Howard A Stone

List of Publications by Citations

Source: https://exaly.com/author-pdf/7022739/howard-a-stone-publications-by-citations.pdf

Version: 2024-04-11

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

39,625 184 97 554 h-index g-index citations papers 6.8 605 44,876 7.77 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
554	Chaotic mixer for microchannels. <i>Science</i> , 2002 , 295, 647-51	33.3	2471
553	Formation of dispersions using flow focusing In microchannels. <i>Applied Physics Letters</i> , 2003 , 82, 364-36	563.4	1766
552	Monodisperse double emulsions generated from a microcapillary device. <i>Science</i> , 2005 , 308, 537-41	33.3	1687
551	Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up. <i>Lab on A Chip</i> , 2006 , 6, 437-46	7.2	1550
550	Microscopic artificial swimmers. <i>Nature</i> , 2005 , 437, 862-5	50.4	1343
549	Dynamics of Drop Deformation and Breakup in Viscous Fluids. <i>Annual Review of Fluid Mechanics</i> , 1994 , 26, 65-102	22	893
548	Generation of monodisperse particles by using microfluidics: control over size, shape, and composition. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 724-8	16.4	642
547	Swimming in circles: motion of bacteria near solid boundaries. <i>Biophysical Journal</i> , 2006 , 90, 400-12	2.9	638
546	Effective slip in pressure-driven Stokes flow. <i>Journal of Fluid Mechanics</i> , 2003 , 489, 55-77	3.7	551
545	Formation of monodisperse bubbles in a microfluidic flow-focusing device. <i>Applied Physics Letters</i> , 2004 , 85, 2649-2651	3.4	501
544	Transition from squeezing to dripping in a microfluidic T-shaped junction. <i>Journal of Fluid Mechanics</i> , 2008 , 595, 141-161	3.7	485
543	Coalescence of liquid drops. <i>Journal of Fluid Mechanics</i> , 1999 , 401, 293-310	3.7	440
542	Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels. <i>Applied Physics Letters</i> , 2000 , 76, 2376-2378	3.4	436
541	Dynamic self-assembly of magnetized, millimetre-sized objects rotating at a liquid-air interface. <i>Nature</i> , 2000 , 405, 1033-6	50.4	427
540	Mechanism for flow-rate controlled breakup in confined geometries: a route to monodisperse emulsions. <i>Physical Review Letters</i> , 2005 , 94, 164501	7.4	426
539	Microfluidics: Basic issues, applications, and challenges. AICHE Journal, 2001, 47, 1250-1254	3.6	410
538	Influence of substrate conductivity on circulation reversal in evaporating drops. <i>Physical Review Letters</i> , 2007 , 99, 234502	7.4	408

(2014-1986)

537	An experimental study of transient effects in the breakup of viscous drops. <i>Journal of Fluid Mechanics</i> , 1986 , 173, 131-158	3.7	329
536	A Generalized View of Foam Drainage: Experiment and Theory. <i>Langmuir</i> , 2000 , 16, 6327-6341	4	311
535	Relaxation and breakup of an initially extended drop in an otherwise quiescent fluid. <i>Journal of Fluid Mechanics</i> , 1989 , 198, 399	3.7	311
534	Wrinkles and deep folds as photonic structures in photovoltaics. <i>Nature Photonics</i> , 2012 , 6, 327-332	33.9	310
533	The effects of surfactants on drop deformation and breakup. <i>Journal of Fluid Mechanics</i> , 1990 , 220, 161	-386	308
532	A simple derivation of the time-dependent convective-diffusion equation for surfactant transport along a deforming interface. <i>Physics of Fluids A, Fluid Dynamics</i> , 1990 , 2, 111-112		299
531	Propulsion of Microorganisms by Surface Distortions. <i>Physical Review Letters</i> , 1996 , 77, 4102-4104	7.4	295
530	The pressure drop along rectangular microchannels containing bubbles. <i>Lab on A Chip</i> , 2007 , 7, 1479-89	7.2	290
529	The mechanical world of bacteria. <i>Cell</i> , 2015 , 161, 988-997	56.2	281
528	Microfluidic flow focusing: drop size and scaling in pressure versus flow-rate-driven pumping. <i>Electrophoresis</i> , 2005 , 26, 3716-24	3.6	271
527	Emulsification in a microfluidic flow-focusing device: effect of the viscosities of the liquids. <i>Microfluidics and Nanofluidics</i> , 2008 , 5, 585-594	2.8	264
526	Imbibition by polygonal spreading on microdecorated surfaces. <i>Nature Materials</i> , 2007 , 6, 661-4	27	242
525	Controlled assembly of jammed colloidal shells on fluid droplets. <i>Nature Materials</i> , 2005 , 4, 553-6	27	241
524	On self-propulsion of micro-machines at low Reynolds number: Purcell's three-link swimmer. <i>Journal of Fluid Mechanics</i> , 2003 , 490, 15-35	3.7	237
523	Dripping and jetting in microfluidic multiphase flows applied to particle and fiber synthesis. <i>Journal Physics D: Applied Physics</i> , 2013 , 46,	3	236
522	Capillary breakup of a viscous thread surrounded by another viscous fluid. <i>Physics of Fluids</i> , 1998 , 10, 2758-2764	4.4	231
521	Biofilm streamers cause catastrophic disruption of flow with consequences for environmental and medical systems. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 4345-50	11.5	230
520	Solutions to the public goods dilemma in bacterial biofilms. <i>Current Biology</i> , 2014 , 24, 50-55	6.3	229

519	Satellite and subsatellite formation in capillary breakup. <i>Journal of Fluid Mechanics</i> , 1992 , 243, 297	3.7	225
518	Inhaling to mitigate exhaled bioaerosols. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 17383-8	11.5	218
517	Type IV pili mechanochemically regulate virulence factors in Pseudomonas aeruginosa. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 7563-8	11.5	214
516	Non-coalescence of oppositely charged drops. <i>Nature</i> , 2009 , 461, 377-80	50.4	203
515	Dynamics of shear-induced ATP release from red blood cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 16432-7	11.5	199
514	Wetting of flexible fibre arrays. <i>Nature</i> , 2012 , 482, 510-3	50.4	197
513	Surface Morphology of Drying Latex Films: Multiple Ring Formation. <i>Langmuir</i> , 2002 , 18, 3441-3445	4	196
512	Hierarchical folding of elastic membranes under biaxial compressive stress. <i>Nature Materials</i> , 2011 , 10, 952-7	27	190
511	Dynamics of coarsening foams: accelerated and self-limiting drainage. <i>Physical Review Letters</i> , 2001 , 86, 4704-7	7.4	188
510	Short-time dynamics of partial wetting. <i>Physical Review Letters</i> , 2008 , 100, 234501	7.4	183
509	Controlled Uniform Coating from the Interplay of Marangoni Flows and Surface-Adsorbed Macromolecules. <i>Physical Review Letters</i> , 2016 , 116, 124501	7.4	177
508	Shear-driven failure of liquid-infused surfaces. <i>Physical Review Letters</i> , 2015 , 114, 168301	7.4	175
507	Liquid Flow through Aqueous Foams: The Node-Dominated Foam Drainage Equation. <i>Physical Review Letters</i> , 1999 , 82, 4232-4235	7.4	169
506	Geometric cue for protein localization in a bacterium. <i>Science</i> , 2009 , 323, 1354-7	33.3	163
505	Dynamic self-assembly and control of microfluidic particle crystals. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 22413-8	11.5	162
504	Daughter bubble cascades produced by folding of ruptured thin films. <i>Nature</i> , 2010 , 465, 759-62	50.4	148
503	Scaling laws for the thrust production of flexible pitching panels. <i>Journal of Fluid Mechanics</i> , 2013 , 732, 29-46	3.7	147
502	Ice-phobic surfaces that are wet. ACS Nano, 2012 , 6, 6536-40	16.7	146

(2001-2006)

50	01	High-speed microfluidic differential manometer for cellular-scale hydrodynamics. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 538-42	11.5	141
50	00	Electrohydrodynamic deformation and interaction of drop pairs. <i>Journal of Fluid Mechanics</i> , 1998 , 368, 359-375	3.7	141
49	99	Control of interfacial instabilities using flow geometry. <i>Nature Physics</i> , 2012 , 8, 747-750	16.2	140
49	98	Cell Membranes Resist Flow. <i>Cell</i> , 2018 , 175, 1769-1779.e13	56.2	140
49	97	The effect of surfactant on the transient motion of Newtonian drops. <i>Physics of Fluids A, Fluid Dynamics</i> , 1993 , 5, 69-79		134
49	96	Laminar flow around corners triggers the formation of biofilm streamers. <i>Journal of the Royal Society Interface</i> , 2010 , 7, 1293-9	4.1	132
49	95	Imbibition in porous membranes of complex shape: quasi-stationary flow in thin rectangular segments. <i>Langmuir</i> , 2010 , 26, 1380-5	4	132
49	94	Multiscale approach to link red blood cell dynamics, shear viscosity, and ATP release. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 10986-91	11.5	130
49	93	High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water. <i>Nano Letters</i> , 2008 , 8, 2087-91	11.5	130
49	92	Cellular-scale hydrodynamics. <i>Biomedical Materials (Bristol)</i> , 2008 , 3, 034011	3.5	130
49	91	Controllable Microfluidic Production of Microbubbles in Water-in-Oil Emulsions and the Formation of Porous Microparticles. <i>Advanced Materials</i> , 2008 , 20, 3314-3318	24	130
49	90	Drop formation in viscous flows at a vertical capillary tube. <i>Physics of Fluids</i> , 1997 , 9, 2234-2242	4.4	129
48	89	Geometrical focusing of cells in a microfluidic device: an approach to separate blood plasma. <i>Biorheology</i> , 2006 , 43, 147-59	1.7	129
48	88	Size-dependent control of colloid transport via solute gradients in dead-end channels. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 257-61	11.5	125
48	87	Dissolution arrest and stability of particle-covered bubbles. <i>Physical Review Letters</i> , 2007 , 99, 188301	7.4	125
48	86	Hydrodynamic dispersion in shallow microchannels: the effect of cross-sectional shape. <i>Analytical Chemistry</i> , 2006 , 78, 387-92	7.8	124
48	85	Interfacial polygonal nanopatterning of stable microbubbles. <i>Science</i> , 2008 , 320, 1198-201	33.3	122
48	84	An accurate von Neumann's law for three-dimensional foams. <i>Physical Review Letters</i> , 2001 , 86, 2685-8	7.4	122

