
Edward J Lesnefsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7024047/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Production of Reactive Oxygen Species by Mitochondria. Journal of Biological Chemistry, 2003, 278, 36027-36031.	1.6	1,373
2	Function of Mitochondrial Stat3 in Cellular Respiration. Science, 2009, 323, 793-797.	6.0	860
3	Mitochondrial Dysfunction in Cardiac Disease: Ischemia–Reperfusion, Aging, and Heart Failure. Journal of Molecular and Cellular Cardiology, 2001, 33, 1065-1089.	0.9	629
4	Intracoronary ultrasound imaging: Correlation of plaque morphology with angiography, clinical syndrome and procedural results in patients undergoing coronary angioplasty. Journal of the American College of Cardiology, 1993, 21, 35-44.	1.2	349
5	Sphingosineâ€lâ€phosphate produced by sphingosine kinase 2 in mitochondria interacts with prohibitin 2 to regulate complex IV assembly and respiration. FASEB Journal, 2011, 25, 600-612.	0.2	307
6	Mitochondrial Dysfunction and Myocardial Ischemia-Reperfusion: Implications for Novel Therapies. Annual Review of Pharmacology and Toxicology, 2017, 57, 535-565.	4.2	300
7	Ischemic defects in the electron transport chain increase the production of reactive oxygen species from isolated rat heart mitochondria. American Journal of Physiology - Cell Physiology, 2008, 294, C460-C466.	2.1	275
8	Mitochondrial Metabolism in Aging Heart. Circulation Research, 2016, 118, 1593-1611.	2.0	249
9	Modulation of electron transport protects cardiac mitochondria and decreases myocardial injury during ischemia and reperfusion. American Journal of Physiology - Cell Physiology, 2007, 292, C137-C147.	2.1	238
10	Aging Selectively Decreases Oxidative Capacity in Rat Heart Interfibrillar Mitochondria. Archives of Biochemistry and Biophysics, 1999, 372, 399-407.	1.4	235
11	Blockade of Electron Transport during Ischemia Protects Cardiac Mitochondria. Journal of Biological Chemistry, 2004, 279, 47961-47967.	1.6	207
12	Mitochondrial-targeted Signal Transducer and Activator of Transcription 3 (STAT3) Protects against Ischemia-induced Changes in the Electron Transport Chain and the Generation of Reactive Oxygen Species. Journal of Biological Chemistry, 2011, 286, 29610-29620.	1.6	188
13	Reversible Blockade of Electron Transport during Ischemia Protects Mitochondria and Decreases Myocardial Injury following Reperfusion. Journal of Pharmacology and Experimental Therapeutics, 2006, 319, 1405-1412.	1.3	185
14	Interleukin-1 Blockade in Recently Decompensated Systolic Heart Failure. Circulation: Heart Failure, 2017, 10, .	1.6	171
15	Potential Therapeutic Benefits of Strategies Directed to Mitochondria. Antioxidants and Redox Signaling, 2010, 13, 279-347.	2.5	162
16	Myocardial ischemia selectively depletes cardiolipin in rabbit heart subsarcolemmal mitochondria. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H2770-H2778.	1.5	161
17	Metabolic Gene Remodeling and Mitochondrial Dysfunction in Failing Right Ventricular Hypertrophy Secondary to Pulmonary Arterial Hypertension. Circulation: Heart Failure, 2013, 6, 136-144.	1.6	159
18	Oxidative phosphorylation and aging. Ageing Research Reviews, 2006, 5, 402-433.	5.0	158

#	Article	IF	CITATIONS
19	Ischemic Injury to Mitochondrial Electron Transport in the Aging Heart: Damage to the Iron–Sulfur Protein Subunit of Electron Transport Complex III. Archives of Biochemistry and Biophysics, 2001, 385, 117-128.	1.4	147
20	Aging Decreases Electron Transport Complex III Activity in Heart Interfibrillar Mitochondria by Alteration of the Cytochrome c Binding Site. Journal of Molecular and Cellular Cardiology, 2001, 33, 37-47.	0.9	144
21	Mitochondrial Localized Stat3 Promotes Breast Cancer Growth via Phosphorylation of Serine 727. Journal of Biological Chemistry, 2013, 288, 31280-31288.	1.6	141
