Guang-Han Cao

List of Publications by Citations

Source: https://exaly.com/author-pdf/7022519/guang-han-cao-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

326
papers7,682
citations43
h-index76
g-index354
ext. papers8,666
ext. citations3.7
avg, IF5.65
L-index

#	Paper	IF	Citations
326	Thorium-dopingInduced superconductivity up to 56 K in Gd 1⊠ Th x FeAsO. <i>Europhysics Letters</i> , 2008 , 83, 67006	1.6	536
325	Fermi surface nesting induced strong pairing in iron-based superconductors. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 7330-3	11.5	294
324	Superconductivity induced by Ni doping in BaFe2As2single crystals. <i>New Journal of Physics</i> , 2009 , 11, 025008	2.9	228
323	Superconductivity up to 30 K in the vicinity of the quantum critical point in BaFe(2)(As(1-x)P(x))(2). Journal of Physics Condensed Matter, 2009 , 21, 382203	1.8	226
322	Superconductivity induced by phosphorus doping and its coexistence with ferromagnetism in EuFe2(As0.7P0.3)(2). <i>Physical Review Letters</i> , 2009 , 102, 137002	7.4	224
321	Effects of cobalt doping and phase diagrams of LFe1⊠CoxAsO (L=La and Sm). <i>Physical Review B</i> , 2009 , 79,	3.3	172
320	Antiferromagnetic transition in EuFe2As2: A possible parent compound for superconductors. <i>Physical Review B</i> , 2008 , 78,	3.3	166
319	Inelastic neutron-scattering measurements of a three-dimensional spin resonance in the FeAs-based BaFe1.9Ni0.1As2 superconductor. <i>Physical Review Letters</i> , 2009 , 102, 107006	7.4	161
318	Superconductivity induced by La doping in Sr1\(\text{LaxFBiS2}. \) Physical Review B, 2013, 87,	3.3	146
317	Electronic structure of heavily electron-doped BaFe1.7Co0.3As2studied by angle-resolved photoemission. <i>New Journal of Physics</i> , 2009 , 11, 025020	2.9	114
316	Optical investigations of the normal and superconducting states reveal two electronic subsystems in iron pnictides. <i>Physical Review B</i> , 2010 , 81,	3.3	113
315	Unconventional superconductivity in quasi-one-dimensional Rb2Cr3As3. <i>Physical Review B</i> , 2015 , 91,	3.3	108
314	Superconductivity in Quasi-One-Dimensional K2Cr3As3 with Significant Electron Correlations. <i>Physical Review X</i> , 2015 , 5,	9.1	102
313	Superconductivity in quasi-one-dimensional Cs2Cr3As3 with large interchain distance. <i>Science China Materials</i> , 2015 , 58, 16-20	7.1	99
312	Possible charge-density wave, superconductivity, and f-electron valence instability in EuBiS2F. <i>Physical Review B</i> , 2014 , 90,	3.3	93
311	Decrease of dielectric loss in CaCu3Ti4O12 ceramics by La doping. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2006 , 203, R22-R24	1.6	90
310	Metamagnetic transition in EuFe2As2single crystals. <i>New Journal of Physics</i> , 2009 , 11, 025007	2.9	89

(2004-2009)