483	Buoyancy-driven interactions between two deformable viscous drops. <i>Journal of Fluid Mechanics</i> , 1993 , 256, 647-683	3.7	121
482	Architectural transitions in Vibrio cholerae biofilms at single-cell resolution. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, E2066-72	11.5	119
481	Hydrodynamics of particles embedded in a flat surfactant layer overlying a subphase of finite depth. <i>Journal of Fluid Mechanics</i> , 1998 , 369, 151-173	3.7	119
480	Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses. <i>Journal Physics D: Applied Physics</i> , 2007 , 40, 1447-1459	3	117
479	Shear stress increases the residence time of adhesion of Pseudomonas aeruginosa. <i>Biophysical Journal</i> , 2011 , 100, 341-50	2.9	114
478	The dynamic behavior of chemically "stiffened" red blood cells in microchannel flows. <i>Microvascular Research</i> , 2010 , 80, 37-43	3.7	114
477	Bending and twisting of soft materials by non-homogenous swelling. Soft Matter, 2011, 7, 5188	3.6	113
476	On the dynamics of magnetically driven elastic filaments. <i>Journal of Fluid Mechanics</i> , 2006 , 554, 167	3.7	112
475	Effect of microtextured surface topography on the wetting behavior of eutectic gallium-indium alloys. <i>Langmuir</i> , 2014 , 30, 533-9	4	110
474	Pinching threads, singularities and the number 0.0304 Physics of Fluids, 1996, 8, 2827-2836	4.4	110
473	Colloidal crystallization and banding in a cylindrical geometry. <i>Journal of the American Chemical Society</i> , 2004 , 126, 5978-9	16.4	108
472	Pumping-out photo-surfactants from an airWater interface using light. Soft Matter, 2011, 7, 7866	3.6	107
471	Breakup of concentric double emulsion droplets in linear flows. <i>Journal of Fluid Mechanics</i> , 1990 , 211, 123-156	3.7	107
470	Relaxation time of the topological T1 process in a two-dimensional foam. <i>Physical Review Letters</i> , 2006 , 97, 226101	7.4	104
469	Characteristic lengths at moving contact lines for a perfectly wetting fluid: the influence of speed on the dynamic contact angle. <i>Journal of Fluid Mechanics</i> , 2004 , 505, 309-321	3.7	104
468	Mechanics of surface area regulation in cells examined with confined lipid membranes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 9084-8	11.5	102
467	Fiber coating with surfactant solutions. <i>Physics of Fluids</i> , 2002 , 14, 4055-4068	4.4	102
466	Critical angle for electrically driven coalescence of two conical droplets. <i>Physical Review Letters</i> , 2009 , 103, 164502	7.4	101

(2004-2006)

465	Microstructure, morphology, and lifetime of armored bubbles exposed to surfactants. <i>Langmuir</i> , 2006 , 22, 5986-90	4	101
464	Vibrio cholerae biofilm growth program and architecture revealed by single-cell live imaging. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, E5337-43	11.5	100
463	Imbibition in geometries with axial variations. Journal of Fluid Mechanics, 2008, 615, 335-344	3.7	100
462	Axial and lateral particle ordering in finite Reynolds number channel flows. <i>Physics of Fluids</i> , 2010 , 22, 081703	4.4	99
461	Thermophoresis: microfluidics characterization and separation. Soft Matter, 2010, 6, 3489	3.6	99
460	Drops with conical ends in electric and magnetic fields. <i>Proceedings of the Royal Society A:</i> Mathematical, Physical and Engineering Sciences, 1999 , 455, 329-347	2.4	99
459	Morphology of femtosecond-laser-ablated borosilicate glass surfaces. <i>Applied Physics Letters</i> , 2003 , 83, 3030-3032	3.4	98
458	Viscoplastic Materials for Embedded 3D Printing. <i>ACS Applied Materials & Description</i> (2018, 10, 23353-23361)	9.5	97
457	Local and global consequences of flow on bacterial quorum sensing. <i>Nature Microbiology</i> , 2016 , 1, 1500	5 26.6	94
456	The influence of initial deformation on drop breakup in subcritical time-dependent flows at low Reynolds numbers. <i>Journal of Fluid Mechanics</i> , 1989 , 206, 223-263	3.7	93
455	Speech can produce jet-like transport relevant to asymptomatic spreading of virus. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 25237-25245	11.5	93
454	Two-peak and three-peak optimal complex networks. <i>Physical Review Letters</i> , 2004 , 92, 118702	7.4	91
453	Quantifying Dynamics in Phase-Separated Condensates Using Fluorescence Recovery after Photobleaching. <i>Biophysical Journal</i> , 2019 , 117, 1285-1300	2.9	90
452	Effective slip boundary conditions for arbitrary periodic surfaces: the surface mobility tensor. Journal of Fluid Mechanics, 2010 , 658, 409-437	3.7	90
451	Pressure-driven laminar flow in tangential microchannels: an elastomeric microfluidic switch. <i>Analytical Chemistry</i> , 2001 , 73, 4682-7	7.8	90
450	Electroosmotic Flows Created by Surface Defects in Capillary Electrophoresis. <i>Journal of Colloid and Interface Science</i> , 1999 , 212, 338-349	9.3	89
449	Two-ply channels for faster wicking in paper-based microfluidic devices. <i>Lab on A Chip</i> , 2015 , 15, 4461-6	7.2	87
448	Foam drainage on the microscale I. Modeling flow through single Plateau borders. <i>Journal of Colloid and Interface Science</i> , 2004 , 276, 420-38	9.3	87

447	Dynamic, self-assembled aggregates of magnetized, millimeter-sized objects rotating at the liquid-air interface: macroscopic, two-dimensional classical artificial atoms and molecules. <i>Physical Review E</i> , 2001 , 64, 011603	2.4	86
446	Secondary flow as a mechanism for the formation of biofilm streamers. <i>Biophysical Journal</i> , 2011 , 100, 1392-9	2.9	84
445	The effect of surface tension on rimming flows in a partially filled rotating cylinder. <i>Journal of Fluid Mechanics</i> , 2003 , 479, 65-98	3.7	83
444	Chaotic streamlines inside drops immersed in steady Stokes flows. <i>Journal of Fluid Mechanics</i> , 1991 , 232, 629	3.7	83
443	Liquid explosions induced by X-ray laser pulses. <i>Nature Physics</i> , 2016 , 12, 966-971	16.2	82
442	Mechanics of interfacial composite materials. <i>Langmuir</i> , 2006 , 22, 10204-8	4	81
441	A mathematical model for top-shelf vertigo: the role of sedimenting otoconia in BPPV. <i>Journal of Biomechanics</i> , 2004 , 37, 1137-46	2.9	81
440	Dynamics of wetting: from inertial spreading to viscous imbibition. <i>Journal of Physics Condensed Matter</i> , 2009 , 21, 464127	1.8	77
439	Low Reynolds number motion of bubbles, drops and rigid spheres through fluidfluid interfaces. Journal of Fluid Mechanics, 1995 , 287, 279-298	3.7	77
438	Extracellular-matrix-mediated osmotic pressure drives Vibrio cholerae biofilm expansion and cheater exclusion. <i>Nature Communications</i> , 2017 , 8, 327	17.4	75
437	Spreading of viscous fluid drops on a solid substrate assisted by thermal fluctuations. <i>Physical Review Letters</i> , 2005 , 95, 244505	7.4	75
436	Single-particle Brownian dynamics for characterizing the rheology of fluid Langmuir monolayers. <i>Europhysics Letters</i> , 2007 , 79, 66005	1.6	73
435	Splashing on elastic membranes: The importance of early-time dynamics. <i>Physics of Fluids</i> , 2008 , 20, 082	21,03	70
434	Dynamics of foam drainage. <i>Physical Review E</i> , 1998 , 58, 2097-2106	2.4	70
433	Estimating interfacial tension via relaxation of drop shapes and filament breakup. <i>AICHE Journal</i> , 1994 , 40, 385-394	3.6	70
432	Oil-Impregnated Nanoporous Oxide Layer for Corrosion Protection with Self-Healing. <i>Advanced Functional Materials</i> , 2017 , 27, 1606040	15.6	69
431	Robust liquid-infused surfaces through patterned wettability. <i>Soft Matter</i> , 2015 , 11, 5023-9	3.6	68
430	Reactions in double emulsions by flow-controlled coalescence of encapsulated drops. <i>Lab on A Chip</i> , 2011 , 11, 2312-5	7.2	68

(2014-2001)

429	Peristaltically driven channel flows with applications toward micromixing. <i>Physics of Fluids</i> , 2001 , 13, 1837-1859	4.4	67	
428	Collective hydrodynamics of deformable drops and bubbles in dilute low Reynolds number suspensions. <i>Journal of Fluid Mechanics</i> , 1995 , 300, 231-263	3.7	67	
427	Suppressing viscous fingering in structured porous media. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 4833-4838	11.5	66	
426	Surface-attached molecules control Staphylococcus aureus quorum sensing and biofilm development. <i>Nature Microbiology</i> , 2017 , 2, 17080	26.6	64	
425	Foam drainage on the microscale II. Imaging flow through single Plateau borders. <i>Journal of Colloid and Interface Science</i> , 2004 , 276, 439-49	9.3	64	
424	Nanoemulsions obtained via bubble-bursting at a compound interface. <i>Nature Physics</i> , 2014 , 10, 606-61	2 16.2	63	
423	Short and long time drop dynamics on lubricated substrates. <i>Europhysics Letters</i> , 2013 , 104, 34008	1.6	62	
422	Extensional deformation of Newtonian liquid bridges. <i>Physics of Fluids</i> , 1996 , 8, 2568-2579	4.4	62	
421	The curved shape of Caulobacter crescentus enhances surface colonization in flow. <i>Nature Communications</i> , 2014 , 5, 3824	17.4	61	
420	Effect of viscosity ratio on the shear-driven failure of liquid-infused surfaces. <i>Physical Review Fluids</i> , 2016 , 1,	2.8	61	
419	Flow through beds of porous particles. <i>Chemical Engineering Science</i> , 1993 , 48, 3993-4005	4.4	60	
418	Dip coating for the alignment of carbon nanotubes on curved surfaces. <i>Journal of Materials Chemistry</i> , 2004 , 14, 1299		59	
417	Purcell® BotatorDmechanical rotation at low Reynolds number. <i>European Physical Journal B</i> , 2005 , 47, 161-164	1.2	59	
416	Microfluidic chest cavities reveal that transmural pressure controls the rate of lung development. <i>Development (Cambridge)</i> , 2017 , 144, 4328-4335	6.6	58	
415	Flow rate through microfilters: Influence of the pore size distribution, hydrodynamic interactions, wall slip, and inertia. <i>Physics of Fluids</i> , 2014 , 26, 052004	4.4	58	
414	Characterization of syringe-pump-driven induced pressure fluctuations in elastic microchannels. <i>Lab on A Chip</i> , 2015 , 15, 1110-5	7.2	57	
413	Unexpected trapping of particles at a T junction. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 4770-5	11.5	57	
412	A reciprocal theorem for Marangoni propulsion. <i>Journal of Fluid Mechanics</i> , 2014 , 741,	3.7	57	