22	Blockade of Electron Transport before Cardiac Ischemia with the Reversible Inhibitor Amobarbital Protects Rat Heart Mitochondria. Journal of Pharmacology and Experimental Therapeutics, 2006, 316, 200-207.	1.3	129
23	Left Ventricular Systolic Dysfunction Induced by Ventricular Ectopy. Circulation: Arrhythmia and Electrophysiology, 2011, 4, 543-549.	2.1	125
24	Cardiolipin Remodeling in the Heart. Journal of Cardiovascular Pharmacology, 2009, 53, 290-301.	0.8	118
25	Aging defect at the QO site of complex III augments oxyradical production in rat heart interfibrillar mitochondria. Archives of Biochemistry and Biophysics, 2003, 414, 59-66.	1.4	116
26	Depletion of cardiolipin and cytochrome c during ischemia increases hydrogen peroxide production from the electron transport chain. Free Radical Biology and Medicine, 2006, 40, 976-982.	1.3	110
27	Ischemia, rather than reperfusion, inhibits respiration through cytochrome oxidase in the isolated, perfused rabbit heart: role of cardiolipin. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H258-H267.	1.5	109
28	Ischemia–reperfusion injury in the aged heart: role of mitochondria. Archives of Biochemistry and Biophysics, 2003, 420, 287-297.	1.4	106
29	Cytoprotection by the modulation of mitochondrial electron transport chain: The emerging role of mitochondrial STAT3. Mitochondrion, 2012, 12, 180-189.	1.6	104
30	Multi-tasking: nuclear transcription factors with novel roles in the mitochondria. Trends in Cell Biology, 2012, 22, 429-437.	3.6	101
31	Separation and Quantitation of Phospholipids and Lysophospholipids by High-Performance Liquid Chromatography. Analytical Biochemistry, 2000, 285, 246-254.	1.1	90
32	Increased left ventricular dysfunction in elderly patients despite successful thrombolysis: The GUSTO-I angiographic experience. Journal of the American College of Cardiology, 1996, 28, 331-337.	1.2	89
33	What is the Functional Significance of the Unique Location of Glutaredoxin 1 (GRx1) in the Intermembrane Space of Mitochondria?. Antioxidants and Redox Signaling, 2007, 9, 2027-2034.	2.5	89
34	Mitochondriaâ€localized caveolin in adaptation to cellular stress and injury. FASEB Journal, 2012, 26, 4637-4649.	0.2	88
35	Sensitivity of Protein Sulfhydryl Repair Enzymes to Oxidative Stress. Free Radical Biology and Medicine, 1997, 23, 373-384.	1.3	84
36	Activation of mitochondrial μ-calpain increases AIF cleavage in cardiac mitochondria during ischemia–reperfusion. Biochemical and Biophysical Research Communications, 2011, 415, 533-538.	1.0	83

#	Article	IF	CITATIONS
37	Dietary Nitrate Supplementation Protects Against Doxorubicin-Induced Cardiomyopathy by Improving Mitochondrial Function. Journal of the American College of Cardiology, 2011, 57, 2181-2189.	1.2	82
38	Lidocaine Reduces Canine Infarct Size and Decreases Release of a Lipid Peroxidation Product. Journal of Cardiovascular Pharmacology, 1989, 13, 895-901.	0.8	80
39	Chronic inhibition of phosphodiesterase 5 with tadalafil attenuates mitochondrial dysfunction in type 2 diabetic hearts: potential role of NO/SIRT1/PGC-1α signaling. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H1558-H1568.	1.5	76
40	Postconditioning inhibits mPTP opening independent of oxidative phosphorylation and membrane potential. Journal of Molecular and Cellular Cardiology, 2009, 46, 902-909.	0.9	74
41	A novel role for mitochondrial sphingosine-1-phosphate produced by sphingosine kinase-2 in PTP-mediated cell survival during cardioprotection. Basic Research in Cardiology, 2011, 106, 1341-1353.	2.5	71
42	Cardiolipin as an oxidative target in cardiac mitochondria in the aged rat. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 1020-1027.	0.5	70
43	Pivotal Importance of STAT3 in Protecting the Heart from Acute and Chronic Stress: New Advancement and Unresolved Issues. Frontiers in Cardiovascular Medicine, 2015, 2, 36.	1.1	64