309	Superconductivity in LaFeAs 1-x P \times O: Effect of chemical pressures and bond covalency. <i>Europhysics Letters</i> , 2009 , 86, 47002	1.6	89
308	Decrease of dielectric loss in giant dielectric constant CaCu3 Ti4 O12 ceramics by adding CaTiO3. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 130, 146-150	3.1	88
307	Electrodynamics of electron-doped iron pnictide superconductors: Normal-state properties. <i>Physical Review B</i> , 2010 , 82,	3.3	87
306	Superconductivity and local-moment magnetism in Eu(Fe0.89Co0.11)2As2. <i>Physical Review B</i> , 2009 , 80,	3.3	85
305	Effects of magnetic ordering on dynamical conductivity: Optical investigations of EuFe2As2 single crystals. <i>Physical Review B</i> , 2009 , 79,	3.3	84
304	Narrow superconducting window in LaFe1⊠NixAsO. <i>Physical Review B</i> , 2009 , 79,	3.3	78
303	Evidence for nodal superconductivity in quasi-one-dimensional K2Cr3As3. <i>Physical Review B</i> , 2015 , 91,	3.3	75
302	Optical properties of the iron arsenic superconductor BaFe1.85Co0.15As2. <i>Physical Review B</i> , 2010 , 82,	3.3	72
301	Infrared phonon anomaly in BaFe2As2. <i>Physical Review B</i> , 2009 , 80,	3.3	72
300	NMR investigation of the quasi-one-dimensional superconductor K(2)Cr(3)As(3). <i>Physical Review Letters</i> , 2015 , 114, 147004	7.4	68
299	Superconductivity and ferromagnetism in hole-doped RbEuFe4As4. <i>Physical Review B</i> , 2016 , 93,	3.3	68
298	Superconductivity in KCa2Fe4As4F2 with Separate Double Fe2As2 Layers. <i>Journal of the American Chemical Society</i> , 2016 , 138, 7856-9	16.4	67
297	Anomalous Eu valence state and superconductivity in undoped Eu3Bi2S4F4. <i>Journal of the American Chemical Society</i> , 2014 , 136, 15386-93	16.4	67
296	Ba2Ti2Fe2As4O: A new superconductor containing Fe2As2 layers and Ti2O sheets. <i>Journal of the American Chemical Society</i> , 2012 , 134, 12893-6	16.4	62
295	Superconductivity above 50 K in Tb1⊠ThxFeAsO. <i>Physical Review B</i> , 2008 , 78,	3.3	61
294	Electronic structure of quasi-one-dimensional superconductor K2Cr3As3 from first-principles calculations. <i>Scientific Reports</i> , 2015 , 5, 16054	4.9	59
293	Spin gap and magnetic resonance in superconducting BaFe1.9Ni0.1As2. <i>Physical Review B</i> , 2009 , 79,	3.3	59
292	Synthesis and magnetoresistance measurement of tellurium microtubes. <i>Journal of Materials Chemistry</i> , 2004 , 14, 244		54