411	Enzymatic reactions in microfluidic devices: Michaelis-Menten kinetics. <i>Analytical Chemistry</i> , 2008 , 80, 3270-6	7.8	57
410	Membraneless water filtration using CO. <i>Nature Communications</i> , 2017 , 8, 15181	17.4	56
409	Study of the flow field in the magnetic rod interfacial stress rheometer. <i>Langmuir</i> , 2011 , 27, 9345-58	4	56
408	Philip Saffman and viscous flow theory. <i>Journal of Fluid Mechanics</i> , 2000 , 409, 165-183	3.7	56
407	Solutal Marangoni flows of miscible liquids drive transport without surface contamination. <i>Nature Physics</i> , 2017 , 13, 1105-1110	16.2	54
406	Droplet breakup in flow past an obstacle: A capillary instability due to permeability variations. <i>Europhysics Letters</i> , 2010 , 92, 54002	1.6	54
405	Do magnetic micro-swimmers move like eukaryotic cells?. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2008 , 464, 877-904	2.4	54
404	An "off-the-shelf" capillary microfluidic device that enables tuning of the droplet breakup regime at constant flow rates. <i>Lab on A Chip</i> , 2013 , 13, 4507-11	7.2	53
403	Verticalization of bacterial biofilms. <i>Nature Physics</i> , 2018 , 14, 954-960	16.2	52
402	Interfacial instabilities in a microfluidic Hele-Shaw cell. <i>Soft Matter</i> , 2008 , 4, 1403-1413	3.6	52
401	Dynamics of self assembly of magnetized disks rotating at the liquid-air interface. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 4147-51	11.5	52
400	Marangoni Flow of Soluble Amphiphiles. <i>Physical Review Letters</i> , 2014 , 112,	7.4	51
399	Flow directs surface-attached bacteria to twitch upstream. <i>Biophysical Journal</i> , 2012 , 103, 146-51	2.9	51
398	The role of surface rheology in liquid film formation. <i>Europhysics Letters</i> , 2010 , 90, 24002	1.6	51
397	Coated gas bubbles for the continuous synthesis of hollow inorganic particles. <i>Langmuir</i> , 2012 , 28, 37-4	14	50
396	Cornered drops and rivulets. <i>Physics of Fluids</i> , 2007 , 19, 042104	4.4	50
395	Propagation of a topological transition: The Rayleigh instability. <i>Physics of Fluids</i> , 1998 , 10, 1052-1057	4.4	50
394	Minimization of thermodynamic costs in cancer cell invasion. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 1686-91	11.5	49

393	In-fiber semiconductor filament arrays. Nano Letters, 2008, 8, 4265-9	11.5	49
392	Flow-induced phase separation of active particles is controlled by boundary conditions. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 5403-5408	11.5	48
391	Buckling of dielectric elastomeric plates for soft, electrically active microfluidic pumps. <i>Soft Matter</i> , 2014 , 10, 4789-94	3.6	48
390	Fabricating shaped microfibers with inertial microfluidics. <i>Advanced Materials</i> , 2014 , 26, 3712-7	24	48
389	Controlling viscous fingering in tapered Hele-Shaw cells. <i>Physics of Fluids</i> , 2013 , 25, 092102	4.4	48
388	Viscous Marangoni migration of a drop in a Poiseuille flow at low surface PElet numbers. <i>Journal of Fluid Mechanics</i> , 2014 , 753, 535-552	3.7	48
387	Ordered clusters and dynamical states of particles in a vibrated fluid. <i>Physical Review Letters</i> , 2002 , 88, 234301	7.4	48
386	Oscillatory motions of circular disks and nearly spherical particles in viscous flows. <i>Journal of Fluid Mechanics</i> , 1998 , 367, 329-358	3.7	48
385	Controlling Viscous Fingering Using Time-Dependent Strategies. <i>Physical Review Letters</i> , 2015 , 115, 17	4 <i>5</i> 041	47
384	Hydraulic design of pine needles: one-dimensional optimization for single-vein leaves. <i>Plant, Cell and Environment</i> , 2006 , 29, 803-9	8.4	47
383	Dynamics of elastocapillary rise. Journal of Fluid Mechanics, 2011, 679, 641-654	3.7	46
382	Drop production and tip-streaming phenomenon in a microfluidic flow-focusing device via an interfacial chemical reaction. <i>Langmuir</i> , 2010 , 26, 9233-9	4	46
381	Separation-driven coalescence of droplets: an analytical criterion for the approach to contact. <i>Journal of Fluid Mechanics</i> , 2009 , 632, 97-107	3.7	46
380	Three-dimensional flows in slowly varying planar geometries. <i>Physics of Fluids</i> , 2004 , 16, 3051-3062	4.4	46
379	Cell position fates and collective fountain flow in bacterial biofilms revealed by light-sheet microscopy. <i>Science</i> , 2020 , 369, 71-77	33.3	45
378	Clinical implications of a mathematical model of benign paroxysmal positional vertigo. <i>Annals of the New York Academy of Sciences</i> , 2005 , 1039, 384-94	6.5	45
377	Heat/mass transfer from surface films to shear flows at arbitrary Peclet numbers. <i>Physics of Fluids A, Fluid Dynamics</i> , 1989 , 1, 1112-1122		45
376	Touch- and Brush-Spinning of Nanofibers. <i>Advanced Materials</i> , 2015 , 27, 6526-32	24	44

375	Hydrodynamically driven colloidal assembly in dip coating. <i>Physical Review Letters</i> , 2013 , 110, 188302	7.4	44
374	Flow rateBressure drop relation for deformable shallow microfluidic channels. <i>Journal of Fluid Mechanics</i> , 2018 , 841, 267-286	3.7	43
373	Breakup of double emulsions in constrictions. <i>Soft Matter</i> , 2011 , 7, 2345	3.6	43
372	Wetting on two parallel fibers: drop to column transitions. <i>Soft Matter</i> , 2013 , 9, 271-276	3.6	42
371	The effects of membrane cholesterol and simvastatin on red blood cell deformability and ATP release. <i>Microvascular Research</i> , 2012 , 83, 347-51	3.7	42
370	Conformal coating of particles in microchannels by magnetic forcing. <i>Applied Physics Letters</i> , 2011 , 99, 153509	3.4	42
369	Fluid motion of monomolecular films in a channel flow geometry. <i>Physics of Fluids</i> , 1995 , 7, 2931-2937	4.4	42
368	Drag and diffusion coefficients of a spherical particle attached to a fluidfluid interface. <i>Journal of Fluid Mechanics</i> , 2016 , 790, 607-618	3.7	42
367	Drop impact on a flexible fiber. Soft Matter, 2016, 12, 200-8	3.6	41
366	Filaments in curved streamlines: Rapid formation of biofilm streamers. <i>New Journal of Physics</i> , 2014 , 16, 065024	2.9	41
365	Source-like solution for radial imbibition into a homogeneous semi-infinite porous medium. <i>Langmuir</i> , 2012 , 28, 4208-12	4	41
364	The reciprocal theorem in fluid dynamics and transport phenomena. <i>Journal of Fluid Mechanics</i> , 2019 , 879,	3.7	40
363	Flow regimes for fluid injection into a confined porous medium. <i>Journal of Fluid Mechanics</i> , 2015 , 767, 881-909	3.7	39
362	Biophysical characterization of organelle-based RNA/protein liquid phases using microfluidics. <i>Soft Matter</i> , 2016 , 12, 9142-9150	3.6	38
361	Dynamic fracture of nonglassy suspensions. <i>Physical Review Letters</i> , 2013 , 110, 148304	7.4	38
360	Heterogeneity and the role of normal stresses during the extensional thinning of non-Brownian shear-thickening fluids. <i>Physical Review Letters</i> , 2011 , 107, 134503	7.4	38
359	Interfaces: in fluid mechanics and across disciplines. <i>Journal of Fluid Mechanics</i> , 2010 , 645, 1-25	3.7	38
358	Experimental characterization of hydrodynamic dispersion in shallow microchannels. <i>Lab on A Chip</i> , 2006 , 6, 930-5	7.2	38

(2010-2018)

357	Electrical Double Layers: Effects of Asymmetry in Electrolyte Valence on Steric Effects, Dielectric Decrement, and Ion-Ion Correlations. <i>Langmuir</i> , 2018 , 34, 11971-11985	4	38
356	Bending of elastic fibres in viscous flows: the influence of confinement \(\mathbb{I}\) Journal of Fluid Mechanics , 2013 , 720, 517-544	3.7	37
355	Flow-induced gelation of microfiber suspensions. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, E8557-E8564	11.5	37
354	Spatial gene drives and pushed genetic waves. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 8452-8457	11.5	37
353	Imbibition in layered systems of packed beads. <i>Europhysics Letters</i> , 2009 , 86, 56002	1.6	37
352	The Motion of Small Particles and Droplets in Quadratic Flows. <i>Studies in Applied Mathematics</i> , 1991 , 85, 53-73	2.1	37
351	Microfluidic tailoring of the two-dimensional morphology of crimped microfibers. <i>Soft Matter</i> , 2013 , 9, 4227	3.6	36
350	Motion of a Free-Settling Spherical Particle Driven by a Laser-Induced Bubble. <i>Physical Review Letters</i> , 2017 , 119, 084501	7.4	36
349	Control and manipulation of microfluidic flow via elastic deformations. <i>Soft Matter</i> , 2013 , 9, 7049-7053	3.6	36
348	Probing the invasiveness of prostate cancer cells in a 3D microfabricated landscape. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 6853-6	11.5	36
347	Three-dimensional lubrication model of a contact line corner singularity. <i>Europhysics Letters</i> , 2004 , 65, 365-371	1.6	36
346	Low-Cost Zeta Potentiometry Using Solute Gradients. Advanced Materials, 2017, 29, 1701516	24	35
345	A soft microchannel decreases polydispersity of droplet generation. <i>Lab on A Chip</i> , 2014 , 14, 4029-34	7.2	35
344	Particle/Fluid interface replication as a means of producing topographically patterned polydimethylsiloxane surfaces for deposition of lipid bilayers. <i>Advanced Materials</i> , 2010 , 22, 2142-7	24	35
343	Overflow cascades in liquid-infused substrates. <i>Physics of Fluids</i> , 2015 , 27, 082101	4.4	34
342	The race of nanowires: morphological instabilities and a control strategy. <i>Nano Letters</i> , 2014 , 14, 4395-9	911.5	34
341	Control of the length of microfibers. <i>Lab on A Chip</i> , 2012 , 12, 2301-4	7.2	34
340	Nearby boundaries create eddies near microscopic filter feeders. <i>Journal of the Royal Society Interface</i> , 2010 , 7, 851-62	4.1	34