44	Metformin attenuates ER stress–induced mitochondrial dysfunction. Translational Research, 2017, 190, 40-50.	2.2	64
45	Mitochondrial Complex I Inhibition by Metformin Limits Reperfusion Injury. Journal of Pharmacology and Experimental Therapeutics, 2019, 369, 282-290.	1.3	64
46	Glutaredoxin Regulates Apoptosis in Cardiomyocytes <i>via</i> NFκB Targets Bcl-2 and Bcl-xL: Implications for Cardiac Aging. Antioxidants and Redox Signaling, 2010, 12, 1339-1353.	2.5	62
47	Reversible blockade of electron transport with amobarbital at the onset of reperfusion attenuates cardiac injury. Translational Research, 2009, 153, 224-231.	2.2	58
48	Reversal of mitochondrial defects before ischemia protects the aged heart. FASEB Journal, 2006, 20, 1543-1545.	0.2	57
49	Activation of mitochondrial calpain and increased cardiac injury: beyond AIF release. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H376-H384.	1.5	57
50	Enhanced modification of cardiolipin during ischemia in the aged heart. Journal of Molecular and Cellular Cardiology, 2009, 46, 1008-1015.	0.9	55
51	Interfibrillar cardiac mitochondrial comples III defects in the aging rat heart. Biogerontology, 2002, 3, 41-44.	2.0	52
52	Blockade of electron transport during ischemia preserves bcl-2 and inhibits opening of the mitochondrial permeability transition pore. FEBS Letters, 2011, 585, 921-926.	1.3	52
53	Inhibition of the ubiquitous calpains protects complex I activity and enables improved mitophagy in the heart following ischemia-reperfusion. American Journal of Physiology - Cell Physiology, 2019, 317, C910-C921.	2.1	47
54	Inhibition of Bcl-2 Sensitizes Mitochondrial Permeability Transition Pore (MPTP) Opening in Ischemia-Damaged Mitochondria. PLoS ONE, 2015, 10, e0118834.	1.1	44

#	Article	IF	CITATIONS
55	Leigh Syndrome: A Tale of Two Genomes. Frontiers in Physiology, 2021, 12, 693734.	1.3	43
56	Postconditioning Modulates Ischemia-damaged Mitochondria During Reperfusion. Journal of Cardiovascular Pharmacology, 2012, 59, 101-108.	0.8	42
57	Structure of cristae in cardiac mitochondria of aged rat. Mechanisms of Ageing and Development, 2006, 127, 917-921.	2.2	41
58	Cell Cycle Re-Entry and Mitochondrial Defects in Myc-Mediated Hypertrophic Cardiomyopathy and Heart Failure. PLoS ONE, 2009, 4, e7172.	1.1	41
59	Transient complex I inhibition at the onset of reperfusion by extracellular acidification decreases cardiac injury. American Journal of Physiology - Cell Physiology, 2014, 306, C1142-C1153.	2.1	41
60	Endoplasmic reticulum stress-mediated mitochondrial dysfunction in aged hearts. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165899.	1.8	41
61	Dietary inorganic nitrate alleviates doxorubicin cardiotoxicity: Mechanisms and implications. Nitric Oxide - Biology and Chemistry, 2012, 26, 274-284.	1.2	39
62	The Signal Transducer and Activator of Transcription 1 (STAT1) Inhibits Mitochondrial Biogenesis in Liver and Fatty Acid Oxidation in Adipocytes. PLoS ONE, 2015, 10, e0144444.	1.1	39
63	Inhibition of Apoptosis Signal–Regulating Kinase 1 Reduces Myocardial Ischemia–Reperfusion Injury in the Mouse. Journal of the American Heart Association, 2012, 1, e002360.	1.6	38
64	Cardioprotective function of mitochondrial-targeted and transcriptionally inactive STAT3 against ischemia and reperfusion injury. Basic Research in Cardiology, 2015, 110, 53.	2.5	37
65	Mitochondrial health and muscle plasticity after spinal cord injury. European Journal of Applied Physiology, 2019, 119, 315-331.	1.2	37
66	Endoplasmic reticulum stress-induced complex I defect: Central role of calcium overload. Archives of Biochemistry and Biophysics, 2020, 683, 108299.	1.4	37
67	Depression screening in patients with coronary heart disease: A critical evaluation of the AHA guidelines. Journal of Psychosomatic Research, 2011, 71, 6-12.	1.2	36