291	Coexistence of ferromagnetism and superconductivity: magnetization and M\(\bar{\mathbb{B}}\)sbauer studies of EuFe\(\bar{\mathbb{A}}\)s\(\mathbb{S}\) xPx\)\(\mathbb{D}\)Journal of Physics Condensed Matter, 2011, 23, 065701	1.8	52
290	Phase diagram of CeFeAs1NPxO obtained from electrical resistivity, magnetization, and specific heat measurements. <i>Physical Review B</i> , 2010 , 81,	3.3	52
289	La2Co2Se2O3: a quasi-two-dimensional mott insulator with unusual cobalt spin state and possible orbital ordering. <i>Journal of the American Chemical Society</i> , 2010 , 132, 7069-73	16.4	49
288	A New ZrCuSiAs-Type Superconductor: ThFeAsN. <i>Journal of the American Chemical Society</i> , 2016 , 138, 2170-3	16.4	46
287	Anisotropic superconductivity in Eu(Fe 0.75 Ru 0.25) 2 As 2 ferromagnetic superconductor. <i>Europhysics Letters</i> , 2011 , 95, 67007	1.6	46
286	Ferromagnetic Spin Fluctuation and Unconventional Superconductivity in Rb2Cr3As3 Revealed by 75As NMR and NQR. <i>Physical Review Letters</i> , 2015 , 115, 147002	7.4	45
285	Effect of a Zn impurity onTcand its implications for pairing symmetry in LaFeAsO1NFx. <i>New Journal of Physics</i> , 2010 , 12, 083008	2.9	44
284	Suppression of spin-density-wave transition and emergence of ferromagnetic ordering of Eu2+moments in EuFe2\(\text{N}\) NixAs2. <i>Physical Review B</i> , 2009 , 79,	3.3	43
283	Magnetic ordering and dense Kondo behavior in EuFe2P2. <i>Physical Review B</i> , 2010 , 82,	3.3	42
282	Grain-boundary and subgrain-boundary effects on the dielectric properties of CaCu3Ti4O12ceramics. <i>Journal Physics D: Applied Physics</i> , 2007 , 40, 2899-2905	3	42
281	A new ferromagnetic superconductor: CsEuFe 4 As 4. Science Bulletin, 2016, 61, 1213-1220	10.6	42
280	Self-doping effect and successive magnetic transitions in superconducting Sr2VFeAsO3. <i>Physical Review B</i> , 2010 , 82,	3.3	41
	Neview 0, 2010, 02,		
279	Electron-phonon coupling and the charge gap of spin-density wave iron-pnictide materials from quasiparticle relaxation dynamics. <i>Physical Review B</i> , 2010 , 82,	3.3	41
279 278	Electron-phonon coupling and the charge gap of spin-density wave iron-pnictide materials from	3.3	
	Electron-phonon coupling and the charge gap of spin-density wave iron-pnictide materials from quasiparticle relaxation dynamics. <i>Physical Review B</i> , 2010 , 82, Superconductivity in a layered Ta4Pd3Te16 with PdTe2 chains. <i>Journal of the American Chemical</i>		
278	Electron-phonon coupling and the charge gap of spin-density wave iron-pnictide materials from quasiparticle relaxation dynamics. <i>Physical Review B</i> , 2010 , 82, Superconductivity in a layered Ta4Pd3Te16 with PdTe2 chains. <i>Journal of the American Chemical Society</i> , 2014 , 136, 1284-7 Observation of giant dielectric constant in CdCu3Ti4O12 ceramics. <i>Solid State Communications</i> ,	16.4	40
278	Electron-phonon coupling and the charge gap of spin-density wave iron-pnictide materials from quasiparticle relaxation dynamics. <i>Physical Review B</i> , 2010 , 82, Superconductivity in a layered Ta4Pd3Te16 with PdTe2 chains. <i>Journal of the American Chemical Society</i> , 2014 , 136, 1284-7 Observation of giant dielectric constant in CdCu3Ti4O12 ceramics. <i>Solid State Communications</i> , 2006 , 138, 91-94 Crystal structure and superconductivity at about 30 K in ACa2Fe4As4F2 (A = Rb, Cs). <i>Science China</i>	16.4	40

(2013-2013)

273	Sr and Mn co-doped LaCuSO: A wide band gap oxide diluted magnetic semiconductor with TC around 200 K. <i>Applied Physics Letters</i> , 2013 , 103, 022410	3.4	36
272	Metal-Insulator Transition and Superconductivity in Spinel-Type System Cu1-xZnxIr2S4. <i>Journal of the Physical Society of Japan</i> , 1999 , 68, 2495-2497	1.5	36
271	Domain Meissner state and spontaneous vortex-antivortex generation in the ferromagnetic superconductor EuFe(AsP). <i>Science Advances</i> , 2018 , 4, eaat1061	14.3	35
270	Cluster spin-glass ground state in quasi-one-dimensional KCr3As3. <i>Physical Review B</i> , 2015 , 91,	3.3	35
269	Magnetic structure of EuFe2P2 studied by neutron powder diffraction. <i>Physical Review B</i> , 2011 , 83,	3.3	35
268	Suppression of metal-to-insulator transition and appearance of superconductivity in Cu1\(\text{UZ}\) Cu1\(\text{UZ}\) ZnxIr2S4. <i>Physical Review B</i> , 2001 , 64,	3.3	35
267	Heavy-fermion quantum criticality and destruction of the Kondo effect in a nickel oxypnictide. <i>Nature Materials</i> , 2014 , 13, 777-81	27	34
266	Superconductivity and ferromagnetism in EuFe[As(1-x)P(x))[] Journal of Physics Condensed Matter, 2011 , 23, 464204	1.8	34
265	Coexistence of superconductivity and ferromagnetism in Sr0.5Ce0.5FBiS2. <i>Physical Review B</i> , 2015 , 91,	3.3	33
264	Superconductivity, charge- or spin-density wave, and metal-nonmetal transition in BaTi2(Sb1\(\mathbb{B}\)ix)2O. <i>Physical Review B</i> , 2013 , 87,	3.3	33
263	K and Mn co-doped BaCd2As2: A hexagonal structured bulk diluted magnetic semiconductor with large magnetoresistance. <i>Journal of Applied Physics</i> , 2013 , 114, 223905	2.5	33
262	Effect of Zn doping on magnetic order and superconductivity in LaFeAsO. <i>New Journal of Physics</i> , 2009 , 11, 053008	2.9	33
261	Crystal chemistry and structural design of iron-based superconductors. <i>Chinese Physics B</i> , 2013 , 22, 087	41.0	32
260	Effects of Ru substitution on electron correlations and Fermi-surface dimensionality in Ba(Fe1\(\text{NRux}\)2As2. <i>Physical Review B</i> , 2012 , 86,	3.3	31
259	Evidence of magnetically driven structural phase transition in RFeAsO (R=La, Sm, Gd, and Tb): A low-temperature x-ray diffraction study. <i>Physical Review B</i> , 2009 , 80,	3.3	31
258	Nernst effect of a new iron-based superconductor LaO1NFxFeAs. <i>New Journal of Physics</i> , 2008 , 10, 0630	0 21 9	31
257	Pressure-enhanced superconductivity in Eu3Bi2S4F4. <i>Physical Review B</i> , 2014 , 90,	3.3	30
256	Magnetic structure of superconducting Eu(Fe0.82Co0.18)2As2 as revealed by single-crystal neutron diffraction. <i>Physical Review B</i> , 2013 , 88,	3.3	29

