Howard A Stone

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7022739/howard-a-stone-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

39,625 184 97 554 h-index g-index citations papers 6.8 605 44,876 7.77 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
554	Buckling of elastic fibers in a shear flow. <i>New Journal of Physics</i> , 2022 , 24, 013013	2.9	1
553	Inexpensive Multipatient Respiratory Monitoring System for Helmet Ventilation During COVID-19 Pandemic. <i>Journal of Medical Devices, Transactions of the ASME</i> , 2022 , 16,	1.3	1
552	The Influence of Boundaries on Gravity Currents and Thin Films: Drainage, Confinement, Convergence, and Deformation Effects. <i>Annual Review of Fluid Mechanics</i> , 2022 , 54, 27-56	22	1
551	Generating Resonant and Repeated Root Solutions to Ordinary Differential Equations Using Perturbation Methods. <i>SIAM Review</i> , 2022 , 64, 485-499	7.4	
550	A geometric criterion for the optimal spreading of active polymers in porous media. <i>Nature Communications</i> , 2021 , 12, 7088	17.4	8
549	Quantifying the effect of a mask on expiratory flows. Physical Review Fluids, 2021, 6,	2.8	2
548	Tracking the air exhaled by an opera singer. <i>Physical Review Fluids</i> , 2021 , 6,	2.8	3
547	Shear-induced migration of confined flexible fibers. Soft Matter, 2021,	3.6	3
546	Metal-catalyst-free gas-phase synthesis of long-chain hydrocarbons. <i>Nature Communications</i> , 2021 , 12, 5937	17.4	2
545	Universal features of the shape of elastic fibres in shear flow. Journal of Fluid Mechanics, 2021, 914,	3.7	6
544	Draining and spreading along geometries that cause converging flows: Viscous gravity currents on a downward-pointing cone and a bowl-shaped hemisphere. <i>Physical Review Fluids</i> , 2021 , 6,	2.8	1
543	Chemically Triggered Coalescence and Reactivity of Droplet Fibers. <i>Journal of the American Chemical Society</i> , 2021 , 143, 5558-5564	16.4	1
542	Hydrophilic slippery surface enabled coarsening effect for rapid water harvesting. <i>Cell Reports Physical Science</i> , 2021 , 2, 100387	6.1	15
541	Diffusiophoresis and diffusioosmosis in tandem: Two-dimensional particle motion in the presence of multiple electrolytes. <i>Physical Review Fluids</i> , 2021 , 6,	2.8	4
540	Hierarchical transitions and fractal wrinkling drive bacterial pellicle morphogenesis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	3
539	Hydraulic transmissivity inferred from ice-sheet relaxation following Greenland supraglacial lake drainages. <i>Nature Communications</i> , 2021 , 12, 3955	17.4	1
538	Low-Reynolds-number, biflagellated Quincke swimmers with multiple forms of motion. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	5

(2021-2021)

537	Evaporation of Binary-Mixture Liquid Droplets: The Formation of Picoliter Pancakelike Shapes. <i>Physical Review Letters</i> , 2021 , 127, 024501	7.4	3	
536	Flow ratepressure drop relation for shear-thinning fluids in narrow channels: approximate solutions and comparison with experiments. <i>Journal of Fluid Mechanics</i> , 2021 , 923,	3.7	2	
535	Electrostatics, conformation, and rheology of unentangled semidilute polyelectrolyte solutions. <i>Journal of Rheology</i> , 2021 , 65, 507-526	4.1	4	
534	Plasmodesmata and the problems with size: Interpreting the confusion. <i>Journal of Plant Physiology</i> , 2021 , 257, 153341	3.6	8	
533	CO-Driven diffusiophoresis and water cleaning: similarity solutions for predicting the exclusion zone in a channel flow. <i>Lab on A Chip</i> , 2021 , 21, 3387-3400	7.2	2	
532	Roadmap on emerging concepts in the physical biology of bacterial biofilms: from surface sensing to community formation. <i>Physical Biology</i> , 2021 , 18,	3	16	
531	CO-Driven diffusiophoresis for maintaining a bacteria-free surface. Soft Matter, 2021, 17, 2568-2576	3.6	3	
530	Electrostatic wrapping of a microfiber around a curved particle. <i>Soft Matter</i> , 2021 , 17, 3609-3618	3.6	2	
529	Simulation of impulsively induced viscoelastic jets using the Oldroyd-B model. <i>Journal of Fluid Mechanics</i> , 2021 , 911,	3.7	2	
528	Microswimmers near corrugated, periodic surfaces. <i>Soft Matter</i> , 2021 , 17, 3322-3332	3.6	Ο	
527	Non-unique bubble dynamics in a vertical capillary with an external flow. <i>Journal of Fluid Mechanics</i> , 2021 , 911,	3.7	3	
526	Diffusion and flow across shape-perturbed plasmodesmata nanopores in plants. <i>European Physical Journal Plus</i> , 2021 , 136, 1	3.1	2	
525	Reciprocal theorem for calculating the flow ratepressure drop relation for complex fluids in narrow geometries. <i>Physical Review Fluids</i> , 2021 , 6,	2.8	3	
524	Evaporation of multiple droplets. <i>Journal of Fluid Mechanics</i> , 2021 , 927,	3.7	2	
523	Evidence for biosurfactant-induced flow in corners and bacterial spreading in unsaturated porous media. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	3	
522	Membrane science emerging as a convergent scientific field with molecular origins and understanding, and global impact. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	1	
521	Confinement size determines the architecture of Ran-induced microtubule networks. <i>Soft Matter</i> , 2021 , 17, 5921-5931	3.6	0	
520	A hydrodynamic instability drives protein droplet formation on microtubules to nucleate branches <i>Nature Physics</i> , 2021 , 17, 493-498	16.2	12	

519	4D imaging reveals mechanisms of clay-carbon protection and release. <i>Nature Communications</i> , 2021 , 12, 622	17.4	13
518	Formation, Rupture, and Healing of an Annular Viscous Film. <i>Physical Review Letters</i> , 2020 , 124, 224501	7.4	1
517	Symmetrization of Thin Freestanding Liquid Films via a Capillary-Driven Flow. <i>Physical Review Letters</i> , 2020 , 124, 184502	7.4	5
516	Cell position fates and collective fountain flow in bacterial biofilms revealed by light-sheet microscopy. <i>Science</i> , 2020 , 369, 71-77	33.3	45
515	Silver-Based Self-Powered pH-Sensitive Pump and Sensor. <i>Langmuir</i> , 2020 , 36, 7948-7955	4	2
514	Stability of force-driven shear flows in nonequilibrium molecular simulations with periodic boundaries. <i>Journal of Chemical Physics</i> , 2020 , 152, 214113	3.9	
513	Nonuniform growth and surface friction determine bacterial biofilm morphology on soft substrates. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 7622-7632	11.5	32
512	Rotation of a submerged finite cylinder moving down a soft incline. <i>Soft Matter</i> , 2020 , 16, 4000-4007	3.6	3
511	Diffusiophoresis in Multivalent Electrolytes. <i>Langmuir</i> , 2020 , 36, 7014-7020	4	17
510	Chemically controlled shape-morphing of elastic sheets. <i>Materials Horizons</i> , 2020 , 7, 2314-2327	14.4	5
509	Diffusiophoresis: from dilute to concentrated electrolytes. <i>Soft Matter</i> , 2020 , 16, 6975-6984	3.6	15
508	Flexible fibers in shear flow approach attracting periodic solutions. <i>Physical Review E</i> , 2020 , 101, 023104	42.4	8
507	Harnessing elasticity to generate self-oscillation via an electrohydrodynamic instability. <i>Journal of Fluid Mechanics</i> , 2020 , 888,	3.7	7
506	Marangoni-driven film climbing on a draining pre-wetted film. Journal of Fluid Mechanics, 2020, 886,	3.7	3
505	Influence of Salt on the Viscosity of Polyelectrolyte Solutions. <i>Physical Review Letters</i> , 2020 , 124, 17780	17.4	9
504	Particle motion nearby rough surfaces. <i>Physical Review Fluids</i> , 2020 , 5,	2.8	6
503	Stretching and break-up of saliva filaments during speech: A route for pathogen aerosolization and its potential mitigation. <i>Physical Review Fluids</i> , 2020 , 5,	2.8	29
502	Towards improved social distancing guidelines: Space and time dependence of virus transmission from speech-driven aerosol transport between two individuals. <i>Physical Review Fluids</i> , 2020 , 5,	2.8	25

(2019-2020)