68	Heart mitochondria and calpain 1: Location, function, and targets. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 2372-2378.	1.8	36
69	The Lazaroid U74006F, a 21-Aminosteroid Inhibitor of Lipid Peroxidation, Attenuates Myocardial Injury from Ischemia and Reperfusion. Journal of Cardiovascular Pharmacology, 1992, 20, 230-235.	0.8	35
70	Blockade of Electron Transport at the Onset of Reperfusion Decreases Cardiac Injury in Aged Hearts by Protecting the Inner Mitochondrial Membrane. Journal of Aging Research, 2012, 2012, 1-9.	0.4	34
71	Blockade of electron transport before ischemia protects mitochondria and decreases myocardial injury during reperfusion in aged rat hearts. Translational Research, 2012, 160, 207-216.	2.2	33
72	Electron flow into cytochrome c coupled with reactive oxygen species from the electron transport chain converts cytochrome c to a cardiolipin peroxidase: role during ischemia–reperfusion. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 3199-3207.	1.1	32

#	Article	IF	CITATIONS
73	Mitochondrial Dysfunction in Cardiovascular Aging. Advances in Experimental Medicine and Biology, 2017, 982, 451-464.	0.8	32
74	Effects of Testosterone and Evoked Resistance Exercise after Spinal Cord Injury (TEREX-SCI): study protocol for a randomised controlled trial. BMJ Open, 2017, 7, e014125.	0.8	32
75	Dimethylthiourea, but not dimethylsulfoxide, reduces canine myocardial infarct size. Free Radical Biology and Medicine, 1989, 7, 53-58.	1.3	31
76	Reduction of infarct size by cell-permeable oxygen metabolite scavengers. Free Radical Biology and Medicine, 1992, 12, 429-446.	1.3	31
77	Isolating the segment of the mitochondrial electron transport chain responsible for mitochondrial damage during cardiac ischemia. Biochemical and Biophysical Research Communications, 2010, 397, 656-660.	1.0	31
78	Aging-dependent changes in rat heart mitochondrial glutaredoxins—Implications for redox redox regulation. Redox Biology, 2013, 1, 586-598.	3.9	30
79	Reverse electron flow-mediated ROS generation in ischemia-damaged mitochondria: Role of complex I inhibition vs. depolarization of inner mitochondrial membrane. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 4537-4542.	1.1	30
80	Mitochondrial mass and activity as a function of body composition in individuals with spinal cord injury. Physiological Reports, 2017, 5, e13080.	0.7	29
81	Modulation of Mitochondrial Bioenergetics in the Isolated Guinea Pig Beating Heart by Potassium and Lidocaine Cardioplegia: Implications for Cardioprotection. Journal of Cardiovascular Pharmacology, 2009, 54, 298-309.	0.8	28
82	Race and the decision to refer for coronary revascularization. Journal of the American College of Cardiology, 2001, 38, 698-704.	1.2	27
83	Effects of acute left anterior descending occlusion on regional myocardial blood flow and wall thickening in the presence of a circumflex stenosis in dogs. American Journal of Cardiology, 1984, 54, 399-406.	0.7	26
84	Oxidation and release of glutathione from myocardium during early reperfusion. Free Radical Biology and Medicine, 1989, 7, 31-35.	1.3	26
85	Intermediary metabolism and fatty acid oxidation: novel targets of electron transport chain-driven injury during ischemia and reperfusion. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, H787-H795.	1.5	26
86	Cardiac Specific Knockout of p53 Decreases ER Stress-Induced Mitochondrial Damage. Frontiers in Cardiovascular Medicine, 2019, 6, 10.	1.1	24
87	Chronic metformin treatment decreases cardiac injury during ischemia-reperfusion by attenuating endoplasmic reticulum stress with improved mitochondrial function. Aging, 2021, 13, 7828-7845.	1.4	24
88	Cardioprotection by modulation of mitochondrial respiration during ischemia–reperfusion: Role of apoptosis-inducing factor. Biochemical and Biophysical Research Communications, 2013, 435, 627-633.	1.0	23