255	Weakly ferromagnetic metallic state in heavily doped Ba1⊠KxMn2As2. <i>Physical Review B</i> , 2012 , 85,	3.3	29
254	Design and synthesis of a new layered thermoelectric material LaPbBiS3O. <i>Inorganic Chemistry</i> , 2014 , 53, 11125-9	5.1	28
253	Evidence for two distinct superconducting phases in EuBiS2F under pressure. <i>Physical Review B</i> , 2015 , 91,	3.3	28
252	Optical study of the metal-insulator transition in CuIr2S4 crystals. <i>Physical Review B</i> , 2004 , 69,	3.3	28
251	Synthesis, Crystal Structure and Superconductivity in RbLn2Fe4As4O2 (Ln = Sm, Tb, Dy, and Ho). <i>Chemistry of Materials</i> , 2017 , 29, 1805-1812	9.6	27
250	Magnetic ground state of superconducting Eu(Fe0.88Ir0.12)2As2: A combined neutron diffraction and first-principles calculation study. <i>Physical Review B</i> , 2015 , 91,	3.3	27
249	Nodeless superconducting gap in electron-doped BaFe1.9Ni0.1As2probed by quasiparticle heat transport. <i>New Journal of Physics</i> , 2009 , 11, 093018	2.9	27
248	Superconductivity in a layered cobalt oxyhydrate Na0.31CoO2🗈 .3H2O. <i>Journal of Physics Condensed Matter</i> , 2003 , 15, L519-L525	1.8	26
247	Nodal multigap superconductivity in KCa2Fe4As4F2. <i>Physical Review B</i> , 2018 , 97,	3.3	25
246	Competing ferromagnetism and superconductivity on FeAs layers in EuFe2(As0.73P0.27)2. <i>Physical Review Letters</i> , 2010 , 105, 207003	7.4	25
245	Evidence for two energy gaps and Fermi liquid behavior in the SrPt2As2 superconductor. <i>Physical Review B</i> , 2013 , 87,	3.3	24
244	Relationship between Superconductivity and Antiferromagnetism in LaFe(As1\(\text{NP}\(x \))O Revealed by 31P-NMR. <i>Journal of the Physical Society of Japan</i> , 2014 , 83, 023707	1.5	23
243	Ti-rich and Cu-poor grain-boundary layers of CaCu3Ti4O12 detected by x-ray photoelectron spectroscopy. <i>Applied Physics Letters</i> , 2007 , 91, 052910	3.4	23
242	Superconductivity at 33B7 K in ALn2Fe4As4O2 (A=Kand Cs;Ln=lanthanides). <i>Physical Review Materials</i> , 2017 , 1,	3.2	23
241	Electronic phase diagram in a new BiS2-based Sr1 LaxFBiS2system. <i>Superconductor Science and Technology</i> , 2014 , 27, 035009	3.1	22
240	Nodes in the order parameter of superconducting iron pnictides investigated by infrared spectroscopy. <i>Physical Review B</i> , 2010 , 82,	3.3	22
239	Eliashberg analysis of optical spectra reveals a strong coupling of charge carriers to spin fluctuations in doped iron-pnictide BaFe2As2 superconductors. <i>Physical Review B</i> , 2010 , 82,	3.3	22
238	Superconductivity induced by Ni doping in SmFe(1-x)Ni(x)AsO. <i>Journal of Physics Condensed Matter</i> , 2009 , 21, 355702	1.8	22