The transition state and regulation of 町uRC-mediated microtubule nucleation revealed by single molecule microscopy. <i>ELife</i> , 2020 , 9,	8.9	21
Rotating tensiometer for the measurement of the elastic modulus of deformable particles. <i>Physical Review Fluids</i> , 2020 , 5,	2.8	1
Regime Map and Triple Point in Selective Withdrawal. <i>Physical Review Letters</i> , 2020 , 125, 264502	7.4	1
Start-up flow in shallow deformable microchannels. <i>Journal of Fluid Mechanics</i> , 2020 , 885,	3.7	12
Speech can produce jet-like transport relevant to asymptomatic spreading of virus. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 25237-25245	11.5	93
Free-Surface Liquid Lithium Flow Modeling and Stability Analysis for Fusion Applications. <i>Journal of Fusion Energy</i> , 2020 , 39, 455-461	1.6	
CO-leakage-driven diffusiophoresis causes spontaneous accumulation of charged materials in channel flow. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 25985-25990	11.5	2
Self-Propelled Supracolloidal Fibers from Multifunctional Polymer Surfactants and Droplets. <i>Macromolecular Rapid Communications</i> , 2020 , 41, e2000334	4.8	3
Thermodynamics of Electrical Double Layers with Electrostatic Correlations. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 26830-26842	3.8	2
Self-Similar Draining near a Vertical Edge. <i>Physical Review Letters</i> , 2020 , 125, 064502	7.4	3
A new wrinkle on liquid sheets: Turning the mechanism of viscous bubble collapse upside down. <i>Science</i> , 2020 , 369, 685-688	33.3	21
Charging Dynamics of Overlapping Double Layers in a Cylindrical Nanopore. <i>Physical Review Letters</i> , 2020 , 125, 076001	7.4	20
Ions in an AC Electric Field: Strong Long-Range Repulsion between Oppositely Charged Surfaces. <i>Physical Review Letters</i> , 2020 , 125, 056001	7.4	7
Ionic Layering and Overcharging in Electrical Double Layers in a Poisson-Boltzmann Model. <i>Physical Review Letters</i> , 2020 , 125, 188004	7.4	8
Phase synchronization of fluid-fluid interfaces as hydrodynamically coupled oscillators. <i>Nature Communications</i> , 2020 , 11, 5221	17.4	4
Mechanical instability and interfacial energy drive biofilm morphogenesis. <i>ELife</i> , 2019 , 8,	8.9	33
The effects of a horizontal magnetic field on the Rayleigh Taylor instability. <i>Nuclear Materials and Energy</i> , 2019 , 18, 175-181	2.1	7
Design Of An Optofluidic Device For The Measurement Of The Elastic Modulus Of Deformable Particles. <i>EPJ Web of Conferences</i> , 2019 , 215, 14003	0.3	
	molecule microscopy. ELife, 2020, 9, Rotating tensiometer for the measurement of the elastic modulus of deformable particles. Physical Review Fluids, 2020, 5, Regime Map and Triple Point in Selective Withdrawal. Physical Review Letters, 2020, 125, 264502 Start-up flow in shallow deformable microchannels. Journal of Fluid Mechanics, 2020, 885, Speech can produce jet-like transport relevant to asymptomatic spreading of virus. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25237-25245 Free-Surface Liquid Lithium Flow Modeling and Stability Analysis for Fusion Applications. Journal of Fusion Energy, 2020, 39, 455-461 CO-leakage-driven diffusiophoresis causes spontaneous accumulation of charged materials in channel flow. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25985-25990 Self-propelled Supracolloidal Fibers from Multifunctional Polymer Surfactants and Droplets. Macromolecular Rapid Communications, 2020, 41, e2000334 Thermodynamics of Electrical Double Layers with Electrostatic Correlations. Journal of Physical Chemistry C, 2020, 124, 26830-26842 Self-Similar Draining near a Vertical Edge. Physical Review Letters, 2020, 125, 064502 A new wrinkle on liquid sheets: Turning the mechanism of viscous bubble collapse upside down. Science, 2020, 369, 685-688 Charging Dynamics of Overlapping Double Layers in a Cylindrical Nanopore. Physical Review Letters, 2020, 125, 056001 Ionic Layering and Overcharging in Electrical Double Layers in a Poisson-Boltzmann Model. Physical Review Letters, 2020, 125, 056001 Phase synchronization of fluid-fluid interfaces as hydrodynamically coupled oscillators. Nature Communications, 2020, 11, 5221 Mechanical instability and interfacial energy drive biofilm morphogenesis. ELife, 2019, 8, The effects of a horizontal magnetic field on the Rayleighlaylor instability. Nuclear Materials and Energy, 2019, 18, 175-181	molecule microscopy. ELife, 2020, 9, Rotating tensiometer for the measurement of the elastic modulus of deformable particles. Physical Review Fluids, 2020, 5. Regime Map and Triple Point in Selective Withdrawal. Physical Review Letters, 2020, 125, 264502 7-4 Start-up flow in shallow deformable microchannels. Journal of Fluid Mechanics, 2020, 885, 37 Speech can produce jet-like transport relevant to asymptomatic spreading of virus. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25237-25245 Free-Surface Liquid Lithium Flow Modeling and Stability Analysis for Fusion Applications. Journal of Fusion Energy, 2020, 39, 455-461 CO-leakage-driven diffusiophoresis causes spontaneous accumulation of charged materials in channel flow. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25935-25990 Self-Propelled Supracolloidal Fibers from Multifunctional Polymer Surfactants and Droplets. Macromolecular Repid Communications, 2020, 41, e2000334 Thermodynamics of Electrical Double Layers with Electrostatic Correlations. Journal of Physical Chemistry C, 2020, 124, 26830-26842 3.8 Self-Similar Draining near a Vertical Edge. Physical Review Letters, 2020, 125, 064502 7.4 A new wrinkle on liquid sheets: Turning the mechanism of viscous bubble collapse upside down. Science, 2020, 369, 685-688 Charging Dynamics of Overlapping Double Layers in a Cylindrical Nanopore. Physical Review Letters, 2020, 125, 076001 Ions in an AC Electric Field: Strong Long-Range Repulsion between Oppositely Charged Surfaces. Physical Review Letters, 2020, 125, 056001 Ions in an AC Electric Field: Strong Long-Range Repulsion between Oppositely Charged Surfaces. Physical Review Letters, 2020, 125, 056001 Ions in an AC Electric Field: Strong Long-Range Repulsion between Oppositely Charged Surfaces. Physical Review Letters, 2020, 125, 056001 Ions in an AC Electric Field: Strong Long-Range Repulsion between Oppositely Charged Surfaces. Physical Review Letter

483	Quantifying Dynamics in Phase-Separated Condensates Using Fluorescence Recovery after Photobleaching. <i>Biophysical Journal</i> , 2019 , 117, 1285-1300	2.9	90
482	The reciprocal theorem in fluid dynamics and transport phenomena. <i>Journal of Fluid Mechanics</i> , 2019 , 879,	3.7	40
481	Characterization of surface-solute interactions by diffusioosmosis. <i>Soft Matter</i> , 2019 , 15, 1582-1596	3.6	13
480	Design of a microfluidic device for the measurement of the elastic modulus of deformable particles. <i>Soft Matter</i> , 2019 , 15, 880-889	3.6	8
479	Submicron aerosols of liquid fuels: Method of production, experimental characterization and a semi-empirical model. <i>Applied Energy</i> , 2019 , 235, 1651-1663	10.7	5
478	Pressure-driven flow across a hyperelastic porous membrane. <i>Journal of Fluid Mechanics</i> , 2019 , 871, 74.	2 <i>-3</i> . 5 4	5
477	Restoring universality to the pinch-off of a bubble. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 13780-13784	11.5	11
476	Microfluidic-based transcriptomics reveal force-independent bacterial rheosensing. <i>Nature Microbiology</i> , 2019 , 4, 1274-1281	26.6	23
475	Particle entrainment in dead-end pores by diffusiophoresis. <i>Soft Matter</i> , 2019 , 15, 3879-3885	3.6	22
474	Identification of a Molecular Latch that Regulates Staphylococcal Virulence. <i>Cell Chemical Biology</i> , 2019 , 26, 548-558.e4	8.2	10
473	Representative subsampling of sedimenting blood. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,</i> 2019 , 475, 20190223	2.4	О
472	Chemotaxis in shear flow: Similarity solutions of the steady-state chemoattractant and bacterial distributions. <i>AICHE Journal</i> , 2019 , 65, e16713	3.6	O
471	Inertial gravity current produced by the drainage of a cylindrical reservoir from an outer or inner edge. <i>Journal of Fluid Mechanics</i> , 2019 , 874, 185-209	3.7	4
470	Rapid Spreading of a Droplet on a Thin Soap Film. <i>Langmuir</i> , 2019 , 35, 14855-14860	4	5
469	Dynamics of long gas bubbles rising in a vertical tube in a cocurrent liquid flow. <i>Physical Review Fluids</i> , 2019 , 4,	2.8	12
468	Fountain mixing in a filling box at low Reynolds numbers. <i>Physical Review Fluids</i> , 2019 , 4,	2.8	7
467	Diffusiophoretic and diffusioosmotic velocities for mixtures of valence-asymmetric electrolytes. <i>Physical Review Fluids</i> , 2019 , 4,	2.8	27
466	Propulsion driven by self-oscillation via an electrohydrodynamic instability. <i>Physical Review Fluids</i> , 2019 , 4,	2.8	12

(2018-2019)

465	Effect of streamwise cross-sectional variation on liquid retention in liquid-infused substrates under an external flow. <i>Physical Review Fluids</i> , 2019 , 4,	2.8	2
464	Pattern formation in oil-in-water emulsions exposed to a salt gradient. <i>Physical Review Fluids</i> , 2019 , 4,	2.8	1
463	Role of extensional rheology on droplet bouncing. Physical Review Fluids, 2019, 4,	2.8	13
462	Deposition-on-contact regime and the effect of donor-acceptor distance during laser-induced forward transfer of viscoelastic liquids. <i>Optical Materials Express</i> , 2019 , 9, 2738	2.6	6
461	Spatiotemporal organization of branched microtubule networks. ELife, 2019, 8,	8.9	29
460	Autophoresis of two adsorbing/desorbing particles in an electrolyte solution. <i>Journal of Fluid Mechanics</i> , 2019 , 865, 440-459	3.7	7
459	Backflow from a model fracture network: an asymptotic investigation. <i>Journal of Fluid Mechanics</i> , 2019 , 864, 899-924	3.7	4
458	Diffusion of multiple electrolytes cannot be treated independently: model predictions with experimental validation. <i>Soft Matter</i> , 2019 , 15, 9965-9973	3.6	13
457	A quantitative study of the effect of flow on the photopolymerization of fibers. <i>Soft Matter</i> , 2019 , 15, 9553-9564	3.6	3
456	Diffusiophoresis in ionic surfactants: effect of micelle formation. <i>Soft Matter</i> , 2019 , 15, 278-288	3.6	9
455	Flow ratepressure drop relation for deformable shallow microfluidic channels. <i>Journal of Fluid Mechanics</i> , 2018 , 841, 267-286	3.7	43
454	Viscoplastic Materials for Embedded 3D Printing. <i>ACS Applied Materials & Description</i> (1998) 10, 23353-23361	9.5	97
453	Suppressing viscous fingering in structured porous media. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 4833-4838	11.5	66
452	Impulsively Induced Jets from Viscoelastic Films for High-Resolution Printing. <i>Physical Review Letters</i> , 2018 , 120, 074501	7.4	31
451	Healing capillary films. Journal of Fluid Mechanics, 2018, 838, 404-434	3.7	13
450	Impact of diversity of morphological characteristics and Reynolds number on local hemodynamics in basilar aneurysms. <i>AICHE Journal</i> , 2018 , 64, 2792-2802	3.6	1
449	Dewetting of Thin Liquid Films Surrounding Air Bubbles in Microchannels. <i>Langmuir</i> , 2018 , 34, 1363-13	70 ₄	16
448	Flow past finite cylinders of constant curvature. <i>Journal of Fluid Mechanics</i> , 2018 , 837, 896-915	3.7	5

447	Cleaning by Surfactant Gradients: Particulate Removal from Porous Materials and the Significance of Rinsing in Laundry Detergency. <i>Physical Review Applied</i> , 2018 , 9,	4.3	30
446	Diffusiophoresis of a charged drop. <i>Journal of Fluid Mechanics</i> , 2018 , 852, 37-59	3.7	27
445	Visualization of Surfactant Dynamics to and along Oil-Water Interfaces Using Solvatochromic Fluorescent Surfactants. <i>Langmuir</i> , 2018 , 34, 10512-10522	4	5
444	Foam-driven fracture. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 8082-8086	11.5	9
443	Invisible Anchors Trap Particles in Branching Junctions. <i>Physical Review Letters</i> , 2018 , 121, 054502	7.4	12
442	Direct measurement of selective evaporation of binary mixture droplets by dissolving materials. <i>Journal of Fluid Mechanics</i> , 2018 , 850, 769-783	3.7	24
441	Separation of particles by size from a suspension using the motion of a confined bubble. <i>Applied Physics Letters</i> , 2018 , 112, 181604	3.4	12
440	Flow-induced phase separation of active particles is controlled by boundary conditions. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 5403-5408	11.5	48
439	Dynamic switching enables efficient bacterial colonization in flow. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 5438-5443	11.5	9
438	Rotation of a low-Reynolds-number watermill: theory and simulations. <i>Journal of Fluid Mechanics</i> , 2018 , 849, 57-75	3.7	1
437	Verticalization of bacterial biofilms. <i>Nature Physics</i> , 2018 , 14, 954-960	16.2	52
436	Universality in the nonlinear leveling of capillary films. <i>Physical Review Fluids</i> , 2018 , 3,	2.8	7
435	Reciprocal theorem for the prediction of the normal force induced on a particle translating parallel to an elastic membrane. <i>Physical Review Fluids</i> , 2018 , 3,	2.8	13
434	Dynamics of viscous backflow from a model fracture network. <i>Journal of Fluid Mechanics</i> , 2018 , 836, 82	8 3 8 / 19	8
433	Laser-induced forward transfer from healing silver paste films. <i>Applied Physics Letters</i> , 2018 , 113, 22160	03.4	8
432	Bacterial Biofilm Material Properties Enable Removal and Transfer by Capillary Peeling. <i>Advanced Materials</i> , 2018 , 30, e1804153	24	34
431	Time-dependent motion of a confined bubble in a tube: transition between two steady states. Journal of Fluid Mechanics, 2018, 857,	3.7	7
430	Cell Membranes Resist Flow. <i>Cell</i> , 2018 , 175, 1769-1779.e13	56.2	140