339	Lubrication analysis and boundary integral simulations of a viscous micropump. <i>Journal of Fluid Mechanics</i> , 2000 , 416, 197-216	3.7	34
338	Bacterial Biofilm Material Properties Enable Removal and Transfer by Capillary Peeling. <i>Advanced Materials</i> , 2018 , 30, e1804153	24	34
337	Mechanical instability and interfacial energy drive biofilm morphogenesis. ELife, 2019, 8,	8.9	33
336	Damping of liquid sloshing by foams. <i>Physics of Fluids</i> , 2015 , 27, 022103	4.4	33
335	Dissolution without disappearing: multicomponent gas exchange for CO2 bubbles in a microfluidic channel. <i>Lab on A Chip</i> , 2014 , 14, 2428-36	7.2	33
334	The magnitude of lift forces acting on drops and bubbles in liquids flowing inside microchannels. <i>Lab on A Chip</i> , 2013 , 13, 365-76	7.2	33
333	Elastocapillary imbibition. International Journal of Non-Linear Mechanics, 2011, 46, 648-656	2.8	33
332	Buckling transitions of an elastic filament in a viscous stagnation point flow. <i>Physics of Fluids</i> , 2012 , 24, 123601	4.4	33
331	Eddies in a bottleneck: an arbitrary Debye length theory for capillary electroosmosis. <i>Journal of Colloid and Interface Science</i> , 2006 , 297, 832-9	9.3	33
330	Self-assembly of gears at a fluid/air interface. Journal of the American Chemical Society, 2003, 125, 7948	8- 56 .4	33
329	Mass Transfer at a Microelectrode in Channel Flow. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 9462-9	9464	33
328	Negative Pressures and Spallation in Water Drops Subjected to Nanosecond Shock Waves. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 2055-62	6.4	33
327	Bubble-Driven Detachment of Bacteria from Confined Microgeometries. <i>Environmental Science & Environmental Science & Environmental Science</i>	10.3	32
326	Nonuniform growth and surface friction determine bacterial biofilm morphology on soft substrates. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 7622-7632	11.5	32
325	Capillary bridges between soft substrates. <i>Physical Review Letters</i> , 2014 , 112, 066102	7.4	32
324	Optimization of Pathogen Capture in Flowing Fluids with Magnetic Nanoparticles. <i>Small</i> , 2015 , 11, 565	7- 6 6	32
323	Microfluidic ultralow interfacial tensiometry with magnetic particles. <i>Lab on A Chip</i> , 2013 , 13, 119-25	7.2	32
322	The influence of the gas phase on liquid imbibition in capillary tubes. <i>Journal of Fluid Mechanics</i> , 2011 , 678, 600-606	3.7	32

321	Semi-permeable vesicles composed of natural clay. Soft Matter, 2011, 7, 2600	3.6	32
320	Breakup of double emulsion droplets in a tapered nozzle. <i>Langmuir</i> , 2011 , 27, 4324-7	4	32
319	Dynamics of the formation of antibubbles. <i>Europhysics Letters</i> , 2008 , 83, 54001	1.6	32
318	On the thickness of soap films: an alternative to Frankel's law. <i>Journal of Fluid Mechanics</i> , 2008 , 602, 119-127	3.7	32
317	Flow along two dimensions of liquid pulses in foams: Experiment and theory. <i>Europhysics Letters</i> , 2001 , 54, 335-341	1.6	32
316	Impulsively Induced Jets from Viscoelastic Films for High-Resolution Printing. <i>Physical Review Letters</i> , 2018 , 120, 074501	7.4	31
315	Gas-core triple emulsions for ultrasound triggered release. <i>Soft Matter</i> , 2013 , 9, 38-42	3.6	31
314	Glycans pattern the phase behaviour of lipid membranes. <i>Nature Materials</i> , 2013 , 12, 128-33	27	31
313	Microfluidic immunomagnetic multi-target sortinga model for controlling deflection of paramagnetic beads. <i>Lab on A Chip</i> , 2011 , 11, 2577-82	7.2	31
312	The shape of an elastic filament in a two-dimensional corner flow. <i>Physics of Fluids</i> , 2011 , 23, 063602	4.4	31
311	Shear-induced diffusion of platelike particles in microchannels. <i>Physical Review Letters</i> , 2008 , 101, 2545	50 2 4	31
310	Motion of large bubbles in curved channels. <i>Journal of Fluid Mechanics</i> , 2007 , 570, 455-466	3.7	31
309	Electrophoresis of a thin charged disk. <i>Physics of Fluids</i> , 1995 , 7, 697-705	4.4	31
308	Colonization, competition, and dispersal of pathogens in fluid flow networks. <i>Current Biology</i> , 2015 , 25, 1201-7	6.3	30
307	Cleaning by Surfactant Gradients: Particulate Removal from Porous Materials and the Significance of Rinsing in Laundry Detergency. <i>Physical Review Applied</i> , 2018 , 9,	4.3	30
306	Spatial-temporal dynamics of collective chemosensing. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 7753-8	11.5	30
305	Note on the capillary thread instability for fluids of equal viscosities. <i>Journal of Fluid Mechanics</i> , 1996 , 318, 373	3.7	30
304	Motion of a rigid particle in a rotating viscous flow: an integral equation approach. <i>Journal of Fluid Mechanics</i> , 1994 , 275, 225-256	3.7	30

303	Fluid drainage from the edge of a porous reservoir. <i>Journal of Fluid Mechanics</i> , 2013 , 718, 558-568	3.7	29
302	A portable device for temperature control along microchannels. <i>Lab on A Chip</i> , 2010 , 10, 795-8	7.2	29
301	Electrohydrodynamic size stratification and flow separation of giant vesicles. <i>Applied Physics Letters</i> , 2008 , 92, 104105	3.4	29
300	Stretching and break-up of saliva filaments during speech: A route for pathogen aerosolization and its potential mitigation. <i>Physical Review Fluids</i> , 2020 , 5,	2.8	29
299	Spatiotemporal organization of branched microtubule networks. ELife, 2019, 8,	8.9	29
298	Thin-film fluid flows over microdecorated surfaces: observation of polygonal hydraulic jumps. <i>Physical Review Letters</i> , 2009 , 102, 194503	7.4	28
297	Coating flows of non-Newtonian fluids: weakly and strongly elastic limits. <i>Journal of Engineering Mathematics</i> , 2008 , 60, 17-41	1.2	28
296	Continuum approach to self-similarity and scaling in morphological relaxation of a crystal with a facet. <i>Physical Review B</i> , 2005 , 71,	3.3	28
295	Diffusiophoresis of a charged drop. Journal of Fluid Mechanics, 2018, 852, 37-59	3.7	27
294	Bubbles navigating through networks of microchannels. <i>Lab on A Chip</i> , 2011 , 11, 3970-8	7.2	27
293	Fluidic Ratchet Based on Marangoni B flard Convection. <i>Langmuir</i> , 2003 , 19, 4358-4362	4	27
292	Rotation of an immersed cylinder sliding near a thin elastic coating. <i>Physical Review Fluids</i> , 2017 , 2,	2.8	27
291	Diffusiophoretic and diffusioosmotic velocities for mixtures of valence-asymmetric electrolytes. <i>Physical Review Fluids</i> , 2019 , 4,	2.8	27
290	Magnetospinning of Nano- and Microfibers. <i>Advanced Materials</i> , 2015 , 27, 3560-5	24	26
289	Vortex-Breakdown-Induced Particle Capture in Branching Junctions. <i>Physical Review Letters</i> , 2016 , 117, 084501	7.4	26
288	Curvature suppresses the Rayleigh-Taylor instability. <i>Physics of Fluids</i> , 2014 , 26, 051704	4.4	26
287	Diffusiophoresis in one-dimensional solute gradients. <i>Soft Matter</i> , 2017 , 13, 9015-9023	3.6	26
286	Force generation by groups of migrating bacteria. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 7266-7271	11.5	26

285	Influence of heterogeneity on second-kind self-similar solutions for viscous gravity currents. Journal of Fluid Mechanics, 2014 , 747, 218-246	3.7	26
284	Plate coating: influence of concentrated surfactants on the film thickness. <i>Langmuir</i> , 2012 , 28, 3821-30	4	26
283	Modern Classical Physics Through the Work of G. I. Taylor. <i>Physics Today</i> , 2000 , 53, 30-35	0.9	26
282	Wetting of crossed fibers: Multiple steady states and symmetry breaking. <i>Europhysics Letters</i> , 2014 , 105, 56006	1.6	25
281	Evaporation of drops on two parallel fibers: influence of the liquid morphology and fiber elasticity. <i>Langmuir</i> , 2013 , 29, 7857-63	4	25
280	Thickness of the rim of an expanding lamella near the splash threshold. <i>Physics of Fluids</i> , 2010 , 22, 0221	0 4 4	25
279	Convection, heaping, and cracking in vertically vibrated granular slurries. <i>Physical Review Letters</i> , 2001 , 86, 3016-9	7.4	25
278	Towards improved social distancing guidelines: Space and time dependence of virus transmission from speech-driven aerosol transport between two individuals. <i>Physical Review Fluids</i> , 2020 , 5,	2.8	25
277	Axisymmetric flows from fluid injection into a confined porous medium. <i>Physics of Fluids</i> , 2016 , 28, 0221	Q 74	25
276	A microfluidic device and automatic counting system for the study of C. elegans reproductive aging. <i>Lab on A Chip</i> , 2015 , 15, 524-31	7.2	24
275	Direct measurement of selective evaporation of binary mixture droplets by dissolving materials. Journal of Fluid Mechanics, 2018 , 850, 769-783	3.7	24
274	Water-Based Peeling of Thin Hydrophobic Films. <i>Physical Review Letters</i> , 2017 , 119, 154502	7.4	23
273	Microfluidic-based transcriptomics reveal force-independent bacterial rheosensing. <i>Nature Microbiology</i> , 2019 , 4, 1274-1281	26.6	23
272	Dynamics and topology of a flexible chain: knots in steady shear flow. <i>New Journal of Physics</i> , 2015 , 17, 053009	2.9	23
271	Energy absorption in a bamboo foam. <i>Europhysics Letters</i> , 2008 , 84, 36001	1.6	23
270	Reactive spreading and recoil of oil on water. <i>Physics of Fluids</i> , 2006 , 18, 038105	4.4	23
269	Particle entrainment in dead-end pores by diffusiophoresis. <i>Soft Matter</i> , 2019 , 15, 3879-3885	3.6	22
268	A note on the breathing mode of an elastic sphere in Newtonian and complex fluids. <i>Physics of Fluids</i> , 2015 , 27, 032001	4.4	22

