of photoemissive aurophilic oligomers in water solution based on the 2-thiocytosine ligand. RSC Advances, 2022, 12, 8466-8473.	1.7	1