(2017-2018)

429	Uniform Coating of Self-Assembled Noniridescent Colloidal Nanostructures using the Marangoni Effect and Polymers. <i>Physical Review Applied</i> , 2018 , 10,	4.3	8
428	Membrane-induced hydroelastic migration of a particle surfing its own wave. <i>Nature Physics</i> , 2018 , 14, 1211-1215	16.2	21
427	Building Supracolloidal Fibers from Zwitterion-Stabilized Adhesive Emulsions. <i>Advanced Functional Materials</i> , 2018 , 28, 1804325	15.6	10
426	Diffusiophoresis in narrow channel flows. <i>Journal of Fluid Mechanics</i> , 2018 , 854, 420-448	3.7	22
425	Electrical Double Layers: Effects of Asymmetry in Electrolyte Valence on Steric Effects, Dielectric Decrement, and Ion-Ion Correlations. <i>Langmuir</i> , 2018 , 34, 11971-11985	4	38
424	Dynamic regimes of electrified liquid filaments. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 6159-6164	11.5	20
423	Salt type and concentration affect the viscoelasticity of polyelectrolyte solutions. <i>Applied Physics Letters</i> , 2018 , 112, 203701	3.4	16
422	Bubble-Driven Detachment of Bacteria from Confined Microgeometries. <i>Environmental Science & Environmental Science</i>	10.3	32
421	Vortex breakdown, linear global instability and sensitivity of pipe bifurcation flows. <i>Journal of Fluid Mechanics</i> , 2017 , 815, 257-294	3.7	16
420	Oil-Impregnated Nanoporous Oxide Layer for Corrosion Protection with Self-Healing. <i>Advanced Functional Materials</i> , 2017 , 27, 1606040	15.6	69
419	Entry and exit flows in curved pipes. <i>Journal of Fluid Mechanics</i> , 2017 , 815, 570-591	3.7	3
418	Sinking a Granular Raft. <i>Physical Review Letters</i> , 2017 , 118, 108001	7.4	11
417	Farming and public goods production in populations. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 2289-2294	11.5	14
416	Membraneless water filtration using CO. <i>Nature Communications</i> , 2017 , 8, 15181	17.4	56
415	Formation of sea ice bridges in narrow straits in response to wind and water stresses. <i>Journal of Geophysical Research: Oceans</i> , 2017 , 122, 5588-5610	3.3	9
414	Diffusiophoretic manipulation of particles in a drop deposited on a hydrogel. <i>Soft Matter</i> , 2017 , 13, 51	22 ₃ 56129	97
413	Low-Cost Zeta Potentiometry Using Solute Gradients. Advanced Materials, 2017, 29, 1701516	24	35
412	Surface-attached molecules control Staphylococcus aureus quorum sensing and biofilm development. <i>Nature Microbiology</i> , 2017 , 2, 17080	26.6	64

411	Spontaneous formation of aligned DNA nanowires by capillarity-induced skin folding. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 6233-6237	11.5	18
410	High-speed axial-scanning wide-field microscopy for volumetric particle tracking velocimetry. <i>Experiments in Fluids</i> , 2017 , 58, 1	2.5	7
409	Wind-Driven Formation of Ice Bridges in Straits. <i>Physical Review Letters</i> , 2017 , 118, 128701	7.4	3
408	Hydrodynamic force on a sphere normal to an obstacle due to a non-uniform flow. <i>Journal of Fluid Mechanics</i> , 2017 , 818, 407-434	3.7	10
407	The influence of capillary effects on the drainage of a viscous gravity current into a deep porous medium. <i>Journal of Fluid Mechanics</i> , 2017 , 817, 514-559	3.7	10
406	Armoring confined bubbles in the flow of colloidal suspensions. <i>Soft Matter</i> , 2017 , 13, 2857-2865	3.6	14
405	Failure mechanisms of air entrainment in drop impact on lubricated surfaces. <i>Soft Matter</i> , 2017 , 13, 24	02326409	9 18
404	Extended lubrication theory: improved estimates of flow in channels with variable geometry. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 473, 2017023	34 ^{2.4}	13
403	Water-Based Peeling of Thin Hydrophobic Films. <i>Physical Review Letters</i> , 2017 , 119, 154502	7.4	23
402	Shape of the growing front of biofilms. New Journal of Physics, 2017, 19, 125007	2.9	16
401	Shape of the growing front of biofilms. <i>New Journal of Physics</i> , 2017 , 19, 125007 Motion of a Free-Settling Spherical Particle Driven by a Laser-Induced Bubble. <i>Physical Review Letters</i> , 2017 , 119, 084501	2.9 7·4	1636
<u> </u>	Motion of a Free-Settling Spherical Particle Driven by a Laser-Induced Bubble. <i>Physical Review</i>		
401	Motion of a Free-Settling Spherical Particle Driven by a Laser-Induced Bubble. <i>Physical Review Letters</i> , 2017 , 119, 084501 Inertial gravity currents produced by fluid drainage from an edge. <i>Journal of Fluid Mechanics</i> , 2017 ,	7.4	36
401	Motion of a Free-Settling Spherical Particle Driven by a Laser-Induced Bubble. <i>Physical Review Letters</i> , 2017 , 119, 084501 Inertial gravity currents produced by fluid drainage from an edge. <i>Journal of Fluid Mechanics</i> , 2017 , 827, 640-663 Flow-induced gelation of microfiber suspensions. <i>Proceedings of the National Academy of Sciences</i>	7·4 3·7 11.5	36
400	Motion of a Free-Settling Spherical Particle Driven by a Laser-Induced Bubble. <i>Physical Review Letters</i> , 2017 , 119, 084501 Inertial gravity currents produced by fluid drainage from an edge. <i>Journal of Fluid Mechanics</i> , 2017 , 827, 640-663 Flow-induced gelation of microfiber suspensions. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, E8557-E8564 Extracellular-matrix-mediated osmotic pressure drives Vibrio cholerae biofilm expansion and	7·4 3·7 11.5	36 8 37
400 399 398	Motion of a Free-Settling Spherical Particle Driven by a Laser-Induced Bubble. <i>Physical Review Letters</i> , 2017 , 119, 084501 Inertial gravity currents produced by fluid drainage from an edge. <i>Journal of Fluid Mechanics</i> , 2017 , 827, 640-663 Flow-induced gelation of microfiber suspensions. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, E8557-E8564 Extracellular-matrix-mediated osmotic pressure drives Vibrio cholerae biofilm expansion and cheater exclusion. <i>Nature Communications</i> , 2017 , 8, 327 Spatial gene drives and pushed genetic waves. <i>Proceedings of the National Academy of Sciences of</i>	7·4 3·7 11.5	36 8 37 75
401 400 399 398 397	Motion of a Free-Settling Spherical Particle Driven by a Laser-Induced Bubble. <i>Physical Review Letters</i> , 2017 , 119, 084501 Inertial gravity currents produced by fluid drainage from an edge. <i>Journal of Fluid Mechanics</i> , 2017 , 827, 640-663 Flow-induced gelation of microfiber suspensions. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, E8557-E8564 Extracellular-matrix-mediated osmotic pressure drives Vibrio cholerae biofilm expansion and cheater exclusion. <i>Nature Communications</i> , 2017 , 8, 327 Spatial gene drives and pushed genetic waves. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 8452-8457 Effect of Hydrodynamic Interactions on Reaction Rates in Membranes. <i>Biophysical Journal</i> , 2017 ,	7·4 3·7 11.5 17.4	36 8 37 75 37

393	Laboratory layered latte. <i>Nature Communications</i> , 2017 , 8, 1960	17.4	14
392	Accumulation of Colloidal Particles in Flow Junctions Induced by Fluid Flow and Diffusiophoresis. <i>Physical Review X</i> , 2017 , 7,	9.1	22
391	Diffusiophoresis in one-dimensional solute gradients. Soft Matter, 2017, 13, 9015-9023	3.6	26
390	Microfluidic chest cavities reveal that transmural pressure controls the rate of lung development. <i>Development (Cambridge)</i> , 2017 , 144, 4328-4335	6.6	58
389	Protocol to perform pressurized blister tests on thin elastic films. <i>European Physical Journal E</i> , 2017 , 40, 64	1.5	4
388	Force generation by groups of migrating bacteria. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 7266-7271	11.5	26
387	Long-wave dynamics of an elastic sheet lubricated by a thin liquid film on a wetting substrate. <i>Physical Review Fluids</i> , 2017 , 2,	2.8	4
386	Flow of a gravity current in a porous medium accounting for drainage from a permeable substrate and an edge. <i>Physical Review Fluids</i> , 2017 , 2,	2.8	7
385	Rotation of an immersed cylinder sliding near a thin elastic coating. <i>Physical Review Fluids</i> , 2017 , 2,	2.8	27
384	Undulations on the surface of elongated bubbles in confined gas-liquid flows. <i>Physical Review Fluids</i> , 2017 , 2,	2.8	22
383	Effect of buoyancy on the motion of long bubbles in horizontal tubes. <i>Physical Review Fluids</i> , 2017 , 2,	2.8	8
382	Drop impact on a flexible fiber. <i>Soft Matter</i> , 2016 , 12, 200-8	3.6	41
381	Vortex-Breakdown-Induced Particle Capture in Branching Junctions. <i>Physical Review Letters</i> , 2016 , 117, 084501	7.4	26
380	Vibrio cholerae biofilm growth program and architecture revealed by single-cell live imaging. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5337-43	11.5	100
379	Flow regime analysis for geologic CO2 sequestration and other subsurface fluid injections. <i>International Journal of Greenhouse Gas Control</i> , 2016 , 53, 284-291	4.2	16
378	Surfactant- and Aqueous-Foam-Driven Oil Extraction from Micropatterned Surfaces. <i>Langmuir</i> , 2016 , 32, 13149-13158	4	2
377	Oscillatory Marangoni flows with inertia. <i>Journal of Fluid Mechanics</i> , 2016 , 803, 94-118	3.7	1
376	Effect of the Polydispersity of a Colloidal Drop on Drying Induced Stress as Measured by the Buckling of a Floating Sheet. <i>Physical Review Letters</i> , 2016 , 116, 238001	7.4	11