267	Flow dependent performance of microfluidic microbial fuel cells. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 12535-43	3.6	22
266	Mobility of membrane-trapped particles. <i>Journal of Fluid Mechanics</i> , 2015 , 781, 494-505	3.7	22
265	Accumulation of Colloidal Particles in Flow Junctions Induced by Fluid Flow and Diffusiophoresis. <i>Physical Review X</i> , 2017 , 7,	9.1	22
264	Experimental study on penny-shaped fluid-driven cracks in an elastic matrix. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2015 , 471, 20150255	2.4	22
263	Microfluidic generation of a high volume fraction of bubbles in droplets. Soft Matter, 2010, 6, 4677	3.6	22
262	Resolving a paradox of anomalous scalings in the diffusion of granular materials. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 16012-7	11.5	22
261	Mechanical properties and motion of the cupula of the human semicircular canal. <i>Journal of Vestibular Research: Equilibrium and Orientation</i> , 2009 , 19, 95-110	2.5	22
26 0	Undulations on the surface of elongated bubbles in confined gas-liquid flows. <i>Physical Review Fluids</i> , 2017 , 2,	2.8	22
259	Diffusiophoresis in narrow channel flows. <i>Journal of Fluid Mechanics</i> , 2018 , 854, 420-448	3.7	22
258	Buckling dynamics of a solvent-stimulated stretched elastomeric sheet. <i>Soft Matter</i> , 2014 , 10, 2800-4	3.6	21
257	Rolling stones: The motion of a sphere down an inclined plane coated with a thin liquid film. <i>Physics of Fluids</i> , 2009 , 21, 082103	4.4	21
256	Axial dispersion via shear-enhanced diffusion in colloidal suspensions. <i>Europhysics Letters</i> , 2012 , 97, 580	00.56	21
255	The transition state and regulation of 町uRC-mediated microtubule nucleation revealed by single molecule microscopy. <i>ELife</i> , 2020 , 9,	8.9	21
254	A new wrinkle on liquid sheets: Turning the mechanism of viscous bubble collapse upside down. <i>Science</i> , 2020 , 369, 685-688	33.3	21
253	Membrane-induced hydroelastic migration of a particle surfing its own wave. <i>Nature Physics</i> , 2018 , 14, 1211-1215	16.2	21
252	Gating of a mechanosensitive channel due to cellular flows. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 9822-7	11.5	20
251	A new angle on microscopic suspension feeders near boundaries. <i>Biophysical Journal</i> , 2013 , 105, 1796-8	0249	20
250	Multicompartment microfibers: fabrication and selective dissolution of composite droplet-in-fiber structures. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 7866-7871	7.3	20

249	Three-dimensional features in low-Reynolds-number confined corner flows. <i>Journal of Fluid Mechanics</i> , 2011 , 668, 33-57	3.7	20
248	Corrugated interfaces in multiphase core-annular flow. <i>Physics of Fluids</i> , 2010 , 22, 082002	4.4	20
247	Dispersion in Flows with Streamwise Variations of Mean Velocity: Radial Flow[Industrial & amp; Engineering Chemistry Research, 1999, 38, 851-854	3.9	20
246	Charging Dynamics of Overlapping Double Layers in a Cylindrical Nanopore. <i>Physical Review Letters</i> , 2020 , 125, 076001	7.4	20
245	Dynamic regimes of electrified liquid filaments. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 6159-6164	11.5	20
244	Wetting morphologies on an array of fibers of different radii. Soft Matter, 2015, 11, 4034-40	3.6	19
243	Gelation chemistries for the encapsulation of nanoparticles in composite gel microparticles for lung imaging and drug delivery. <i>Biomacromolecules</i> , 2014 , 15, 252-61	6.9	19
242	Sonication-microfluidics for fabrication of nanoparticle-stabilized microbubbles. <i>Langmuir</i> , 2014 , 30, 4262-6	4	19
241	On the hydrodynamic interaction between a particle and a permeable surface. <i>Physics of Fluids</i> , 2013 , 25, 073103	4.4	19
240	Motion of a hot particle in viscous fluids. <i>Physical Review Fluids</i> , 2016 , 1,	2.8	19
240	Motion of a hot particle in viscous fluids. <i>Physical Review Fluids</i> , 2016 , 1, Spontaneous formation of aligned DNA nanowires by capillarity-induced skin folding. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 6233-6237	2.8	19
	Spontaneous formation of aligned DNA nanowires by capillarity-induced skin folding. <i>Proceedings</i>	11.5	18
239	Spontaneous formation of aligned DNA nanowires by capillarity-induced skin folding. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 6233-6237	11.5	18
239	Spontaneous formation of aligned DNA nanowires by capillarity-induced skin folding. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 6233-6237 Failure mechanisms of air entrainment in drop impact on lubricated surfaces. <i>Soft Matter</i> , 2017 , 13, 240	11.5)2 ₃ 2409	18 9 18
239 238 237	Spontaneous formation of aligned DNA nanowires by capillarity-induced skin folding. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 6233-6237 Failure mechanisms of air entrainment in drop impact on lubricated surfaces. <i>Soft Matter</i> , 2017 , 13, 240 Viscous fluid injection into a confined channel. <i>Physics of Fluids</i> , 2015 , 27, 062105	11.5 02 32 409 4.4	18 9 18 18
239 238 237 236	Spontaneous formation of aligned DNA nanowires by capillarity-induced skin folding. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 6233-6237 Failure mechanisms of air entrainment in drop impact on lubricated surfaces. <i>Soft Matter</i> , 2017 , 13, 240 Viscous fluid injection into a confined channel. <i>Physics of Fluids</i> , 2015 , 27, 062105 Inertia dominated thin-film flows over microdecorated surfaces. <i>Physics of Fluids</i> , 2010 , 22, 073602 An Integral Equation Solution for the Steady-State Current at a Periodic Array of Surface	11.5 02 ₃ 2409 4.4 4.4	18 9 18 18
239 238 237 236	Spontaneous formation of aligned DNA nanowires by capillarity-induced skin folding. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 6233-6237 Failure mechanisms of air entrainment in drop impact on lubricated surfaces. <i>Soft Matter</i> , 2017 , 13, 240 Viscous fluid injection into a confined channel. <i>Physics of Fluids</i> , 2015 , 27, 062105 Inertia dominated thin-film flows over microdecorated surfaces. <i>Physics of Fluids</i> , 2010 , 22, 073602 An Integral Equation Solution for the Steady-State Current at a Periodic Array of Surface Microelectrodes. <i>SIAM Journal on Applied Mathematics</i> , 1997 , 57, 1615-1638	11.5 0232409 4.4 4.4 1.8	18 18 18 18

231	Introduction to Fluid Dynamics for Microfluidic Flows. Integrated Circuits and Systems, 2007, 5-30	0.2	18
230	Diffusiophoresis in Multivalent Electrolytes. <i>Langmuir</i> , 2020 , 36, 7014-7020	4	17
229	Early-time free-surface flow driven by a deforming boundary. <i>Journal of Fluid Mechanics</i> , 2015 , 767, 811	- <u>8</u> . 4 1	17
228	Generation of antibubbles from core-shell double emulsion templates produced by microfluidics. <i>Langmuir</i> , 2013 , 29, 8782-7	4	17
227	On boundary-layer flows induced by the motion of stretching surfaces. <i>Journal of Fluid Mechanics</i> , 2012 , 706, 597-606	3.7	17
226	Transverse instability of bubbles in viscoelastic channel flows. <i>Physical Review Letters</i> , 2008 , 101, 24450	3 7.4	17
225	On the absence of marginal pinching in thin free films. <i>European Journal of Applied Mathematics</i> , 2005 , 16, 569	1	17
224	Vortex breakdown, linear global instability and sensitivity of pipe bifurcation flows. <i>Journal of Fluid Mechanics</i> , 2017 , 815, 257-294	3.7	16
223	Shape of the growing front of biofilms. New Journal of Physics, 2017, 19, 125007	2.9	16
222	Dewetting of Thin Liquid Films Surrounding Air Bubbles in Microchannels. <i>Langmuir</i> , 2018 , 34, 1363-137	Q	16
221	Flow regime analysis for geologic CO2 sequestration and other subsurface fluid injections. <i>International Journal of Greenhouse Gas Control</i> , 2016 , 53, 284-291	4.2	16
220	Converging gravity currents over a permeable substrate. <i>Journal of Fluid Mechanics</i> , 2015 , 778, 669-690	3.7	16
219	On the (de)stabilization of draw resonance due to cooling. <i>Journal of Fluid Mechanics</i> , 2009 , 636, 155-17	'6 .7	16
218	Evaporatively controlled growth of salt trees. <i>Physical Review E</i> , 1996 , 53, 1994-1997	2.4	16
217	A Scalable Platform for Functional Nanomaterials via Bubble-Bursting. <i>Advanced Materials</i> , 2016 , 28, 4047-52	24	16
216	Roadmap on emerging concepts in the physical biology of bacterial biofilms: from surface sensing to community formation. <i>Physical Biology</i> , 2021 , 18,	3	16
215	Salt type and concentration affect the viscoelasticity of polyelectrolyte solutions. <i>Applied Physics Letters</i> , 2018 , 112, 203701	3.4	16
214	Wetting morphologies on randomly oriented fibers. <i>European Physical Journal E</i> , 2015 , 38, 62	1.5	15