89	Apolipoprotein A1 Regulates Coenzyme Q10 Absorption, Mitochondrial Function, and Infarct Size in a Mouse Model of Myocardial Infarction. Journal of Nutrition, 2014, 144, 1030-1036.	1.3	22
90	Skeletal muscle mitochondrial mass is linked to lipid and metabolic profile in individuals with spinal cord injury. European Journal of Applied Physiology, 2017, 117, 2137-2147.	1.2	21

#	Article	IF	CITATIONS
91	Acquired deficiency of tafazzin in the adult heart: Impact on mitochondrial function and response to cardiac injury. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 294-300.	1.2	18
92	mRNA Reprogramming of T8993G Leigh's Syndrome Fibroblast Cells to Create Induced Pluripotent Stem Cell Models for Mitochondrial Disorders. Stem Cells and Development, 2019, 28, 846-859.	1.1	15
93	Remote Ischemic Pre-Conditioning Attenuates Adverse Cardiac Remodeling and Mortality Following Doxorubicin Administration in Mice. JACC: CardioOncology, 2019, 1, 221-234.	1.7	15
94	Cardiomyocyte specific deletion of p53 decreases cell injury during ischemia-reperfusion: Role of Mitochondria. Free Radical Biology and Medicine, 2020, 158, 162-170.	1.3	15
95	Bivalent Compound 17MN Exerts Neuroprotection through Interaction at Multiple Sites in a Cellular Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2015, 47, 1021-1033.	1.2	14
96	Plasma adiponectin levels are correlated with body composition, metabolic profiles, and mitochondrial markers in individuals with chronic spinal cord injury. Spinal Cord, 2018, 56, 863-872.	0.9	14
97	A deficiency of apoptosis inducing factor (AIF) in Harlequin mouse heart mitochondria paradoxically reduces ROS generation during ischemia-reperfusion. Frontiers in Physiology, 2014, 5, 271.	1.3	13
98	The IONA study: preparing the myocardium for ischaemia?. Lancet, The, 2002, 359, 1262-1263.	6.3	12
99	Ischemia and reperfusion injury to mitochondria and cardiac function in donation after circulatory death hearts- an experimental study. PLoS ONE, 2020, 15, e0243504.	1.1	12
100	The Commonalities and Differences in Mitochondrial Dysfunction Between ex vivo and in vivo Myocardial Global Ischemia Rat Heart Models: Implications for Donation After Circulatory Death Research. Frontiers in Physiology, 2020, 11, 681.	1.3	11
101	Neuromuscular electrical stimulation resistance training enhances oxygen uptake and ventilatory efficiency independent of mitochondrial complexes after spinal cord injury: a randomized clinical trial. Journal of Applied Physiology, 2021, 131, 265-276.	1.2	11
102	Reversing mitochondrial defects in aged hearts: role of mitochondrial calpain activation. American Journal of Physiology - Cell Physiology, 2022, 322, C296-C310.	2.1	11
103	Calpain-mediated protein targets in cardiac mitochondria following ischemia–reperfusion. Scientific Reports, 2022, 12, 138.	1.6	11
104	A new strategy to decrease cardiac injury in aged heart following ischaemia-reperfusion: enhancement of the interaction between AMPK and SIRT1. Cardiovascular Research, 2018, 114, 771-772.	1.8	9
105	The Cardiac Dysfunction Caused by Metabolic Alterations in Alzheimer's Disease. Frontiers in Cardiovascular Medicine, 2022, 9, 850538.	1.1	9
106	Metformin and myocardial ischemia and reperfusion injury: Moving toward "prime time―human use?. Translational Research, 2021, 229, 1-4.	2.2	8
107	Preventing Myocardial Injury Following Non-Cardiac Surgery: A Potential Role for Preoperative Antioxidant Therapy with Ubiquinone. Antioxidants, 2021, 10, 276.	2.2	8
108	The mitochondrial electron transport chain contributes to calpain 1 activation during ischemia-reperfusion. Biochemical and Biophysical Research Communications, 2022, 613, 127-132.	1.0	8

#	Article	IF	CITATIONS
109	Increased Mitochondrial ROS Generation from Complex III Causes Mitochondrial Damage and Increases Endoplasmic Reticulum Stress. FASEB Journal, 2019, 33, 543.13.	0.2	7