375	Role of the Membrane for Mechanosensing by Tethered Channels. <i>Physical Review Letters</i> , 2016 , 116, 258101	7.4	11
374	Liquid Imbibition in Ceramic-Coated Carbon Nanotube Films. <i>Langmuir</i> , 2016 , 32, 12686-12692	4	10
373	Local and global consequences of flow on bacterial quorum sensing. <i>Nature Microbiology</i> , 2016 , 1, 1500	526.6	94
372	Biophysical characterization of organelle-based RNA/protein liquid phases using microfluidics. <i>Soft Matter</i> , 2016 , 12, 9142-9150	3.6	38
371	Point-source imbibition into dry aqueous foams. <i>Europhysics Letters</i> , 2016 , 113, 44002	1.6	7
370	The dynamics of interacting folds under biaxial compressive stresses. <i>Soft Matter</i> , 2016 , 12, 3502-6	3.6	7
369	Controlled Uniform Coating from the Interplay of Marangoni Flows and Surface-Adsorbed Macromolecules. <i>Physical Review Letters</i> , 2016 , 116, 124501	7.4	177
368	BBard-Marangoni instability driven by moisture absorption. <i>Europhysics Letters</i> , 2016 , 113, 24002	1.6	15
367	Architectural transitions in Vibrio cholerae biofilms at single-cell resolution. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, E2066-72	11.5	119
366	Size-dependent control of colloid transport via solute gradients in dead-end channels. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 257-61	11.5	125
365	Drop morphologies on flexible fibers: influence of elastocapillary effects. Soft Matter, 2016, 13, 134-140	03.6	8
364	Motion of a hot particle in viscous fluids. <i>Physical Review Fluids</i> , 2016 , 1,	2.8	19
363	Crossover from shear-driven to thermally activated drainage of liquid-infused microscale capillaries. <i>Physical Review Fluids</i> , 2016 , 1,	2.8	12
362	Effect of viscosity ratio on the shear-driven failure of liquid-infused surfaces. <i>Physical Review Fluids</i> , 2016 , 1,	2.8	61
361	A Scalable Platform for Functional Nanomaterials via Bubble-Bursting. <i>Advanced Materials</i> , 2016 , 28, 4047-52	24	16
360	Axisymmetric flows from fluid injection into a confined porous medium. <i>Physics of Fluids</i> , 2016 , 28, 0221	Q 74	25
359	Elastic Relaxation of Fluid-Driven Cracks and the Resulting Backflow. <i>Physical Review Letters</i> , 2016 , 117, 268001	7.4	14
358	Shape Transformations of Lipid Bilayers Following Rapid Cholesterol Uptake. <i>Biophysical Journal</i> , 2016 , 111, 2651-2657	2.9	9

(2015-2016)

357	Dynamics of a bubble bouncing at a liquid/liquid/gas interface. <i>Journal of Fluid Mechanics</i> , 2016 , 807, 324-352	3.7	18
356	Rivulet flow over a flexible beam. <i>Journal of Fluid Mechanics</i> , 2016 , 796, 285-305	3.7	7
355	Drag and diffusion coefficients of a spherical particle attached to a fluidfluid interface. <i>Journal of Fluid Mechanics</i> , 2016 , 790, 607-618	3.7	42
354	Negative Pressures and Spallation in Water Drops Subjected to Nanosecond Shock Waves. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 2055-62	6.4	33
353	Tuning the Receding Contact Angle on Hydrogels by Addition of Particles. <i>Langmuir</i> , 2016 , 32, 5573-9	4	8
352	Liquid explosions induced by X-ray laser pulses. <i>Nature Physics</i> , 2016 , 12, 966-971	16.2	82
351	Experimental investigation of the Faraday instability on a patterned surface. <i>Experiments in Fluids</i> , 2016 , 57, 1	2.5	6
350	Fluid-driven cracks in an elastic matrix in the toughness-dominated limit. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2016 , 374,	3	11
349	Capillary Leveling of Freestanding Liquid Nanofilms. <i>Physical Review Letters</i> , 2016 , 117, 167801	7.4	8
348	Damping of liquid sloshing by foams. <i>Physics of Fluids</i> , 2015 , 27, 022103	4.4	33
348	Damping of liquid sloshing by foams. <i>Physics of Fluids</i> , 2015 , 27, 022103 Damping of liquid sloshing by foams: from everyday observations to liquid transport. <i>Journal of Visualization</i> , 2015 , 18, 269-271	1.6	335
	Damping of liquid sloshing by foams: from everyday observations to liquid transport. <i>Journal of</i>		5
347	Damping of liquid sloshing by foams: from everyday observations to liquid transport. <i>Journal of Visualization</i> , 2015 , 18, 269-271 Gating of a mechanosensitive channel due to cellular flows. <i>Proceedings of the National Academy of</i>	1.6	5
347	Damping of liquid sloshing by foams: from everyday observations to liquid transport. <i>Journal of Visualization</i> , 2015 , 18, 269-271 Gating of a mechanosensitive channel due to cellular flows. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 9822-7	1.6	5
347 346 345	Damping of liquid sloshing by foams: from everyday observations to liquid transport. <i>Journal of Visualization</i> , 2015 , 18, 269-271 Gating of a mechanosensitive channel due to cellular flows. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 9822-7 Noncircular stable displacement patterns in a meshed porous layer. <i>Langmuir</i> , 2015 , 31, 5684-8	1.6	5 20 5
347 346 345 344	Damping of liquid sloshing by foams: from everyday observations to liquid transport. <i>Journal of Visualization</i> , 2015 , 18, 269-271 Gating of a mechanosensitive channel due to cellular flows. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 9822-7 Noncircular stable displacement patterns in a meshed porous layer. <i>Langmuir</i> , 2015 , 31, 5684-8 Flow-Driven Rapid Vesicle Fusion via Vortex Trapping. <i>Langmuir</i> , 2015 , 31, 7178-82	1.6 11.5 4	5 20 5
347346345344343	Damping of liquid sloshing by foams: from everyday observations to liquid transport. <i>Journal of Visualization</i> , 2015 , 18, 269-271 Gating of a mechanosensitive channel due to cellular flows. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 9822-7 Noncircular stable displacement patterns in a meshed porous layer. <i>Langmuir</i> , 2015 , 31, 5684-8 Flow-Driven Rapid Vesicle Fusion via Vortex Trapping. <i>Langmuir</i> , 2015 , 31, 7178-82 Wetting morphologies on an array of fibers of different radii. <i>Soft Matter</i> , 2015 , 11, 4034-40 A note on the breathing mode of an elastic sphere in Newtonian and complex fluids. <i>Physics of</i>	1.6 11.5 4 4 3.6	5 20 5 14 19

339	Stratified thin-film flow in a rheometer. <i>Physics of Fluids</i> , 2015 , 27, 052102	4.4	4
338	Shear-driven failure of liquid-infused surfaces. <i>Physical Review Letters</i> , 2015 , 114, 168301	7.4	175
337	Dynamics and topology of a flexible chain: knots in steady shear flow. <i>New Journal of Physics</i> , 2015 , 17, 053009	2.9	23
336	Flow regimes for fluid injection into a confined porous medium. <i>Journal of Fluid Mechanics</i> , 2015 , 767, 881-909	3.7	39
335	Colonization, competition, and dispersal of pathogens in fluid flow networks. <i>Current Biology</i> , 2015 , 25, 1201-7	6.3	30
334	Mechanical tuning of the evaporation rate of liquid on crossed fibers. <i>Langmuir</i> , 2015 , 31, 3094-100	4	13
333	Magnetospinning of Nano- and Microfibers. <i>Advanced Materials</i> , 2015 , 27, 3560-5	24	26
332	Two-ply channels for faster wicking in paper-based microfluidic devices. <i>Lab on A Chip</i> , 2015 , 15, 4461-6	7.2	87
331	Overflow cascades in liquid-infused substrates. <i>Physics of Fluids</i> , 2015 , 27, 082101	4.4	34
330	Viscous fluid injection into a confined channel. <i>Physics of Fluids</i> , 2015 , 27, 062105	4.4	18
329	Characterization of syringe-pump-driven induced pressure fluctuations in elastic microchannels. <i>Lab on A Chip</i> , 2015 , 15, 1110-5	7.2	57
328	A microfluidic device and automatic counting system for the study of C. elegans reproductive aging. <i>Lab on A Chip</i> , 2015 , 15, 524-31	7.2	24
327	Mobility of membrane-trapped particles. Journal of Fluid Mechanics, 2015, 781, 494-505	3.7	22
326	Stability of a bi-layer free film: simultaneous or individual rupture events?. <i>Journal of Fluid Mechanics</i> , 2015 , 777, 27-49	3.7	7
325	Downstream decay of fully developed Dean flow. <i>Journal of Fluid Mechanics</i> , 2015 , 777, 219-244	3.7	12
324	Converging gravity currents over a permeable substrate. <i>Journal of Fluid Mechanics</i> , 2015 , 778, 669-690	3.7	16
323	Propagation of a viscous thin film over an elastic membrane. Journal of Fluid Mechanics, 2015, 784, 443-	4 64	11
322	Early-time free-surface flow driven by a deforming boundary. <i>Journal of Fluid Mechanics</i> , 2015 , 767, 811	- <u>8</u> . 4 1	17

321	Experimental study on penny-shaped fluid-driven cracks in an elastic matrix. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2015 , 471, 20150255	2.4	22
320	Controlling Viscous Fingering Using Time-Dependent Strategies. <i>Physical Review Letters</i> , 2015 , 115, 174	·5 / 04]	47
319	Variation in polydispersity in pump- and pressure-driven micro-droplet generators. <i>Journal of Micromechanics and Microengineering</i> , 2015 , 25, 115015	2	12
318	Tunable transport of drops on a vibrating inclined fiber. <i>Applied Physics Letters</i> , 2015 , 107, 181604	3.4	9
317	Lubrication analysis of interacting rigid cylindrical particles in confined shear flow. <i>Physics of Fluids</i> , 2015 , 27, 072001	4.4	7
316	Reactive Magnetospinning of Nano- and Microfibers. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 13613-6	16.4	4
315	Touch- and Brush-Spinning of Nanofibers. Advanced Materials, 2015, 27, 6526-32	24	44
314	Optimization of Pathogen Capture in Flowing Fluids with Magnetic Nanoparticles. <i>Small</i> , 2015 , 11, 5657	'- 6 6	32
313	Reactive Magnetospinning of Nano- and Microfibers. <i>Angewandte Chemie</i> , 2015 , 127, 13817-13820	3.6	
312	The mechanical world of bacteria. <i>Cell</i> , 2015 , 161, 988-997	56.2	281
311	Robust liquid-infused surfaces through patterned wettability. Soft Matter, 2015, 11, 5023-9	3.6	68
310	Type IV pili mechanochemically regulate virulence factors in Pseudomonas aeruginosa. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 7563-8	11.5	214
309	Deposition of Quantum Dots in a Capillary Tube. <i>Langmuir</i> , 2015 , 31, 12560-6	4	14
308	Homogeneous deposition of particles by absorption on hydrogels. <i>Europhysics Letters</i> , 2015 , 112, 48004	1.6	12
307	Capillary bridges between soft substrates. <i>Physical Review Letters</i> , 2014 , 112, 066102	7.4	32
306	Solutions to the public goods dilemma in bacterial biofilms. <i>Current Biology</i> , 2014 , 24, 50-55	6.3	229
305	Preferential flow penetration in a network of identical channels. <i>Physics of Fluids</i> , 2014 , 26, 042110	4.4	6
304	Gelation chemistries for the encapsulation of nanoparticles in composite gel microparticles for lung imaging and drug delivery. <i>Biomacromolecules</i> , 2014 , 15, 252-61	6.9	19