213	Diffusiophoresis: from dilute to concentrated electrolytes. <i>Soft Matter</i> , 2020 , 16, 6975-6984	3.6	15
212	BEard-Marangoni instability driven by moisture absorption. <i>Europhysics Letters</i> , 2016 , 113, 24002	1.6	15
211	On the rotation of porous ellipsoids in simple shear flows. Journal of Fluid Mechanics, 2013, 733,	3.7	15
210	Interfacial deflection and jetting of a paramagnetic particle-laden fluid: theory and experiment. <i>Soft Matter</i> , 2013 , 9, 8600	3.6	15
209	Adhesion of moving droplets in microchannels. <i>Applied Physics Letters</i> , 2013 , 103, 131605	3.4	15
208	An experimental and theoretical investigation of particleWall impacts in a T-junction. <i>Journal of Fluid Mechanics</i> , 2013 , 727, 236-255	3.7	15
207	An interpretation of the translation of drops and bubbles at high Reynolds numbers in terms of the vorticity field. <i>Physics of Fluids A, Fluid Dynamics</i> , 1993 , 5, 2567-2569		15
206	Hydrophilic slippery surface enabled coarsening effect for rapid water harvesting. <i>Cell Reports Physical Science</i> , 2021 , 2, 100387	6.1	15
205	Farming and public goods production in populations. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 2289-2294	11.5	14
204	Armoring confined bubbles in the flow of colloidal suspensions. <i>Soft Matter</i> , 2017 , 13, 2857-2865	3.6	14
203	Flow-Driven Rapid Vesicle Fusion via Vortex Trapping. <i>Langmuir</i> , 2015 , 31, 7178-82	4	14
202	Laboratory layered latte. <i>Nature Communications</i> , 2017 , 8, 1960	17.4	14
201	Deposition of Quantum Dots in a Capillary Tube. <i>Langmuir</i> , 2015 , 31, 12560-6	4	14
200	Combinatorial generation of droplets by controlled assembly and coalescence. <i>Lab on A Chip</i> , 2013 , 13, 4674-80	7.2	14
199	The effect of double-chain surfactants on armored bubbles: a surfactant-controlled route to colloidosomes. <i>Physical Chemistry Chemical Physics</i> , 2007 , 9, 6476-81	3.6	14
198	Directed assembly of fluidic networks by buckle delamination of films on patterned substrates. <i>International Journal of Materials Research</i> , 2007 , 98, 1203-1208	0.5	14
197	Elastic Relaxation of Fluid-Driven Cracks and the Resulting Backflow. <i>Physical Review Letters</i> , 2016 , 117, 268001	7.4	14
196	Extended lubrication theory: improved estimates of flow in channels with variable geometry. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 473, 20170234	1 ^{2.4}	13

195	Characterization of surface-solute interactions by diffusioosmosis. <i>Soft Matter</i> , 2019 , 15, 1582-1596	3.6	13
194	Mechanical tuning of the evaporation rate of liquid on crossed fibers. <i>Langmuir</i> , 2015 , 31, 3094-100	4	13
193	Healing capillary films. Journal of Fluid Mechanics, 2018, 838, 404-434	3.7	13
192	Shear dispersion in dense granular flows. <i>Granular Matter</i> , 2014 , 16, 509-515	2.6	13
191	Swelling dynamics of a thin elastomeric sheet under uniaxial pre-stretch. <i>Journal of Applied Physics</i> , 2014 , 115, 083505	2.5	13
190	Microfluidic generation of droplets with a high loading of nanoparticles. <i>Langmuir</i> , 2012 , 28, 13143-8	4	13
189	Analytical model for the deformation of a fluid-fluid interface beneath an AFM probe. <i>Langmuir</i> , 2013 , 29, 1427-34	4	13
188	The symmetry of mobility laws for viscous flow along arbitrarily patterned surfaces. <i>Physics of Fluids</i> , 2011 , 23, 031701	4.4	13
187	Imbibition of concentrated suspensions in capillaries. <i>Physics of Fluids</i> , 2011 , 23, 081701	4.4	13
186	Time-dependent viscous deformation of a drop in a rapidly rotating denser fluid. <i>Journal of Fluid Mechanics</i> , 1996 , 317, 275-299	3.7	13
185	Reciprocal theorem for the prediction of the normal force induced on a particle translating parallel to an elastic membrane. <i>Physical Review Fluids</i> , 2018 , 3,	2.8	13
184	Role of extensional rheology on droplet bouncing. <i>Physical Review Fluids</i> , 2019 , 4,	2.8	13
183	Diffusion of multiple electrolytes cannot be treated independently: model predictions with experimental validation. <i>Soft Matter</i> , 2019 , 15, 9965-9973	3.6	13
182	4D imaging reveals mechanisms of clay-carbon protection and release. <i>Nature Communications</i> , 2021 , 12, 622	17.4	13
181	Invisible Anchors Trap Particles in Branching Junctions. <i>Physical Review Letters</i> , 2018 , 121, 054502	7.4	12
180	Separation of particles by size from a suspension using the motion of a confined bubble. <i>Applied Physics Letters</i> , 2018 , 112, 181604	3.4	12
179	Downstream decay of fully developed Dean flow. Journal of Fluid Mechanics, 2015, 777, 219-244	3.7	12
178	Variation in polydispersity in pump- and pressure-driven micro-droplet generators. <i>Journal of Micromechanics and Microengineering</i> , 2015 , 25, 115015	2	12

177	Homogeneous deposition of particles by absorption on hydrogels. <i>Europhysics Letters</i> , 2015 , 112, 48004	41.6	12
176	Lateral shaping and stability of a stretching viscous sheet. European Physical Journal B, 2009, 68, 487-49	941.2	12
175	Piston flow in a two-dimensional channel. <i>Physics of Fluids</i> , 2000 , 12, 1240-1243	4.4	12
174	Capillary wave scattering from a surfactant domain. <i>Physics of Fluids</i> , 1995 , 7, 1872-1885	4.4	12
173	Axial drop motion in rotating fluids. <i>Journal of Fluid Mechanics</i> , 1995 , 282, 247-278	3.7	12
172	Crossover from shear-driven to thermally activated drainage of liquid-infused microscale capillaries. <i>Physical Review Fluids</i> , 2016 , 1,	2.8	12
171	Dynamics of long gas bubbles rising in a vertical tube in a cocurrent liquid flow. <i>Physical Review Fluids</i> , 2019 , 4,	2.8	12
170	Propulsion driven by self-oscillation via an electrohydrodynamic instability. <i>Physical Review Fluids</i> , 2019 , 4,	2.8	12
169	Start-up flow in shallow deformable microchannels. Journal of Fluid Mechanics, 2020, 885,	3.7	12
168	A hydrodynamic instability drives protein droplet formation on microtubules to nucleate branches <i>Nature Physics</i> , 2021 , 17, 493-498	16.2	12
167	Sinking a Granular Raft. <i>Physical Review Letters</i> , 2017 , 118, 108001	7.4	11
166	Restoring universality to the pinch-off of a bubble. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 13780-13784	11.5	11
165	Effect of the Polydispersity of a Colloidal Drop on Drying Induced Stress as Measured by the Buckling of a Floating Sheet. <i>Physical Review Letters</i> , 2016 , 116, 238001	7.4	11
164	Role of the Membrane for Mechanosensing by Tethered Channels. <i>Physical Review Letters</i> , 2016 , 116, 258101	7.4	11
163	Propagation of a viscous thin film over an elastic membrane. <i>Journal of Fluid Mechanics</i> , 2015 , 784, 443-	-4 64	11
162	Fracture Propagation Driven by Fluid Outflow from a Low-Permeability Aquifer. <i>Transport in Porous Media</i> , 2013 , 100, 69-82	3.1	11
161	Gravity-driven thin-film flow on a flexible substrate. <i>Journal of Fluid Mechanics</i> , 2013 , 732, 190-213	3.7	11
160	Network characteristics of collective chemosensing. <i>Physical Review Letters</i> , 2013 , 110, 158103	7.4	11

159	Bubble formation via multidrop impacts. <i>Physics of Fluids</i> , 2010 , 22, 042105	4.4	11
158	Traveling wave-induced aerodynamic propulsive forces using piezoelectrically deformed substrates. <i>Applied Physics Letters</i> , 2011 , 99, 114102	3.4	11
157	Impact dynamics for elastic membranes. <i>Physical Review Letters</i> , 2006 , 97, 244301	7.4	11
156	Fluid-driven cracks in an elastic matrix in the toughness-dominated limit. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2016 , 374,	3	11
155	Hydrodynamic force on a sphere normal to an obstacle due to a non-uniform flow. <i>Journal of Fluid Mechanics</i> , 2017 , 818, 407-434	3.7	10
154	The influence of capillary effects on the drainage of a viscous gravity current into a deep porous medium. <i>Journal of Fluid Mechanics</i> , 2017 , 817, 514-559	3.7	10
153	Identification of a Molecular Latch that Regulates Staphylococcal Virulence. <i>Cell Chemical Biology</i> , 2019 , 26, 548-558.e4	8.2	10
152	Liquid Imbibition in Ceramic-Coated Carbon Nanotube Films. <i>Langmuir</i> , 2016 , 32, 12686-12692	4	10
151	Ice lubrication for moving heavy stones to the Forbidden City in 15th- and 16th-century China. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 20023-7	11.5	10
150	Surface-Tension-Induced Synthesis of Complex Particles Using Confined Polymeric Fluids. <i>Angewandte Chemie</i> , 2010 , 122, 7914-7918	3.6	10
149	Added mass of a disc accelerating within a pipe. <i>Physics of Fluids</i> , 1997 , 9, 3141-3148	4.4	10
148	Continuum description of profile scaling in nanostructure decay. <i>Physical Review B</i> , 2004 , 69,	3.3	10
147	Instability of a rotating thread in a second immiscible liquid. <i>Physics of Fluids</i> , 2004 , 16, 29-38	4.4	10
146	Stability of a flat gas-liquid interface containing nonidentical spheres to gas transport: toward an explanation of particle stabilization of gas bubbles. <i>Langmuir</i> , 2005 , 21, 4526-31	4	10
145	Experimental measurement of shear-induced diffusion in suspensions using long time data. <i>Physics of Fluids</i> , 1996 , 8, 2011-2018	4.4	10
144	Building Supracolloidal Fibers from Zwitterion-Stabilized Adhesive Emulsions. <i>Advanced Functional Materials</i> , 2018 , 28, 1804325	15.6	10
143	Formation of sea ice bridges in narrow straits in response to wind and water stresses. <i>Journal of Geophysical Research: Oceans</i> , 2017 , 122, 5588-5610	3.3	9
142	Influence of Salt on the Viscosity of Polyelectrolyte Solutions. <i>Physical Review Letters</i> , 2020 , 124, 17780	017.4	9

