Cédric Van hoorickx

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7023481/publications.pdf

Version: 2024-02-01

1478505 1281871 16 137 11 6 citations g-index h-index papers 16 16 16 103 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Numerical realization of diffuse sound pressure fields using prolate spheroidal wave functions. Journal of the Acoustical Society of America, 2022, 151, 1710-1721.	1.1	2
2	Coupling strength evaluation in vibro-acoustic systems. Journal of Sound and Vibration, 2022, 536, 117133.	3.9	1
3	Gaussian orthogonal ensemble modeling of built-up systems containing general diffuse components and parametric uncertainty. Journal of Sound and Vibration, 2021, 501, 116045.	3.9	3
4	Numerical prediction and experimental validation of impact sound radiation by timber joist floors. Applied Acoustics, 2020, 162, 107182.	3.3	9
5	p-Refined Multilevel Quasi-Monte Carlo for Galerkin Finite Element Methods with Applications in Civil Engineering. Algorithms, 2020, 13, 110.	2.1	5
6	Prediction and uncertainty quantification of structure-borne sound radiation into a diffuse field. Journal of Sound and Vibration, 2019, 463, 114984.	3.9	10
7	Density filtering regularization of finite element model updating problems. Mechanical Systems and Signal Processing, 2019, 128, 282-294.	8.0	4
8	Shape optimized inclined single and double wall wave barriers for ground vibration mitigation. Soil Dynamics and Earthquake Engineering, 2018, 112, 215-231.	3.8	15
9	Topology Optimization of Elastic Wave Barriers Using a Two-and-A-Half Dimensional Finite Element Methodology. , 2018, , 1906-1922.		O
10	Optimal Design of Wave Barriers for the Reduction of Vibration Levels. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2018, , 547-556.	0.3	0
11	Double wall barriers for the reduction of ground vibration transmission. Soil Dynamics and Earthquake Engineering, 2017, 97, 1-13.	3 . 8	33
12	Double wall barriers as mitigation measures for ground vibration transmission. Procedia Engineering, 2017, 199, 2735-2740.	1.2	1
13	Sound transmission through finite rib-stiffened and orthotropic plates. Acta Acustica United With Acustica, 2016, 102, 999-1010.	0.8	20
14	Topology optimization of two-dimensional elastic wave barriers. Journal of Sound and Vibration, 2016, 376, 95-111.	3.9	33
15	TOPOLOGY OPTIMIZATION OF WAVE BARRIERS FOR RAILWAY INDUCED VIBRATIONS IN BUILDINGS. , 2016, , .		1
16	SEMI-DISCRETE COINCIDENCE IN THE MID-FREQUENCY SOUND TRANSMISSION THROUGH RIB-STIFFENED PANELS. , 2016, , .		O