303	Effect of microtextured surface topography on the wetting behavior of eutectic gallium-indium alloys. <i>Langmuir</i> , 2014 , 30, 533-9	4	110
302	Curvature suppresses the Rayleigh-Taylor instability. <i>Physics of Fluids</i> , 2014 , 26, 051704	4.4	26
301	A soft microchannel decreases polydispersity of droplet generation. Lab on A Chip, 2014 , 14, 4029-34	7.2	35
300	Buckling dynamics of a solvent-stimulated stretched elastomeric sheet. <i>Soft Matter</i> , 2014 , 10, 2800-4	3.6	21
299	Flow dependent performance of microfluidic microbial fuel cells. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 12535-43	3.6	22
298	Dissolution without disappearing: multicomponent gas exchange for CO2 bubbles in a microfluidic channel. <i>Lab on A Chip</i> , 2014 , 14, 2428-36	7.2	33
297	Sonication-microfluidics for fabrication of nanoparticle-stabilized microbubbles. <i>Langmuir</i> , 2014 , 30, 4262-6	4	19
296	Unexpected trapping of particles at a T junction. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 4770-5	11.5	57
295	Nanoemulsions obtained via bubble-bursting at a compound interface. <i>Nature Physics</i> , 2014 , 10, 606-61	216.2	63
294	Marangoni Flow of Soluble Amphiphiles. <i>Physical Review Letters</i> , 2014 , 112,	7.4	51
293	Shear dispersion in dense granular flows. <i>Granular Matter</i> , 2014 , 16, 509-515	2.6	13
292	Buckling of dielectric elastomeric plates for soft, electrically active microfluidic pumps. <i>Soft Matter</i> , 2014 , 10, 4789-94	3.6	48
291	The race of nanowires: morphological instabilities and a control strategy. <i>Nano Letters</i> , 2014 , 14, 4395-9	911.5	34
290	Fabricating shaped microfibers with inertial microfluidics. <i>Advanced Materials</i> , 2014 , 26, 3712-7	24	48
289	A reciprocal theorem for Marangoni propulsion. <i>Journal of Fluid Mechanics</i> , 2014 , 741,	3.7	57
288	Influence of heterogeneity on second-kind self-similar solutions for viscous gravity currents. <i>Journal of Fluid Mechanics</i> , 2014 , 747, 218-246	3.7	26
287	Multicompartment microfibers: fabrication and selective dissolution of composite droplet-in-fiber structures. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 7866-7871	7.3	20
286	Flow rate through microfilters: Influence of the pore size distribution, hydrodynamic interactions, wall slip, and inertia. <i>Physics of Fluids</i> , 2014 , 26, 052004	4.4	58

285	The curved shape of Caulobacter crescentus enhances surface colonization in flow. <i>Nature Communications</i> , 2014 , 5, 3824	17.4	61
284	Self-crumpling elastomers: Bending induced by the drying stimulus of a nanoparticle suspension. <i>Europhysics Letters</i> , 2014 , 108, 19001	1.6	8
283	Swelling dynamics of a thin elastomeric sheet under uniaxial pre-stretch. <i>Journal of Applied Physics</i> , 2014 , 115, 083505	2.5	13
282	Vortex and structural dynamics of a flexible cylinder in cross-flow. <i>Physics of Fluids</i> , 2014 , 26, 053605	4.4	3
281	A pinned or free-floating rigid plate on a thin viscous film. Journal of Fluid Mechanics, 2014, 760, 407-43	303.7	4
2 80	Filaments in curved streamlines: Rapid formation of biofilm streamers. <i>New Journal of Physics</i> , 2014 , 16, 065024	2.9	41
279	Viscous Marangoni migration of a drop in a Poiseuille flow at low surface Ptlet numbers. <i>Journal of Fluid Mechanics</i> , 2014 , 753, 535-552	3.7	48
278	Wetting of crossed fibers: Multiple steady states and symmetry breaking. <i>Europhysics Letters</i> , 2014 , 105, 56006	1.6	25
277	Dripping and jetting in microfluidic multiphase flows applied to particle and fiber synthesis. <i>Journal Physics D: Applied Physics</i> , 2013 , 46,	3	236
276	Generation of antibubbles from core-shell double emulsion templates produced by microfluidics. <i>Langmuir</i> , 2013 , 29, 8782-7	4	17
275	Bending of elastic fibres in viscous flows: the influence of confinement [] <i>Journal of Fluid Mechanics</i> , 2013 , 720, 517-544	3.7	37
274	Fracture Propagation Driven by Fluid Outflow from a Low-Permeability Aquifer. <i>Transport in Porous Media</i> , 2013 , 100, 69-82	3.1	11
273	Scaling laws for the thrust production of flexible pitching panels. <i>Journal of Fluid Mechanics</i> , 2013 , 732, 29-46	3.7	147
272	On the rotation of porous ellipsoids in simple shear flows. <i>Journal of Fluid Mechanics</i> , 2013 , 733,	3.7	15
271	Ice lubrication for moving heavy stones to the Forbidden City in 15th- and 16th-century China. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20023-7	11.5	10
270	Controlling viscous fingering in tapered Hele-Shaw cells. <i>Physics of Fluids</i> , 2013 , 25, 092102	4.4	48
269	Stokes flow in a drop evaporating from a liquid subphase. <i>Physics of Fluids</i> , 2013 , 25, 102102	4.4	8
268	Microfluidic tailoring of the two-dimensional morphology of crimped microfibers. <i>Soft Matter</i> , 2013 , 9, 4227	3.6	36

267	Interfacial deflection and jetting of a paramagnetic particle-laden fluid: theory and experiment. <i>Soft Matter</i> , 2013 , 9, 8600	3.6	15
266	Gas-core triple emulsions for ultrasound triggered release. <i>Soft Matter</i> , 2013 , 9, 38-42	3.6	31
265	An "off-the-shelf" capillary microfluidic device that enables tuning of the droplet breakup regime at constant flow rates. <i>Lab on A Chip</i> , 2013 , 13, 4507-11	7.2	53
264	Fluid drainage from the edge of a porous reservoir. <i>Journal of Fluid Mechanics</i> , 2013 , 718, 558-568	3.7	29
263	Gravity-driven thin-film flow on a flexible substrate. <i>Journal of Fluid Mechanics</i> , 2013 , 732, 190-213	3.7	11
262	The magnitude of lift forces acting on drops and bubbles in liquids flowing inside microchannels. <i>Lab on A Chip</i> , 2013 , 13, 365-76	7.2	33
261	Glycans pattern the phase behaviour of lipid membranes. <i>Nature Materials</i> , 2013 , 12, 128-33	27	31
260	A new angle on microscopic suspension feeders near boundaries. <i>Biophysical Journal</i> , 2013 , 105, 1796-8	8 02 49	20
259	Wetting on two parallel fibers: drop to column transitions. Soft Matter, 2013, 9, 271-276	3.6	42
258	Study of polygonal water bells: inertia-dominated thin-film flows over microtextured surfaces. <i>Journal of Fluid Mechanics</i> , 2013 , 721, 46-57	3.7	9
257	Network characteristics of collective chemosensing. <i>Physical Review Letters</i> , 2013 , 110, 158103	7.4	11
256	Dynamic fracture of nonglassy suspensions. <i>Physical Review Letters</i> , 2013 , 110, 148304	7.4	38
255	Hydrodynamically driven colloidal assembly in dip coating. <i>Physical Review Letters</i> , 2013 , 110, 188302	7.4	44
254	Analytical model for the deformation of a fluid-fluid interface beneath an AFM probe. <i>Langmuir</i> , 2013 , 29, 1427-34	4	13
253	Microfluidic ultralow interfacial tensiometry with magnetic particles. <i>Lab on A Chip</i> , 2013 , 13, 119-25	7.2	32
252	Control and manipulation of microfluidic flow via elastic deformations. <i>Soft Matter</i> , 2013 , 9, 7049-7053	3.6	36
251	Evaporation of drops on two parallel fibers: influence of the liquid morphology and fiber elasticity. <i>Langmuir</i> , 2013 , 29, 7857-63	4	25
250	Combinatorial generation of droplets by controlled assembly and coalescence. <i>Lab on A Chip</i> , 2013 , 13, 4674-80	7.2	14

(2012-2013)

249	On the hydrodynamic interaction between a particle and a permeable surface. <i>Physics of Fluids</i> , 2013 , 25, 073103	4.4	19
248	Adhesion of moving droplets in microchannels. <i>Applied Physics Letters</i> , 2013 , 103, 131605	3.4	15
247	Short and long time drop dynamics on lubricated substrates. <i>Europhysics Letters</i> , 2013 , 104, 34008	1.6	62
246	Biofilm streamers cause catastrophic disruption of flow with consequences for environmental and medical systems. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 4345-50	11.5	230
245	Minimization of thermodynamic costs in cancer cell invasion. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 1686-91	11.5	49
244	An experimental and theoretical investigation of particleWall impacts in a T-junction. <i>Journal of Fluid Mechanics</i> , 2013 , 727, 236-255	3.7	15
243	On boundary-layer flows induced by the motion of stretching surfaces. <i>Journal of Fluid Mechanics</i> , 2012 , 706, 597-606	3.7	17
242	Wetting of flexible fibre arrays. <i>Nature</i> , 2012 , 482, 510-3	50.4	197
241	Control of the length of microfibers. <i>Lab on A Chip</i> , 2012 , 12, 2301-4	7.2	34
240	Source-like solution for radial imbibition into a homogeneous semi-infinite porous medium. <i>Langmuir</i> , 2012 , 28, 4208-12	4	41
239	Plate coating: influence of concentrated surfactants on the film thickness. <i>Langmuir</i> , 2012 , 28, 3821-30	4	26
238	Coated gas bubbles for the continuous synthesis of hollow inorganic particles. <i>Langmuir</i> , 2012 , 28, 37-4	-14	50
237	Control of interfacial instabilities using flow geometry. <i>Nature Physics</i> , 2012 , 8, 747-750	16.2	140
236	The effects of membrane cholesterol and simvastatin on red blood cell deformability and ATP release. <i>Microvascular Research</i> , 2012 , 83, 347-51	3.7	42
235	Microfluidic generation of droplets with a high loading of nanoparticles. <i>Langmuir</i> , 2012 , 28, 13143-8	4	13
234	Flow directs surface-attached bacteria to twitch upstream. <i>Biophysical Journal</i> , 2012 , 103, 146-51	2.9	51
233	Ice-phobic surfaces that are wet. ACS Nano, 2012, 6, 6536-40	16.7	146
232	Thermocapillary-assisted pulling of contact-free liquid films. <i>Physics of Fluids</i> , 2012 , 24, 032107	4.4	8