237	57Fe and151Eu M\(\text{B}\)sbauer spectroscopy and magnetization studies of Eu(Fe0.89Co0.11)2As2and Eu(Fe0.9Ni0.1)2As2. <i>New Journal of Physics</i> , 2011 , 13, 023033	2.9	22
236	A new Majorana platform in an Fe-As bilayer superconductor. <i>Nature Communications</i> , 2020 , 11, 5688	17.4	22
235	Giant anisotropy in superconducting single crystals of CsCa2Fe4As4F2. Physical Review B, 2019, 99,	3.3	21
234	Two-gap superconductivity with line nodes in CsCa2Fe4As4F2. <i>Physical Review B</i> , 2018 , 97,	3.3	21
233	Synthesis, crystal structure and physical properties of quasi-one-dimensional ACr3As3(A = Rb, Cs). <i>Science China Materials</i> , 2015 , 58, 543-549	7.1	21
232	Giant positive magnetoresistance in non-magnetic bismuth nanoparticles. <i>Materials Research Bulletin</i> , 2003 , 38, 1645-1651	5.1	21
231	Structural properties and superconductivity in the Y1\(\mathbb{R}\)PrxBaSrCu3O7\(\mathbb{L}\)system. <i>Physics Letters, Section A: General, Atomic and Solid State Physics,</i> 1994 , 196, 263-266	2.3	20
230	Temperature and angular dependence of the upper critical field in K2Cr3As3. <i>Physical Review B</i> , 2017 , 95,	3.3	19
229	Multigap superconductivity in ThAsFeN investigated using BR measurements. <i>Physical Review B</i> , 2017 , 96,	3.3	19
228	Superconducting and magnetic phase diagram of RbEuFe4As4 and CsEuFe4As4 at high pressure. <i>Physical Review B</i> , 2018 , 98,	3.3	19
227	RbEu(Fe1\(\text{Nix}\))4As4: From a ferromagnetic superconductor to a superconducting ferromagnet. <i>Physical Review B</i> , 2017 , 96,	3.3	19
226	Correlation-induced self-doping in the iron-pnictide superconductor Ba2Ti2Fe2As4O. <i>Physical Review Letters</i> , 2014 , 113, 266407	7.4	19
225	Insulator-to-metal transition and large thermoelectric effect in La 1⊠ Sr x MnAsO. <i>Europhysics Letters</i> , 2012 , 98, 17009	1.6	19
224	Growth of highly-oriented CaCu3Ti4O12 thin films on SrTiO3 (1 0 0) substrates by a chemical solution route. <i>Applied Surface Science</i> , 2006 , 253, 2268-2271	6.7	19
223	Preparation of CaCu3Ti4O12 thin films by chemical solution deposition. <i>Journal of Materials Science</i> , 2004 , 39, 3523-3524	4.3	19
222	Hole distribution and Tc suppression in Y1⊠PrxBa2Cu3O7. <i>Physical Review B</i> , 1999 , 59, 3845-3850	3.3	19
221	Zn-impurity effect and interplay of s \square and s++ pairings in iron-based superconductors. <i>Physical Review B</i> , 2012 , 86,	3.3	18
220	Magnetism and crystalline electric field effect in ThCr2Si2-type CeNi2As2. <i>Physical Review B</i> , 2012 , 86,	3.3	18