110	Safety of cardiac catheterization via peripheral vascular grafts. Catheterization and Cardiovascular Diagnosis, 1993, 29, 113-116.	0.7	6
111	25-Hydroxycholesterol 3-Sulfate Recovers Acetaminophen Induced Acute Liver Injury via Stabilizing Mitochondria in Mouse Models. Cells, 2021, 10, 3027.	1.8	6
112	Cerebral and myocardial mitochondrial injury differ in a rat model of cardiac arrest and cardiopulmonary resuscitation. Biomedicine and Pharmacotherapy, 2021, 140, 111743.	2.5	5
113	Modulation of Mitochondrial Respiration During Early Reperfusion Reduces Cardiac Injury in Donation After Circulatory Death Hearts. Journal of Cardiovascular Pharmacology, 2022, 80, 148-157.	0.8	4
114	Transferring Protection: Adenosine as the Lone Ranger?. Cardiovascular Drugs and Therapy, 2014, 28, 1-3.	1.3	3
115	Metformin as a modulator of myocardial fibrosis postmyocardial infarction via regulation of cardiomyocyte-fibroblast crosstalk. Translational Research, 2018, 199, 1-3.	2.2	3
116	A New Strategy to Treat Mitochondrial Disease Without Improvement of Mitochondrial Function?. EBioMedicine, 2017, 18, 19-20.	2.7	2
117	Cardiac protection by moving the mitochondria?. International Journal of Cardiology, 2018, 271, 256-257.	0.8	2
118	Deficiency of Apoptosis Inducing Factor (AIF) decreases complex I activity and increases the ROS generation in isolated cardiac mitochondria. FASEB Journal, 2013, 27, 1085.18.	0.2	2
119	Prevention and Treatment of Duchenne Cardiomyopathy with Hydrogen Sulfideâ€Donor Therapy. FASEB Journal, 2019, 33, 831.5.	0.2	2
120	Activation of Mitochondrial Calpain 1 Leads to Degradation of PDH. FASEB Journal, 2018, 32, 543.7.	0.2	1
121	Abstract 995: Blockade Of Electron Transport Preserves The Contents Of Bcl-2 And Cytochrome <i>c</i> In Subsarcolemmal Mitochondria During Ischemia. Circulation, 2007, 116, .	1.6	1
122	Time to Target Mitochondrial Reactive Oxygen Species Generation from Complex I. Function, 2022, 3, zqac010.	1.1	1
123	Assessment of mitochondrial respiratory capacity using minimally invasive and noninvasive techniques in persons with spinal cord injury. PLoS ONE, 2022, 17, e0265141.	1.1	1
124	Mitochondrial Disruption in Cardiovascular Diseases. , 2018, , 241-267.		0
125	Blockade of the proximal, but not the distal, electron transport chain immediately before ischemia protects cardiac mitochondria. FASEB Journal, 2007, 21, A1376.	0.2	0
126	Potential Consequences of Ageâ€Dependent Changes in Glutaredoxin in Cardiomyocytes. FASEB Journal, 2007, 21, A1150.	0.2	0

#	Article	IF	CITATIONS
127	Ischemic damage to the mitochondrial electron transport chain favors opening of the permeability transition pore. FASEB Journal, 2008, 22, 750.6.	0.2	0
128	Postconditioning during reperfusion attenuates myocardial injury without improved mitochondrial oxidative phosphorylation. FASEB Journal, 2009, 23, 763.5.	0.2	0
129	Acidification inhibits complex I: potential mechanism of cardiac protection at the onset of reperfusion. FASEB Journal, 2011, 25, 1097.22.	0.2	Ο
130	Reversible, brief blockade of mitochondrial respiration at the onset of reperfusion decreases myocardial injury in aging hearts. FASEB Journal, 2011, 25, 1033.4.	0.2	0
131	Reactive Oxygen Species and Electron Flow Are Needed to Oxidize Cytochrome c at the Methionine Residues. FASEB Journal, 2013, 27, 1085.20.	0.2	Ο
132	Activation of mitochondrialâ€uâ€calpain sensitizes opening of the mitochondrial permeability transition pore during ischemiaâ€reperfusion (648.11). FASEB Journal, 2014, 28, 648.11.	0.2	0
133	Reduction of Reperfusion Cardiac Injury in Donation After Circulatory Death Hearts Through Modulation of Electron Transport. FASEB Journal, 2018, 32, 580.4.	0.2	0
134	Activation of Mitochondrial Calpains Contributes to the Selective Degradation of Specific Mitochondrial Proteins. FASEB Journal, 2019, 33, 802.15.	0.2	0