231	Wrinkles and deep folds as photonic structures in photovoltaics. <i>Nature Photonics</i> , 2012 , 6, 327-332	33.9	310
230	The aerodynamics of jumping rope. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2012 , 468, 720-730	2.4	3
229	Resolving a paradox of anomalous scalings in the diffusion of granular materials. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 16012-7	11.5	22
228	Michaelis-Menten kinetics in shear flow: Similarity solutions for multi-step reactions. Biomicrofluidics, 2012 , 6, 14108-141089	3.2	4
227	Buckling transitions of an elastic filament in a viscous stagnation point flow. <i>Physics of Fluids</i> , 2012 , 24, 123601	4.4	33
226	Spatial-temporal dynamics of collective chemosensing. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 7753-8	11.5	30
225	Axial dispersion via shear-enhanced diffusion in colloidal suspensions. <i>Europhysics Letters</i> , 2012 , 97, 580	00.56	21
224	Experimental characterization of three-dimensional corner flows at low Reynolds numbers. <i>Journal of Fluid Mechanics</i> , 2012 , 707, 37-52	3.7	3
223	What is the use of elephant hair?. PLoS ONE, 2012, 7, e47018	3.7	9
222	Shear stress increases the residence time of adhesion of Pseudomonas aeruginosa. <i>Biophysical Journal</i> , 2011 , 100, 341-50	2.9	114
221	Secondary flow as a mechanism for the formation of biofilm streamers. <i>Biophysical Journal</i> , 2011 , 100, 1392-9	2.9	84
221		2.9 7.2	68
	100, 1392-9 Reactions in double emulsions by flow-controlled coalescence of encapsulated drops. <i>Lab on A Chip</i>		
220	Reactions in double emulsions by flow-controlled coalescence of encapsulated drops. <i>Lab on A Chip</i> , 2011 , 11, 2312-5 Hierarchical folding of elastic membranes under biaxial compressive stress. <i>Nature Materials</i> , 2011 ,	7.2	68
220	Reactions in double emulsions by flow-controlled coalescence of encapsulated drops. <i>Lab on A Chip</i> , 2011 , 11, 2312-5 Hierarchical folding of elastic membranes under biaxial compressive stress. <i>Nature Materials</i> , 2011 , 10, 952-7 The Science of Chocolate: Interactive Activities on Phase Transitions, Emulsification, and	7.2	68 190
220 219 218	Reactions in double emulsions by flow-controlled coalescence of encapsulated drops. <i>Lab on A Chip</i> , 2011 , 11, 2312-5 Hierarchical folding of elastic membranes under biaxial compressive stress. <i>Nature Materials</i> , 2011 , 10, 952-7 The Science of Chocolate: Interactive Activities on Phase Transitions, Emulsification, and Nucleation. <i>Journal of Chemical Education</i> , 2011 , 88, 29-33	7.2	68 190 7
219 218 217	Reactions in double emulsions by flow-controlled coalescence of encapsulated drops. <i>Lab on A Chip</i> , 2011 , 11, 2312-5 Hierarchical folding of elastic membranes under biaxial compressive stress. <i>Nature Materials</i> , 2011 , 10, 952-7 The Science of Chocolate: Interactive Activities on Phase Transitions, Emulsification, and Nucleation. <i>Journal of Chemical Education</i> , 2011 , 88, 29-33 Bubbles navigating through networks of microchannels. <i>Lab on A Chip</i> , 2011 , 11, 3970-8	7.2 27 2.4 7.2	68 190 7 27

(2011-2011)

213	Mechanical Inhibition of Foam Formation via a Rotating Nozzle. <i>Journal of Fluids Engineering, Transactions of the ASME</i> , 2011 , 133,	2.1	2
212	Interactions between two deformable droplets in tandem subjected to impulsive acceleration by surrounding flows. <i>Journal of Fluid Mechanics</i> , 2011 , 684, 384-406	3.7	7
211	Three-dimensional features in low-Reynolds-number confined corner flows. <i>Journal of Fluid Mechanics</i> , 2011 , 668, 33-57	3.7	20
21 0	Breakup of double emulsions in constrictions. <i>Soft Matter</i> , 2011 , 7, 2345	3.6	43
209	Microfluidic immunomagnetic multi-target sortinga model for controlling deflection of paramagnetic beads. <i>Lab on A Chip</i> , 2011 , 11, 2577-82	7.2	31
208	Semi-permeable vesicles composed of natural clay. Soft Matter, 2011, 7, 2600	3.6	32
207	Bending and twisting of soft materials by non-homogenous swelling. Soft Matter, 2011, 7, 5188	3.6	113
206	The shape of an elastic filament in a two-dimensional corner flow. <i>Physics of Fluids</i> , 2011 , 23, 063602	4.4	31
205	Breakup of double emulsion droplets in a tapered nozzle. <i>Langmuir</i> , 2011 , 27, 4324-7	4	32
204	Study of the flow field in the magnetic rod interfacial stress rheometer. <i>Langmuir</i> , 2011 , 27, 9345-58	4	56
203	Critical insulation thickness of a rectangular slab embedded with a periodic array of isothermal strips. <i>International Journal of Heat and Mass Transfer</i> , 2011 , 54, 180-185	4.9	7
202	Elastocapillary imbibition. <i>International Journal of Non-Linear Mechanics</i> , 2011 , 46, 648-656	2.8	33
201	Traveling wave-induced aerodynamic propulsive forces using piezoelectrically deformed substrates. <i>Applied Physics Letters</i> , 2011 , 99, 114102	3.4	11
200	Heterogeneity and the role of normal stresses during the extensional thinning of non-Brownian shear-thickening fluids. <i>Physical Review Letters</i> , 2011 , 107, 134503	7.4	38
199	Conformal coating of particles in microchannels by magnetic forcing. <i>Applied Physics Letters</i> , 2011 , 99, 153509	3.4	42
198	Mechanics of surface area regulation in cells examined with confined lipid membranes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 9084-8	11.5	102
197	The role of the membrane confinement in the surface area regulation of cells. <i>Communicative and Integrative Biology</i> , 2011 , 4, 616-618	1.7	5
196	Multiscale approach to link red blood cell dynamics, shear viscosity, and ATP release. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 10986-91	11.5	130

195	Probing the invasiveness of prostate cancer cells in a 3D microfabricated landscape. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 6853-6	11.5	36
194	The symmetry of mobility laws for viscous flow along arbitrarily patterned surfaces. <i>Physics of Fluids</i> , 2011 , 23, 031701	4.4	13
193	Imbibition of concentrated suspensions in capillaries. <i>Physics of Fluids</i> , 2011 , 23, 081701	4.4	13
192	The role of the membrane confinement in the surface area regulation of cells. <i>Communicative and Integrative Biology</i> , 2011 , 4, 616-8	1.7	2
191	Daughter bubble cascades produced by folding of ruptured thin films. <i>Nature</i> , 2010 , 465, 759-62	50.4	148
190	Corrugated interfaces in multiphase core-annular flow. <i>Physics of Fluids</i> , 2010 , 22, 082002	4.4	20
189	Dynamic self-assembly and control of microfluidic particle crystals. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 22413-8	11.5	162
188	Nearby boundaries create eddies near microscopic filter feeders. <i>Journal of the Royal Society Interface</i> , 2010 , 7, 851-62	4.1	34
187	Thermocapillary-assisted pulling of thin films: Application to molten metals. <i>Applied Physics Letters</i> , 2010 , 97, 171906	3.4	6
186	Thickness of the rim of an expanding lamella near the splash threshold. <i>Physics of Fluids</i> , 2010 , 22, 0221	0 4 4	25
185	Inertia dominated thin-film flows over microdecorated surfaces. <i>Physics of Fluids</i> , 2010 , 22, 073602	4.4	18
184	Laminar flow around corners triggers the formation of biofilm streamers. <i>Journal of the Royal Society Interface</i> , 2010 , 7, 1293-9	4.1	132
183	Axial and lateral particle ordering in finite Reynolds number channel flows. <i>Physics of Fluids</i> , 2010 , 22, 081703	4.4	99
182	Bubble formation via multidrop impacts. <i>Physics of Fluids</i> , 2010 , 22, 042105	4.4	11
181	Droplet breakup in flow past an obstacle: A capillary instability due to permeability variations. <i>Europhysics Letters</i> , 2010 , 92, 54002	1.6	54
180	Dynamic angular segregation of vesicles in electrohydrodynamic flows. <i>Langmuir</i> , 2010 , 26, 9429-36	4	6
179	Drop production and tip-streaming phenomenon in a microfluidic flow-focusing device via an interfacial chemical reaction. <i>Langmuir</i> , 2010 , 26, 9233-9	4	46
178	Imbibition in porous membranes of complex shape: quasi-stationary flow in thin rectangular segments. <i>Langmuir</i> , 2010 , 26, 1380-5	4	132

(2009-2010)

177	Thermophoresis: microfluidics characterization and separation. Soft Matter, 2010, 6, 3489	3.6	99
176	The dynamic behavior of chemically "stiffened" red blood cells in microchannel flows. <i>Microvascular Research</i> , 2010 , 80, 37-43	3.7	114
175	The role of surface rheology in liquid film formation. <i>Europhysics Letters</i> , 2010 , 90, 24002	1.6	51
174	Microfluidic generation of a high volume fraction of bubbles in droplets. <i>Soft Matter</i> , 2010 , 6, 4677	3.6	22
173	A portable device for temperature control along microchannels. Lab on A Chip, 2010, 10, 795-8	7.2	29
172	Interfaces: in fluid mechanics and across disciplines. <i>Journal of Fluid Mechanics</i> , 2010 , 645, 1-25	3.7	38
171	Newtonian pizza: spinning a viscous sheet. <i>Journal of Fluid Mechanics</i> , 2010 , 659, 1-23	3.7	7
170	Effective slip boundary conditions for arbitrary periodic surfaces: the surface mobility tensor. <i>Journal of Fluid Mechanics</i> , 2010 , 658, 409-437	3.7	90
169	The Science of Pizza: The Molecular Origins of Cheese, Bread, and Digestion Using Interactive Activities for the General Public. <i>Journal of Food Science Education</i> , 2010 , 9, 106-112	0.8	3
168	Particle/Fluid interface replication as a means of producing topographically patterned polydimethylsiloxane surfaces for deposition of lipid bilayers. <i>Advanced Materials</i> , 2010 , 22, 2142-7	24	35
167	Surface-Tension-Induced Synthesis of Complex Particles Using Confined Polymeric Fluids. <i>Angewandte Chemie</i> , 2010 , 122, 7914-7918	3.6	10
166	Critical angle for electrically driven coalescence of two conical droplets. <i>Physical Review Letters</i> , 2009 , 103, 164502	7.4	101
165	Rolling stones: The motion of a sphere down an inclined plane coated with a thin liquid film. <i>Physics of Fluids</i> , 2009 , 21, 082103	4.4	21
164	Separation-driven coalescence of droplets: an analytical criterion for the approach to contact. <i>Journal of Fluid Mechanics</i> , 2009 , 632, 97-107	3.7	46
163	Non-coalescence of oppositely charged drops. <i>Nature</i> , 2009 , 461, 377-80	50.4	203
162	Lateral shaping and stability of a stretching viscous sheet. European Physical Journal B, 2009 , 68, 487-4	94.2	12
161	Dynamics of wetting: from inertial spreading to viscous imbibition. <i>Journal of Physics Condensed Matter</i> , 2009 , 21, 464127	1.8	77
160	Thin-film fluid flows over microdecorated surfaces: observation of polygonal hydraulic jumps. <i>Physical Review Letters</i> , 2009 , 102, 194503	7.4	28