219	Impedance spectroscopy study on transport properties of N,N?-diphenyl-N,N?-bis(1-naphthyl)-1,1?-biphenyl-4,4?-diamine. <i>Physica B: Condensed Matter</i> , 2005 , 362, 35-40	2.8	18
218	Peculiar properties of -chain-based superconductors. <i>Philosophical Magazine</i> , 2017 , 97, 591-611	1.6	17
217	Superconductivity at 35 K by self doping in RbGdFeAsO. <i>Journal of Physics Condensed Matter</i> , 2017 , 29, 11LT01	1.8	17
216	Superconductivity enhanced by Se doping in Eu 3 Bi 2 (S,Se) 4 F 4. Europhysics Letters, 2015, 111, 27002	1.6	17
215	Penetration depth measurements of K2Cr3As3 and Rb2Cr3As3. <i>Journal of Magnetism and Magnetic Materials</i> , 2016 , 400, 84-87	2.8	17
214	High-T superconductivity in undoped ThFeAsN. <i>Nature Communications</i> , 2017 , 8, 156	17.4	17
213	Coexistence of ferromagnetism and superconductivity in iron based pnictides: a time resolved magnetooptical study. <i>Scientific Reports</i> , 2015 , 5, 7754	4.9	17
212	Anomalous critical fields and the absence of Meissner state in Eu(Fe0.88Ir0.12)2As2crystals. <i>New Journal of Physics</i> , 2013 , 15, 113002	2.9	17
211	The suppression of superconductivity in the Gd1\(\text{IPrxBa2}\(\text{ISryCu3O7}\) System. <i>Physica C:</i> Superconductivity and Its Applications, 1995 , 248, 92-96	1.3	17
210	Absence of the stripe antiferromagnetic order in the new 30 K superconductor ThFeAsN. <i>Journal of Alloys and Compounds</i> , 2017 , 695, 1128-1136	5.7	16
209	Misbauer spectroscopy measurements on the 35.5 K superconductor Rb1EuFe4As4. <i>Physical Review B</i> , 2018 , 97,	3.3	16
208	Cs133 and As75 NMR investigation of the normal metallic state of quasi-one-dimensional Cs2Cr3As3. <i>Physical Review B</i> , 2016 , 93,	3.3	16
207	Physical properties and electronic structure of Sr2Cr3As2O2 containing CrO2 and Cr2As2 square-planar lattices. <i>Physical Review B</i> , 2015 , 92,	3.3	16
206	Scanning tunneling microscopy study of superconductivity, magnetic vortices, and possible charge-density wave in Ta4Pd3Te16. <i>Physical Review B</i> , 2015 , 91,	3.3	16
205	Interplay of superconductivity and Ce 4f magnetism in CeFeAs1⊠PxO0.95F0.05. <i>Physical Review B</i> , 2011 , 83,	3.3	16
204	Enhanced thermopower in an intergrowth cobalt oxide Li0.48Na0.35CoO2. <i>Journal of Physics Condensed Matter</i> , 2006 , 18, L379-L384	1.8	16
203	Charge Segregation in the Metal-Insulator Transition of the Thiospinel Cu1-xZnxIr2S4. <i>Journal of the Physical Society of Japan</i> , 2001 , 70, 9-12	1.5	16
202	Pr?O chemical bonding effect and Pr valence state in PrBa2Cu3O7: A comprehensive structural-correlation study. <i>Journal of Physics and Chemistry of Solids</i> , 1995 , 56, 981-988	3.9	16

(2010-2017)