141	Foam-driven fracture. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 8082-8086	11.5	9
140	Dynamic switching enables efficient bacterial colonization in flow. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 5438-5443	11.5	9
139	Study of polygonal water bells: inertia-dominated thin-film flows over microtextured surfaces. <i>Journal of Fluid Mechanics</i> , 2013 , 721, 46-57	3.7	9
138	Tunable transport of drops on a vibrating inclined fiber. <i>Applied Physics Letters</i> , 2015 , 107, 181604	3.4	9
137	Grooving of a grain boundary by evaporationdondensation below the roughening transition. <i>Journal of Applied Physics</i> , 2005 , 97, 113535	2.5	9
136	What is the use of elephant hair?. <i>PLoS ONE</i> , 2012 , 7, e47018	3.7	9
135	Shape Transformations of Lipid Bilayers Following Rapid Cholesterol Uptake. <i>Biophysical Journal</i> , 2016 , 111, 2651-2657	2.9	9
134	Diffusiophoresis in ionic surfactants: effect of micelle formation. <i>Soft Matter</i> , 2019 , 15, 278-288	3.6	9
133	Design of a microfluidic device for the measurement of the elastic modulus of deformable particles. <i>Soft Matter</i> , 2019 , 15, 880-889	3.6	8
132	Mechanics regulates ATP-stimulated collective calcium response in fibroblast cells. <i>Journal of the Royal Society Interface</i> , 2015 , 12, 20150140	4.1	8
131	Flexible fibers in shear flow approach attracting periodic solutions. <i>Physical Review E</i> , 2020 , 101, 02310	142.4	8
130	Stokes flow in a drop evaporating from a liquid subphase. <i>Physics of Fluids</i> , 2013 , 25, 102102	4.4	8
129	Inertial gravity currents produced by fluid drainage from an edge. <i>Journal of Fluid Mechanics</i> , 2017 , 827, 640-663	3.7	8
128	Drop morphologies on flexible fibers: influence of elastocapillary effects. <i>Soft Matter</i> , 2016 , 13, 134-14	03.6	8
127	Self-crumpling elastomers: Bending induced by the drying stimulus of a nanoparticle suspension. <i>Europhysics Letters</i> , 2014 , 108, 19001	1.6	8
126	Thermocapillary-assisted pulling of contact-free liquid films. <i>Physics of Fluids</i> , 2012 , 24, 032107	4.4	8
125	Your wetting day. <i>Physics Today</i> , 2007 , 60, 84-85	0.9	8
124	The motion of an inviscid drop in a bounded rotating fluid. <i>Physics of Fluids A, Fluid Dynamics</i> , 1992 , 4, 1142-1147		8

123	A geometric criterion for the optimal spreading of active polymers in porous media. <i>Nature Communications</i> , 2021 , 12, 7088	17.4	8
122	Effect of buoyancy on the motion of long bubbles in horizontal tubes. <i>Physical Review Fluids</i> , 2017 , 2,	2.8	8
121	Ionic Layering and Overcharging in Electrical Double Layers in a Poisson-Boltzmann Model. <i>Physical Review Letters</i> , 2020 , 125, 188004	7.4	8
120	Tuning the Receding Contact Angle on Hydrogels by Addition of Particles. <i>Langmuir</i> , 2016 , 32, 5573-9	4	8
119	Capillary Leveling of Freestanding Liquid Nanofilms. <i>Physical Review Letters</i> , 2016 , 117, 167801	7.4	8
118	Plasmodesmata and the problems with size: Interpreting the confusion. <i>Journal of Plant Physiology</i> , 2021 , 257, 153341	3.6	8
117	Dynamics of viscous backflow from a model fracture network. <i>Journal of Fluid Mechanics</i> , 2018 , 836, 82	8 3 8 / 49	8
116	Laser-induced forward transfer from healing silver paste films. <i>Applied Physics Letters</i> , 2018 , 113, 22160)	8
115	Uniform Coating of Self-Assembled Noniridescent Colloidal Nanostructures using the Marangoni Effect and Polymers. <i>Physical Review Applied</i> , 2018 , 10,	4.3	8
114	Diffusiophoretic manipulation of particles in a drop deposited on a hydrogel. <i>Soft Matter</i> , 2017 , 13, 512	2 ₃ 55129	97
113	High-speed axial-scanning wide-field microscopy for volumetric particle tracking velocimetry. <i>Experiments in Fluids</i> , 2017 , 58, 1	2.5	7
112	The effects of a horizontal magnetic field on the Rayleigh Taylor instability. <i>Nuclear Materials and Energy</i> , 2019 , 18, 175-181	2.1	7
111	Harnessing elasticity to generate self-oscillation via an electrohydrodynamic instability. <i>Journal of Fluid Mechanics</i> , 2020 , 888,	3.7	7
110	Point-source imbibition into dry aqueous foams. <i>Europhysics Letters</i> , 2016 , 113, 44002	1.6	7
109	The dynamics of interacting folds under biaxial compressive stresses. <i>Soft Matter</i> , 2016 , 12, 3502-6	3.6	7
108	Stability of a bi-layer free film: simultaneous or individual rupture events?. <i>Journal of Fluid Mechanics</i> , 2015 , 777, 27-49	3.7	7
107	Lubrication analysis of interacting rigid cylindrical particles in confined shear flow. <i>Physics of Fluids</i> , 2015 , 27, 072001	4.4	7
106	The Science of Chocolate: Interactive Activities on Phase Transitions, Emulsification, and Nucleation. <i>Journal of Chemical Education</i> , 2011 , 88, 29-33	2.4	7

(2019-2011)

105	Interactions between two deformable droplets in tandem subjected to impulsive acceleration by surrounding flows. <i>Journal of Fluid Mechanics</i> , 2011 , 684, 384-406	3.7	7
104	Critical insulation thickness of a rectangular slab embedded with a periodic array of isothermal strips. <i>International Journal of Heat and Mass Transfer</i> , 2011 , 54, 180-185	4.9	7
103	Newtonian pizza: spinning a viscous sheet. <i>Journal of Fluid Mechanics</i> , 2010 , 659, 1-23	3.7	7
102	Leakage through filtercake into a fluid sampling probe. <i>Physics of Fluids</i> , 2001 , 13, 1151-1159	4.4	7
101	Flow of a gravity current in a porous medium accounting for drainage from a permeable substrate and an edge. <i>Physical Review Fluids</i> , 2017 , 2,	2.8	7
100	Universality in the nonlinear leveling of capillary films. <i>Physical Review Fluids</i> , 2018 , 3,	2.8	7
99	Fountain mixing in a filling box at low Reynolds numbers. Physical Review Fluids, 2019, 4,	2.8	7
98	Ions in an AC Electric Field: Strong Long-Range Repulsion between Oppositely Charged Surfaces. <i>Physical Review Letters</i> , 2020 , 125, 056001	7.4	7
97	Rivulet flow over a flexible beam. <i>Journal of Fluid Mechanics</i> , 2016 , 796, 285-305	3.7	7
96	Autophoresis of two adsorbing/desorbing particles in an electrolyte solution. <i>Journal of Fluid Mechanics</i> , 2019 , 865, 440-459	3.7	7
95	Time-dependent motion of a confined bubble in a tube: transition between two steady states. <i>Journal of Fluid Mechanics</i> , 2018 , 857,	3.7	7
94	Preferential flow penetration in a network of identical channels. <i>Physics of Fluids</i> , 2014 , 26, 042110	4.4	6
93	Hygromorphic actuator from a metal oxide film driven by a nano-capillary forest structure. <i>NPG Asia Materials</i> , 2017 , 9, e417-e417	10.3	6
92	Thermocapillary-assisted pulling of thin films: Application to molten metals. <i>Applied Physics Letters</i> , 2010 , 97, 171906	3.4	6
91	Dynamic angular segregation of vesicles in electrohydrodynamic flows. <i>Langmuir</i> , 2010 , 26, 9429-36	4	6
90	On the thickness of soap films: an alternative to Frankel's law ŒORRIGENDUM. <i>Journal of Fluid Mechanics</i> , 2009 , 630, 443-443	3.7	6
89	Particle motion nearby rough surfaces. Physical Review Fluids, 2020, 5,	2.8	6
88	Deposition-on-contact regime and the effect of donor-acceptor distance during laser-induced forward transfer of viscoelastic liquids. <i>Optical Materials Express</i> , 2019 , 9, 2738	2.6	6

87	Universal features of the shape of elastic fibres in shear flow. Journal of Fluid Mechanics, 2021, 914,	3.7	6
86	Experimental investigation of the Faraday instability on a patterned surface. <i>Experiments in Fluids</i> , 2016 , 57, 1	2.5	6
85	Submicron aerosols of liquid fuels: Method of production, experimental characterization and a semi-empirical model. <i>Applied Energy</i> , 2019 , 235, 1651-1663	10.7	5
84	Pressure-driven flow across a hyperelastic porous membrane. <i>Journal of Fluid Mechanics</i> , 2019 , 871, 742	2 <i>-3</i> .54	5
83	Damping of liquid sloshing by foams: from everyday observations to liquid transport. <i>Journal of Visualization</i> , 2015 , 18, 269-271	1.6	5
82	Noncircular stable displacement patterns in a meshed porous layer. <i>Langmuir</i> , 2015 , 31, 5684-8	4	5
81	Symmetrization of Thin Freestanding Liquid Films via a Capillary-Driven Flow. <i>Physical Review Letters</i> , 2020 , 124, 184502	7.4	5
80	Chemically controlled shape-morphing of elastic sheets. <i>Materials Horizons</i> , 2020 , 7, 2314-2327	14.4	5
79	Flow past finite cylinders of constant curvature. <i>Journal of Fluid Mechanics</i> , 2018 , 837, 896-915	3.7	5
78	Visualization of Surfactant Dynamics to and along Oil-Water Interfaces Using Solvatochromic Fluorescent Surfactants. <i>Langmuir</i> , 2018 , 34, 10512-10522	4	5
77	Rapid Spreading of a Droplet on a Thin Soap Film. <i>Langmuir</i> , 2019 , 35, 14855-14860	4	5
76	Effect of Hydrodynamic Interactions on Reaction Rates in Membranes. <i>Biophysical Journal</i> , 2017 , 113, 440-447	2.9	5
75	The role of the membrane confinement in the surface area regulation of cells. <i>Communicative and Integrative Biology</i> , 2011 , 4, 616-618	1.7	5
74	Time-dependent drop deformation in a rotating high viscosity fluid. <i>Quarterly of Applied Mathematics</i> , 1996 , 54, 551-556	0.7	5
73	Low-Reynolds-number, biflagellated Quincke swimmers with multiple forms of motion. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	5
72	Stratified thin-film flow in a rheometer. <i>Physics of Fluids</i> , 2015 , 27, 052102	4.4	4
71	Inertial gravity current produced by the drainage of a cylindrical reservoir from an outer or inner edge. <i>Journal of Fluid Mechanics</i> , 2019 , 874, 185-209	3.7	4
70	Protocol to perform pressurized blister tests on thin elastic films. <i>European Physical Journal E</i> , 2017 , 40, 64	1.5	4

(2021-2015)