159	Imbibition in layered systems of packed beads. <i>Europhysics Letters</i> , 2009 , 86, 56002	1.6	37
158	Mechanical properties and motion of the cupula of the human semicircular canal. <i>Journal of Vestibular Research: Equilibrium and Orientation</i> , 2009 , 19, 95-110	2.5	22
157	Geometric cue for protein localization in a bacterium. <i>Science</i> , 2009 , 323, 1354-7	33.3	163
156	On the (de)stabilization of draw resonance due to cooling. <i>Journal of Fluid Mechanics</i> , 2009 , 636, 155-17	76 .7	16
155	On the thickness of soap films: an alternative to Frankel's law ICORRIGENDUM. <i>Journal of Fluid Mechanics</i> , 2009 , 630, 443-443	3.7	6
154	Enzymatic reactions in microfluidic devices: Michaelis-Menten kinetics. <i>Analytical Chemistry</i> , 2008 , 80, 3270-6	7.8	57
153	High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water. <i>Nano Letters</i> , 2008 , 8, 2087-91	11.5	130
152	Do magnetic micro-swimmers move like eukaryotic cells?. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2008 , 464, 877-904	2.4	54
151	Interfacial instabilities in a microfluidic Hele-Shaw cell. Soft Matter, 2008, 4, 1403-1413	3.6	52
150	Cellular-scale hydrodynamics. <i>Biomedical Materials (Bristol)</i> , 2008 , 3, 034011	3.5	130
149	Dynamics of shear-induced ATP release from red blood cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 16432-7	11.5	199
148	In-fiber semiconductor filament arrays. <i>Nano Letters</i> , 2008 , 8, 4265-9	11.5	49
147	Energy absorption in a bamboo foam. <i>Europhysics Letters</i> , 2008 , 84, 36001	1.6	23
146	Splashing on elastic membranes: The importance of early-time dynamics. <i>Physics of Fluids</i> , 2008 , 20, 082	21,03	70
145	Dynamics of the formation of antibubbles. <i>Europhysics Letters</i> , 2008 , 83, 54001	1.6	32
144	Shear-induced diffusion of platelike particles in microchannels. <i>Physical Review Letters</i> , 2008 , 101, 2545	 0 2 4	31
143	Transverse instability of bubbles in viscoelastic channel flows. <i>Physical Review Letters</i> , 2008 , 101, 24450	37.4	17
142	Electrohydrodynamic size stratification and flow separation of giant vesicles. <i>Applied Physics Letters</i> , 2008 , 92, 104105	3.4	29

(2007-2008)

141	On the thickness of soap films: an alternative to Frankel's law. <i>Journal of Fluid Mechanics</i> , 2008 , 602, 119-127	3.7	32
140	Imbibition in geometries with axial variations. <i>Journal of Fluid Mechanics</i> , 2008 , 615, 335-344	3.7	100
139	Coating flows of non-Newtonian fluids: weakly and strongly elastic limits. <i>Journal of Engineering Mathematics</i> , 2008 , 60, 17-41	1.2	28
138	Emulsification in a microfluidic flow-focusing device: effect of the viscosities of the liquids. <i>Microfluidics and Nanofluidics</i> , 2008 , 5, 585-594	2.8	264
137	Controllable Microfluidic Production of Microbubbles in Water-in-Oil Emulsions and the Formation of Porous Microparticles. <i>Advanced Materials</i> , 2008 , 20, 3314-3318	24	130
136	Short-time dynamics of partial wetting. <i>Physical Review Letters</i> , 2008 , 100, 234501	7.4	183
135	Interfacial polygonal nanopatterning of stable microbubbles. <i>Science</i> , 2008 , 320, 1198-201	33.3	122
134	Transition from squeezing to dripping in a microfluidic T-shaped junction. <i>Journal of Fluid Mechanics</i> , 2008 , 595, 141-161	3.7	485
133	The effect of double-chain surfactants on armored bubbles: a surfactant-controlled route to colloidosomes. <i>Physical Chemistry Chemical Physics</i> , 2007 , 9, 6476-81	3.6	14
132	The pressure drop along rectangular microchannels containing bubbles. <i>Lab on A Chip</i> , 2007 , 7, 1479-89	9 7.2	290
131	Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses. <i>Journal Physics D: Applied Physics</i> , 2007 , 40, 1447-1459	3	117
130	Motion of large bubbles in curved channels. <i>Journal of Fluid Mechanics</i> , 2007 , 570, 455-466	3.7	31
129	Imbibition by polygonal spreading on microdecorated surfaces. <i>Nature Materials</i> , 2007 , 6, 661-4	27	242
128	Influence of substrate conductivity on circulation reversal in evaporating drops. <i>Physical Review Letters</i> , 2007 , 99, 234502	7.4	408
127	Cornered drops and rivulets. <i>Physics of Fluids</i> , 2007 , 19, 042104	4.4	50
126	Directed assembly of fluidic networks by buckle delamination of films on patterned substrates. <i>International Journal of Materials Research</i> , 2007 , 98, 1203-1208	0.5	14
125	Dissolution arrest and stability of particle-covered bubbles. <i>Physical Review Letters</i> , 2007 , 99, 188301	7.4	125
124	Single-particle Brownian dynamics for characterizing the rheology of fluid Langmuir monolayers. <i>Europhysics Letters</i> , 2007 , 79, 66005	1.6	73

123	Your wetting day. <i>Physics Today</i> , 2007 , 60, 84-85	0.9	8
122	Introduction to Fluid Dynamics for Microfluidic Flows. <i>Integrated Circuits and Systems</i> , 2007 , 5-30	0.2	18
121	Reactive spreading and recoil of oil on water. <i>Physics of Fluids</i> , 2006 , 18, 038105	4.4	23
120	High-speed microfluidic differential manometer for cellular-scale hydrodynamics. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 538-42	11.5	141
119	Relaxation time of the topological T1 process in a two-dimensional foam. <i>Physical Review Letters</i> , 2006 , 97, 226101	7.4	104
118	Impact dynamics for elastic membranes. <i>Physical Review Letters</i> , 2006 , 97, 244301	7.4	11
117	Experimental characterization of hydrodynamic dispersion in shallow microchannels. <i>Lab on A Chip</i> , 2006 , 6, 930-5	7.2	38
116	Hydrodynamic dispersion in shallow microchannels: the effect of cross-sectional shape. <i>Analytical Chemistry</i> , 2006 , 78, 387-92	7.8	124
115	Swimming in circles: motion of bacteria near solid boundaries. <i>Biophysical Journal</i> , 2006 , 90, 400-12	2.9	638
114	On the dynamics of magnetically driven elastic filaments. <i>Journal of Fluid Mechanics</i> , 2006 , 554, 167	3.7	112
113	Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up. <i>Lab on A Chip</i> , 2006 , 6, 437-46	7.2	1550
112	Mechanics of interfacial composite materials. <i>Langmuir</i> , 2006 , 22, 10204-8	4	81
111	Microstructure, morphology, and lifetime of armored bubbles exposed to surfactants. <i>Langmuir</i> , 2006 , 22, 5986-90	4	101
110	Hydraulic design of pine needles: one-dimensional optimization for single-vein leaves. <i>Plant, Cell and Environment</i> , 2006 , 29, 803-9	8.4	47
109	Eddies in a bottleneck: an arbitrary Debye length theory for capillary electroosmosis. <i>Journal of Colloid and Interface Science</i> , 2006 , 297, 832-9	9.3	33
108	Geometrical focusing of cells in a microfluidic device: an approach to separate blood plasma. <i>Biorheology</i> , 2006 , 43, 147-59	1.7	129
107	Stability of a flat gas-liquid interface containing nonidentical spheres to gas transport: toward an explanation of particle stabilization of gas bubbles. <i>Langmuir</i> , 2005 , 21, 4526-31	4	10
106	Clinical implications of a mathematical model of benign paroxysmal positional vertigo. <i>Annals of the New York Academy of Sciences</i> , 2005 , 1039, 384-94	6.5	45

(2004-2005)

105	Purcell E flotator Imechanical rotation at low Reynolds number. <i>European Physical Journal B</i> , 2005 , 47, 161-164	1.2	59
104	Monodisperse double emulsions generated from a microcapillary device. <i>Science</i> , 2005 , 308, 537-41	33.3	1687
103	Controlled assembly of jammed colloidal shells on fluid droplets. <i>Nature Materials</i> , 2005 , 4, 553-6	27	241
102	Microscopic artificial swimmers. <i>Nature</i> , 2005 , 437, 862-5	50.4	1343
101	Microfluidic flow focusing: drop size and scaling in pressure versus flow-rate-driven pumping. <i>Electrophoresis</i> , 2005 , 26, 3716-24	3.6	271
100	Generation of monodisperse particles by using microfluidics: control over size, shape, and composition. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 724-8	16.4	642
99	On the absence of marginal pinching in thin free films. <i>European Journal of Applied Mathematics</i> , 2005 , 16, 569	1	17
98	Mechanism for flow-rate controlled breakup in confined geometries: a route to monodisperse emulsions. <i>Physical Review Letters</i> , 2005 , 94, 164501	7.4	426
97	Grooving of a grain boundary by evaporationBondensation below the roughening transition. <i>Journal of Applied Physics</i> , 2005 , 97, 113535	2.5	9
96	Continuum approach to self-similarity and scaling in morphological relaxation of a crystal with a facet. <i>Physical Review B</i> , 2005 , 71,	3.3	28
95	Spreading of viscous fluid drops on a solid substrate assisted by thermal fluctuations. <i>Physical Review Letters</i> , 2005 , 95, 244505	7.4	75
94	Two-peak and three-peak optimal complex networks. <i>Physical Review Letters</i> , 2004 , 92, 118702	7.4	91
93	Continuum description of profile scaling in nanostructure decay. <i>Physical Review B</i> , 2004 , 69,	3.3	10
92	Inhaling to mitigate exhaled bioaerosols. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 17383-8	11.5	218
91	Instability of a rotating thread in a second immiscible liquid. <i>Physics of Fluids</i> , 2004 , 16, 29-38	4.4	10
90	Three-dimensional flows in slowly varying planar geometries. <i>Physics of Fluids</i> , 2004 , 16, 3051-3062	4.4	46
89	Foam drainage on the microscale I. Modeling flow through single Plateau borders. <i>Journal of Colloid and Interface Science</i> , 2004 , 276, 420-38	9.3	87
88	A mathematical model for top-shelf vertigo: the role of sedimenting otoconia in BPPV. <i>Journal of Biomechanics</i> , 2004 , 37, 1137-46	2.9	81

87	Foam drainage on the microscale II. Imaging flow through single Plateau borders. <i>Journal of Colloid and Interface Science</i> , 2004 , 276, 439-49	9.3	64
86	Three-dimensional lubrication model of a contact line corner singularity. <i>Europhysics Letters</i> , 2004 , 65, 365-371	1.6	36
85	Colloidal crystallization and banding in a cylindrical geometry. <i>Journal of the American Chemical Society</i> , 2004 , 126, 5978-9	16.4	108
84	Characteristic lengths at moving contact lines for a perfectly wetting fluid: the influence of speed on the dynamic contact angle. <i>Journal of Fluid Mechanics</i> , 2004 , 505, 309-321	3.7	104
83	Dip coating for the alignment of carbon nanotubes on curved surfaces. <i>Journal of Materials Chemistry</i> , 2004 , 14, 1299		59
82	Formation of monodisperse bubbles in a microfluidic flow-focusing device. <i>Applied Physics Letters</i> , 2004 , 85, 2649-2651	3.4	501
81	On self-propulsion of micro-machines at low Reynolds number: Purcell's three-link swimmer. <i>Journal of Fluid Mechanics</i> , 2003 , 490, 15-35	3.7	237
80	Effective slip in pressure-driven Stokes flow. <i>Journal of Fluid Mechanics</i> , 2003 , 489, 55-77	3.7	551
79	The effect of surface tension on rimming flows in a partially filled rotating cylinder. <i>Journal of Fluid Mechanics</i> , 2003 , 479, 65-98	3.7	83
78	Formation of dispersions using flow focusing[in microchannels. <i>Applied Physics Letters</i> , 2003 , 82, 364-36	66.4	1766
77	Fluidic Ratchet Based on Marangoni B Bard Convection. <i>Langmuir</i> , 2003 , 19, 4358-4362	4	27
76	Self-assembly of gears at a fluid/air interface. Journal of the American Chemical Society, 2003, 125, 7948	3 -58 .4	33
75	Morphology of femtosecond-laser-ablated borosilicate glass surfaces. <i>Applied Physics Letters</i> , 2003 , 83, 3030-3032	3.4	98
74	Ordered clusters and dynamical states of particles in a vibrated fluid. <i>Physical Review Letters</i> , 2002 , 88, 234301	7.4	48
73	Dynamics of self assembly of magnetized disks rotating at the liquid-air interface. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 4147-51	11.5	52
72	Fiber coating with surfactant solutions. <i>Physics of Fluids</i> , 2002 , 14, 4055-4068	4.4	102
71	Surface Morphology of Drying Latex Films: Multiple Ring Formation. <i>Langmuir</i> , 2002 , 18, 3441-3445	4	196
70	Chaotic mixer for microchannels. <i>Science</i> , 2002 , 295, 647-51	33.3	2471