201	Visualization of the magnetic flux structure in phosphorus-doped EuFe2As2 single crystals. <i>JETP Letters</i> , 2017 , 105, 98-102	1.2	15	
200	Correlation between superconductivity and bond angle of CrAs chain in non-centrosymmetric compounds ACrAs (A = K, Rb). <i>Scientific Reports</i> , 2016 , 6, 37878	4.9	15	
199	Unique interplay between superconducting and ferromagnetic orders in EuRbFe4As4. <i>Physical Review B</i> , 2018 , 98,	3.3	15	
198	Quasi-linear magnetoresistance and the violation of KohlerB rule in the quasi-one-dimensional TaBdIIeBuperconductor. <i>Journal of Physics Condensed Matter</i> , 2015 , 27, 335701	1.8	14	
197	Superconductivity in hexagonal Nb-Mo-Ru-Rh-Pd high-entropy alloys. <i>Scripta Materialia</i> , 2020 , 182, 109	-1516	14	
196	Unique [MnBi] Nanowires in KMnBi: A Quasi-One-Dimensional Antiferromagnetic Metal. <i>Journal of the American Chemical Society</i> , 2018 , 140, 4391-4400	16.4	14	
195	Nodal superconductivity and superconducting dome in the layered superconductor Ta4Pd3Te16. <i>Physical Review B</i> , 2015 , 92,	3.3	14	
194	CeNiAsO: an antiferromagnetic dense Kondo lattice. <i>Journal of Physics Condensed Matter</i> , 2011 , 23, 175	57,08	14	
193	Anisotropic paramagnetism of monoclinic Nd2Ti2O7 single crystals. <i>Journal of Physics Condensed Matter</i> , 2011 , 23, 216005	1.8	14	
192	Revival of superconductivity in Y0.4Pr0.6Ba2Cu3O7- deltaby the isovalent substitution of Sr. <i>Journal of Physics Condensed Matter</i> , 1995 , 7, L287-L292	1.8	14	
191	Multigap nodeless superconductivity in CsCa2Fe4As4F2 probed by heat transport. <i>Physical Review B</i> , 2019 , 99,	3.3	14	
190	Band-selective clean-limit and dirty-limit superconductivity with nodeless gaps in the bilayer iron-based superconductor CsCa2Fe4As4F2. <i>Physical Review B</i> , 2019 , 99,	3.3	13	
189	Effect of impurity scattering on superconductivity in K2Cr3As3. <i>Science China: Physics, Mechanics and Astronomy</i> , 2016 , 59, 1	3.6	13	
188	Synthesis of Cobalt Oxyhydrate Superconductor through a Disproportionation Reaction Route. <i>Chemistry of Materials</i> , 2005 , 17, 1501-1504	9.6	13	
187	Microwave analysis of the interplay between magnetism and superconductivity in EuFe2(As1⊠Px)2 single crystals. <i>Physical Review Research</i> , 2019 , 1,	3.9	13	
186	Neutron powder diffraction study on the iron-based nitride superconductor ThFeAsN. <i>Europhysics Letters</i> , 2017 , 117, 57005	1.6	12	
185	Evidence of spontaneous vortex ground state in an iron-based ferromagnetic superconductor. <i>Npj Quantum Materials</i> , 2017 , 2,	5	12	
184	Transport, magnetic, and 57Fe and 155Gd MBsbauer spectroscopic properties of GdFeAsO and the slightly overdoped superconductor Gd(0.84)Th(0.16)FeAsO. <i>Journal of Physics Condensed Matter</i> , 2010 , 22, 145701	1.8	12	