69	Reactive Magnetospinning of Nano- and Microfibers. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 13613-6	16.4	4
68	A pinned or free-floating rigid plate on a thin viscous film. <i>Journal of Fluid Mechanics</i> , 2014 , 760, 407-43	03.7	4
67	Michaelis-Menten kinetics in shear flow: Similarity solutions for multi-step reactions. <i>Biomicrofluidics</i> , 2012 , 6, 14108-141089	3.2	4
66	Long-wave dynamics of an elastic sheet lubricated by a thin liquid film on a wetting substrate. <i>Physical Review Fluids</i> , 2017 , 2,	2.8	4
65	Phase synchronization of fluid-fluid interfaces as hydrodynamically coupled oscillators. <i>Nature Communications</i> , 2020 , 11, 5221	17.4	4
64	Diffusiophoresis and diffusioosmosis in tandem: Two-dimensional particle motion in the presence of multiple electrolytes. <i>Physical Review Fluids</i> , 2021 , 6,	2.8	4
63	Electrostatics, conformation, and rheology of unentangled semidilute polyelectrolyte solutions. Journal of Rheology, 2021 , 65, 507-526	4.1	4
62	Backflow from a model fracture network: an asymptotic investigation. <i>Journal of Fluid Mechanics</i> , 2019 , 864, 899-924	3.7	4
61	Entry and exit flows in curved pipes. <i>Journal of Fluid Mechanics</i> , 2017 , 815, 570-591	3.7	3
60	Wind-Driven Formation of Ice Bridges in Straits. <i>Physical Review Letters</i> , 2017 , 118, 128701	7.4	3
59	Rotation of a submerged finite cylinder moving down a soft incline. Soft Matter, 2020, 16, 4000-4007	3.6	3
58	Marangoni-driven film climbing on a draining pre-wetted film. Journal of Fluid Mechanics, 2020, 886,	3.7	3
57	Vortex and structural dynamics of a flexible cylinder in cross-flow. <i>Physics of Fluids</i> , 2014 , 26, 053605	4.4	3
56	The aerodynamics of jumping rope. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2012 , 468, 720-730	2.4	3
55	Experimental characterization of three-dimensional corner flows at low Reynolds numbers. <i>Journal of Fluid Mechanics</i> , 2012 , 707, 37-52	3.7	3
54	The Science of Pizza: The Molecular Origins of Cheese, Bread, and Digestion Using Interactive Activities for the General Public. <i>Journal of Food Science Education</i> , 2010 , 9, 106-112	0.8	3
53	On the deviatoric normal stress on a slip surface. <i>Physics of Fluids</i> , 2000 , 12, 3280-3281	4.4	3
52	Tracking the air exhaled by an opera singer. <i>Physical Review Fluids</i> , 2021 , 6,	2.8	3

51	Shear-induced migration of confined flexible fibers. Soft Matter, 2021,	3.6	3
50	Inexpensive multi-patient respiratory monitoring system for helmet ventilation during COVID-19 pand	emic	3
49	Self-Propelled Supracolloidal Fibers from Multifunctional Polymer Surfactants and Droplets. <i>Macromolecular Rapid Communications</i> , 2020 , 41, e2000334	4.8	3
48	Self-Similar Draining near a Vertical Edge. <i>Physical Review Letters</i> , 2020 , 125, 064502	7.4	3
47	Hierarchical transitions and fractal wrinkling drive bacterial pellicle morphogenesis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	3
46	Evaporation of Binary-Mixture Liquid Droplets: The Formation of Picoliter Pancakelike Shapes. <i>Physical Review Letters</i> , 2021 , 127, 024501	7.4	3
45	A quantitative study of the effect of flow on the photopolymerization of fibers. <i>Soft Matter</i> , 2019 , 15, 9553-9564	3.6	3
44	CO-Driven diffusiophoresis for maintaining a bacteria-free surface. <i>Soft Matter</i> , 2021 , 17, 2568-2576	3.6	3
43	Non-unique bubble dynamics in a vertical capillary with an external flow. <i>Journal of Fluid Mechanics</i> , 2021 , 911,	3.7	3
42	Reciprocal theorem for calculating the flow ratepressure drop relation for complex fluids in narrow geometries. <i>Physical Review Fluids</i> , 2021 , 6,	2.8	3
41	Evidence for biosurfactant-induced flow in corners and bacterial spreading in unsaturated porous media. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	3
40	Silver-Based Self-Powered pH-Sensitive Pump and Sensor. <i>Langmuir</i> , 2020 , 36, 7948-7955	4	2
39	Surfactant- and Aqueous-Foam-Driven Oil Extraction from Micropatterned Surfaces. <i>Langmuir</i> , 2016 , 32, 13149-13158	4	2
38	Mechanical Inhibition of Foam Formation via a Rotating Nozzle. <i>Journal of Fluids Engineering, Transactions of the ASME</i> , 2011 , 133,	2.1	2
37	Effect of streamwise cross-sectional variation on liquid retention in liquid-infused substrates under an external flow. <i>Physical Review Fluids</i> , 2019 , 4,	2.8	2
36	Towards Improved Social Distancing Guidelines: Space and Time Dependence of Virus Transmission from Speech-driven Aerosol Transport Between Two Individuals		2
35	The role of the membrane confinement in the surface area regulation of cells. <i>Communicative and Integrative Biology</i> , 2011 , 4, 616-8	1.7	2
34	Quantifying the effect of a mask on expiratory flows. <i>Physical Review Fluids</i> , 2021 , 6,	2.8	2

33	Metal-catalyst-free gas-phase synthesis of long-chain hydrocarbons. <i>Nature Communications</i> , 2021 , 12, 5937	17.4	2	
32	CO-leakage-driven diffusiophoresis causes spontaneous accumulation of charged materials in channel flow. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 25985-25990	11.5	2	
31	Thermodynamics of Electrical Double Layers with Electrostatic Correlations. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 26830-26842	3.8	2	
30	Flow rateBressure drop relation for shear-thinning fluids in narrow channels: approximate solutions and comparison with experiments. <i>Journal of Fluid Mechanics</i> , 2021 , 923,	3.7	2	
29	CO-Driven diffusiophoresis and water cleaning: similarity solutions for predicting the exclusion zone in a channel flow. <i>Lab on A Chip</i> , 2021 , 21, 3387-3400	7.2	2	
28	Electrostatic wrapping of a microfiber around a curved particle. Soft Matter, 2021, 17, 3609-3618	3.6	2	
27	Simulation of impulsively induced viscoelastic jets using the Oldroyd-B model. <i>Journal of Fluid Mechanics</i> , 2021 , 911,	3.7	2	
26	Diffusion and flow across shape-perturbed plasmodesmata nanopores in plants. <i>European Physical Journal Plus</i> , 2021 , 136, 1	3.1	2	
25	Evaporation of multiple droplets. <i>Journal of Fluid Mechanics</i> , 2021 , 927,	3.7	2	
24	Formation, Rupture, and Healing of an Annular Viscous Film. <i>Physical Review Letters</i> , 2020 , 124, 224501	7.4	1	
23	Impact of diversity of morphological characteristics and Reynolds number on local hemodynamics in basilar aneurysms. <i>AICHE Journal</i> , 2018 , 64, 2792-2802	3.6	1	
22	Oscillatory Marangoni flows with inertia. <i>Journal of Fluid Mechanics</i> , 2016 , 803, 94-118	3.7	1	
21	Rotation of a low-Reynolds-number watermill: theory and simulations. <i>Journal of Fluid Mechanics</i> , 2018 , 849, 57-75	3.7	1	
20	Buckling of elastic fibers in a shear flow. <i>New Journal of Physics</i> , 2022 , 24, 013013	2.9	1	
19	Inexpensive Multipatient Respiratory Monitoring System for Helmet Ventilation During COVID-19 Pandemic. <i>Journal of Medical Devices, Transactions of the ASME</i> , 2022 , 16,	1.3	1	
18	Pattern formation in oil-in-water emulsions exposed to a salt gradient. <i>Physical Review Fluids</i> , 2019 , 4,	2.8	1	
17	The Influence of Boundaries on Gravity Currents and Thin Films: Drainage, Confinement, Convergence, and Deformation Effects. <i>Annual Review of Fluid Mechanics</i> , 2022 , 54, 27-56	22	1	
16	The transition state and regulation of 町uRC-mediated microtubule nucleation revealed by single molecule microscopy		1	

15	Rotating tensiometer for the measurement of the elastic modulus of deformable particles. <i>Physical Review Fluids</i> , 2020 , 5,	2.8	1
14	Regime Map and Triple Point in Selective Withdrawal. <i>Physical Review Letters</i> , 2020 , 125, 264502	7.4	1
13	Draining and spreading along geometries that cause converging flows: Viscous gravity currents on a downward-pointing cone and a bowl-shaped hemisphere. <i>Physical Review Fluids</i> , 2021 , 6,	2.8	1
12	Chemically Triggered Coalescence and Reactivity of Droplet Fibers. <i>Journal of the American Chemical Society</i> , 2021 , 143, 5558-5564	16.4	1
11	Hydraulic transmissivity inferred from ice-sheet relaxation following Greenland supraglacial lake drainages. <i>Nature Communications</i> , 2021 , 12, 3955	17.4	1
10	Membrane science emerging as a convergent scientific field with molecular origins and understanding, and global impact. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	1
9	Representative subsampling of sedimenting blood. <i>Proceedings of the Royal Society A:</i> Mathematical, Physical and Engineering Sciences, 2019 , 475, 20190223	2.4	0
8	Chemotaxis in shear flow: Similarity solutions of the steady-state chemoattractant and bacterial distributions. <i>AICHE Journal</i> , 2019 , 65, e16713	3.6	Ο
7	Microswimmers near corrugated, periodic surfaces. <i>Soft Matter</i> , 2021 , 17, 3322-3332	3.6	0
6	Confinement size determines the architecture of Ran-induced microtubule networks. <i>Soft Matter</i> , 2021 , 17, 5921-5931	3.6	Ο
5	Design Of An Optofluidic Device For The Measurement Of The Elastic Modulus Of Deformable Particles. <i>EPJ Web of Conferences</i> , 2019 , 215, 14003	0.3	
4	Stability of force-driven shear flows in nonequilibrium molecular simulations with periodic boundaries. <i>Journal of Chemical Physics</i> , 2020 , 152, 214113	3.9	
3	Reactive Magnetospinning of Nano- and Microfibers. <i>Angewandte Chemie</i> , 2015 , 127, 13817-13820	3.6	
2	Free-Surface Liquid Lithium Flow Modeling and Stability Analysis for Fusion Applications. <i>Journal of Fusion Energy</i> , 2020 , 39, 455-461	1.6	
1	Generating Resonant and Repeated Root Solutions to Ordinary Differential Equations Using Perturbation Methods. <i>SIAM Review</i> , 2022 , 64, 485-499	7.4	