(1999-2001)

69	Peristaltically driven channel flows with applications toward micromixing. <i>Physics of Fluids</i> , 2001 , 13, 1837-1859	4.4	67
68	Microfluidics: Basic issues, applications, and challenges. AICHE Journal, 2001, 47, 1250-1254	3.6	410
67	Flow along two dimensions of liquid pulses in foams: Experiment and theory. <i>Europhysics Letters</i> , 2001 , 54, 335-341	1.6	32
66	Leakage through filtercake into a fluid sampling probe. <i>Physics of Fluids</i> , 2001 , 13, 1151-1159	4.4	7
65	An accurate von Neumann's law for three-dimensional foams. <i>Physical Review Letters</i> , 2001 , 86, 2685-8	7.4	122
64	Dynamic, self-assembled aggregates of magnetized, millimeter-sized objects rotating at the liquid-air interface: macroscopic, two-dimensional classical artificial atoms and molecules. <i>Physical Review E</i> , 2001 , 64, 011603	2.4	86
63	Convection, heaping, and cracking in vertically vibrated granular slurries. <i>Physical Review Letters</i> , 2001 , 86, 3016-9	7.4	25
62	Dynamics of coarsening foams: accelerated and self-limiting drainage. <i>Physical Review Letters</i> , 2001 , 86, 4704-7	7.4	188
61	Pressure-driven laminar flow in tangential microchannels: an elastomeric microfluidic switch. <i>Analytical Chemistry</i> , 2001 , 73, 4682-7	7.8	90
60	Modern Classical Physics Through the Work of G. I. Taylor. <i>Physics Today</i> , 2000 , 53, 30-35	0.9	26
59	Lubrication analysis and boundary integral simulations of a viscous micropump. <i>Journal of Fluid Mechanics</i> , 2000 , 416, 197-216	3.7	34
58	Dynamic self-assembly of magnetized, millimetre-sized objects rotating at a liquid-air interface. <i>Nature</i> , 2000 , 405, 1033-6	50.4	427
57	Piston flow in a two-dimensional channel. <i>Physics of Fluids</i> , 2000 , 12, 1240-1243	4.4	12
56	Philip Saffman and viscous flow theory. <i>Journal of Fluid Mechanics</i> , 2000 , 409, 165-183	3.7	56
55	Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels. <i>Applied Physics Letters</i> , 2000 , 76, 2376-2378	3.4	436
54	A Generalized View of Foam Drainage: Experiment and Theory. <i>Langmuir</i> , 2000 , 16, 6327-6341	4	311
53	On the deviatoric normal stress on a slip surface. <i>Physics of Fluids</i> , 2000 , 12, 3280-3281	4.4	3
52	A note on swimming using internally generated traveling waves. <i>Physics of Fluids</i> , 1999 , 11, 1275-1277	4.4	18

51	Electroosmotic Flows Created by Surface Defects in Capillary Electrophoresis. <i>Journal of Colloid and Interface Science</i> , 1999 , 212, 338-349	9.3	89
50	Liquid Flow through Aqueous Foams: The Node-Dominated Foam Drainage Equation. <i>Physical Review Letters</i> , 1999 , 82, 4232-4235	7.4	169
49	Drops with conical ends in electric and magnetic fields. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 1999 , 455, 329-347	2.4	99
48	Dispersion in Flows with Streamwise Variations of Mean Velocity: Radial Flow[]Industrial & amp; Engineering Chemistry Research, 1999 , 38, 851-854	3.9	20
47	Coalescence of liquid drops. <i>Journal of Fluid Mechanics</i> , 1999 , 401, 293-310	3.7	440
46	Capillary breakup of a viscous thread surrounded by another viscous fluid. <i>Physics of Fluids</i> , 1998 , 10, 2758-2764	4.4	231
45	Dynamics of foam drainage. <i>Physical Review E</i> , 1998 , 58, 2097-2106	2.4	70
44	Propagation of a topological transition: The Rayleigh instability. <i>Physics of Fluids</i> , 1998 , 10, 1052-1057	4.4	50
43	Oscillatory motions of circular disks and nearly spherical particles in viscous flows. <i>Journal of Fluid Mechanics</i> , 1998 , 367, 329-358	3.7	48
42	Electrohydrodynamic deformation and interaction of drop pairs. <i>Journal of Fluid Mechanics</i> , 1998 , 368, 359-375	3.7	141
41	Hydrodynamics of particles embedded in a flat surfactant layer overlying a subphase of finite depth. <i>Journal of Fluid Mechanics</i> , 1998 , 369, 151-173	3.7	119
40	Added mass of a disc accelerating within a pipe. <i>Physics of Fluids</i> , 1997 , 9, 3141-3148	4.4	10
39	Drop formation in viscous flows at a vertical capillary tube. <i>Physics of Fluids</i> , 1997 , 9, 2234-2242	4.4	129
38	An Integral Equation Solution for the Steady-State Current at a Periodic Array of Surface Microelectrodes. <i>SIAM Journal on Applied Mathematics</i> , 1997 , 57, 1615-1638	1.8	18
37	Note on the capillary thread instability for fluids of equal viscosities. <i>Journal of Fluid Mechanics</i> , 1996 , 318, 373	3.7	30
36	Time-dependent viscous deformation of a drop in a rapidly rotating denser fluid. <i>Journal of Fluid Mechanics</i> , 1996 , 317, 275-299	3.7	13
35	Pinching threads, singularities and the number 0.0304 Physics of Fluids, 1996, 8, 2827-2836	4.4	110
34	Time-dependent drop deformation in a rotating high viscosity fluid. <i>Quarterly of Applied Mathematics</i> , 1996 , 54, 551-556	0.7	5

33	Mass Transfer at a Microelectrode in Channel Flow. The Journal of Physical Chemistry, 1996, 100, 9462-9	9464	33
32	Experimental measurement of shear-induced diffusion in suspensions using long time data. <i>Physics of Fluids</i> , 1996 , 8, 2011-2018	4.4	10
31	Evaporatively controlled growth of salt trees. <i>Physical Review E</i> , 1996 , 53, 1994-1997	2.4	16
30	Propulsion of Microorganisms by Surface Distortions. <i>Physical Review Letters</i> , 1996 , 77, 4102-4104	7.4	295
29	Extensional deformation of Newtonian liquid bridges. <i>Physics of Fluids</i> , 1996 , 8, 2568-2579	4.4	62
28	Capillary wave scattering from a surfactant domain. <i>Physics of Fluids</i> , 1995 , 7, 1872-1885	4.4	12
27	Fluid motion of monomolecular films in a channel flow geometry. <i>Physics of Fluids</i> , 1995 , 7, 2931-2937	4.4	42
26	Electrophoresis of a thin charged disk. <i>Physics of Fluids</i> , 1995 , 7, 697-705	4.4	31
25	Transverse motion of a disk through a rotating viscous fluid. Journal of Fluid Mechanics, 1995, 301, 295-	3 <i>3.4</i>	18
24	Collective hydrodynamics of deformable drops and bubbles in dilute low Reynolds number suspensions. <i>Journal of Fluid Mechanics</i> , 1995 , 300, 231-263	3.7	67
23	Low Reynolds number motion of bubbles, drops and rigid spheres through fluidfluid interfaces. <i>Journal of Fluid Mechanics</i> , 1995 , 287, 279-298	3.7	77
22	Axial drop motion in rotating fluids. <i>Journal of Fluid Mechanics</i> , 1995 , 282, 247-278	3.7	12
21	Estimating interfacial tension via relaxation of drop shapes and filament breakup. <i>AICHE Journal</i> , 1994 , 40, 385-394	3.6	70
20	Motion of a rigid particle in a rotating viscous flow: an integral equation approach. <i>Journal of Fluid Mechanics</i> , 1994 , 275, 225-256	3.7	30
19	Dynamics of Drop Deformation and Breakup in Viscous Fluids. <i>Annual Review of Fluid Mechanics</i> , 1994 , 26, 65-102	22	893
18	Buoyancy-driven interactions between two deformable viscous drops. <i>Journal of Fluid Mechanics</i> , 1993 , 256, 647-683	3.7	121
17	The effect of surfactant on the transient motion of Newtonian drops. <i>Physics of Fluids A, Fluid Dynamics</i> , 1993 , 5, 69-79		134
16	An interpretation of the translation of drops and bubbles at high Reynolds numbers in terms of the vorticity field. <i>Physics of Fluids A, Fluid Dynamics</i> , 1993 , 5, 2567-2569		15

15	Flow through beds of porous particles. Chemical Engineering Science, 1993, 48, 3993-4005	4.4	60
14	The motion of an inviscid drop in a bounded rotating fluid. <i>Physics of Fluids A, Fluid Dynamics</i> , 1992 , 4, 1142-1147		8
13	Satellite and subsatellite formation in capillary breakup. Journal of Fluid Mechanics, 1992, 243, 297	3.7	225
12	The Motion of Small Particles and Droplets in Quadratic Flows. <i>Studies in Applied Mathematics</i> , 1991 , 85, 53-73	2.1	37
11	Chaotic streamlines inside drops immersed in steady Stokes flows. <i>Journal of Fluid Mechanics</i> , 1991 , 232, 629	3.7	83
10	A simple derivation of the time-dependent convective-diffusion equation for surfactant transport along a deforming interface. <i>Physics of Fluids A, Fluid Dynamics</i> , 1990 , 2, 111-112		299
9	The effects of surfactants on drop deformation and breakup. <i>Journal of Fluid Mechanics</i> , 1990 , 220, 161	-386	308
8	Breakup of concentric double emulsion droplets in linear flows. <i>Journal of Fluid Mechanics</i> , 1990 , 211, 123-156	3.7	107
7	Heat/mass transfer from surface films to shear flows at arbitrary Peclet numbers. <i>Physics of Fluids A, Fluid Dynamics</i> , 1989 , 1, 1112-1122		45
6	The influence of initial deformation on drop breakup in subcritical time-dependent flows at low Reynolds numbers. <i>Journal of Fluid Mechanics</i> , 1989 , 206, 223-263	3.7	93
5	Relaxation and breakup of an initially extended drop in an otherwise quiescent fluid. <i>Journal of Fluid Mechanics</i> , 1989 , 198, 399	3.7	311
4	An experimental study of transient effects in the breakup of viscous drops. <i>Journal of Fluid Mechanics</i> , 1986 , 173, 131-158	3.7	329
3	Towards Improved Social Distancing Guidelines: Space and Time Dependence of Virus Transmission from Speech-driven Aerosol Transport Between Two Individuals		2
2	The transition state and regulation of 町uRC-mediated microtubule nucleation revealed by single molecule microscopy		1
1	Inexpensive multi-patient respiratory monitoring system for helmet ventilation during COVID-19 pande	emic	3