183	Polymorphism and superconductivity in the V-Nb-Mo-Al-Ga high-entropy alloys. <i>Science China Materials</i> , 2020 , 63, 823-831	7.1	12
182	Pressure-induced enhancement of superconductivity and quantum criticality in the 12442-type hybrid-structure superconductor KCa2Fe4As4F2. <i>Physical Review B</i> , 2019 , 99,	3.3	12
181	Coexistence of superconductivity and complex 4 f magnetism in Eu0.5Ce0.5BiS2F. <i>Journal of Physics Condensed Matter</i> , 2015 , 27, 385701	1.8	11
180	Electronic nematicity revealed by torque magnetometry in EuFe2(As1\(\text{NPx}\)2. <i>Physical Review B</i> , 2014 , 89,	3.3	11
179	Structural and superconducting properties of LaFeAs1 Sb x O1 Fy. Science China: Physics, Mechanics and Astronomy, 2010 , 53, 1225-1229	3.6	11
178	Metal-to-metal transition and heavy-electron state in Nd4Ni3O10□ <i>Physical Review B</i> , 2020 , 101,	3.3	10
177	Charge fluctuations and nodeless superconductivity in quasi-one-dimensional Ta4Pd3Te16 revealed by Te125-NMR and Ta181-NQR. <i>Physical Review B</i> , 2016 , 94,	3.3	10
176	Spectrally resolved femtosecond reflectivity relaxation dynamics in undoped spin-density wave 122-structure iron-based pnictides. <i>Physical Review B</i> , 2014 , 89,	3.3	10
175	Coexistence of magnetic fluctuations and superconductivity in SmFe0.95Co0.05AsO seen in 57Fe MBsbauer spectroscopy. <i>Physical Review B</i> , 2011 , 84,	3.3	10
174	Superfluid density of Ba(Fe1-xMx)2As2 from optical experiments. <i>Physica C: Superconductivity and Its Applications</i> , 2010 , 470, S399-S400	1.3	10
173	Superconductivity in Ta3Pd3Te14 with quasi-one-dimensional PdTe2 chains. <i>Scientific Reports</i> , 2016 , 6, 21628	4.9	10
172	Lifshitz transition and nontrivial H-doping effect in the Cr-based superconductor KCr3As3Hx. <i>Physical Review B</i> , 2019 , 100,	3.3	10
171	Multigap Superconductivity in RbCa2Fe4As4F2 Investigated Using BR Measurements. <i>Journal of the Physical Society of Japan</i> , 2018 , 87, 124705	1.5	10
170	Enhanced superconductivity in ThNiAsN. <i>Europhysics Letters</i> , 2017 , 118, 57004	1.6	9
169	Angle-resolved vortex glass transition and pinning properties in BaFe1.8Co0.2As2 single crystals. Journal of Applied Physics, 2015 , 117, 173901	2.5	9
168	Role of valence changes and nanoscale atomic displacements in BiS-based superconductors. <i>Scientific Reports</i> , 2016 , 6, 37394	4.9	9
167	A possible family of Ni-based high temperature superconductors. <i>Science Bulletin</i> , 2018 , 63, 957-963	10.6	9
166	Distinct quasiparticle relaxation dynamics in an electron-doped superconductor, BaFe1.9Ni0.1As2. <i>New Journal of Physics</i> , 2010 , 12, 123003	2.9	9

165	Charge compensation effect in Pr1 SryFe1 CoxAsO codoped with Sr and Co. <i>Physical Review B</i> , 2011 , 83,	3.3	9
164	Superconductivity in phosphorus-doped SmFeAs1-xPxO. <i>Physica C: Superconductivity and Its Applications</i> , 2010 , 470, S493-S494	1.3	9
163	A quantitative understanding for the Tc suppression in Y1\(\mathbb{R}\)PrxBa2Cu3O7. <i>Physica C:</i> Superconductivity and Its Applications, 1998 , 301, 294-300	1.3	9
162	Variation of the metal-insulator transition and formation of bipolarons by Cd doping in the thiospinel system Cu1⊠CdxIr2S4. <i>Physical Review B</i> , 2004 , 69,	3.3	9
161	Metallhsulator transition in Cu1⊠ZnxIr2S4 system. <i>Physica B: Condensed Matter</i> , 2000 , 281-282, 636-637	2.8	9
160	Effect of Sr doping in layered Eu3Bi2S4F4superconductor. <i>Superconductor Science and Technology</i> , 2017 , 30, 015005	3.1	8
159	Magnetism of the 35 K superconductor CsEuFeAs. <i>Journal of Physics Condensed Matter</i> , 2018 , 30, 15580	3 1.8	8
158	Peculiar phase diagram with isolated superconducting regions in ThFeAsN O. <i>Journal of Physics Condensed Matter</i> , 2018 , 30, 255602	1.8	8
157	Optical properties of superconducting EuFe2 (As1-xPx)2. <i>Physica Status Solidi (B): Basic Research</i> , 2017 , 254, 1600148	1.3	8
156	Sr 0.9 K 0.1 Zn 1.8 Mn 0.2 As 2 : A ferromagnetic semiconductor with colossal magnetoresistance. <i>Europhysics Letters</i> , 2014 , 107, 67007	1.6	8
155	Coexistence of superconductivity and density wave in Ba2Ti2Fe2As4O: An optical spectroscopy study. <i>Physical Review B</i> , 2014 , 90,	3.3	8
154	Evolution of superconductivity and ferromagnetism in Eu(Fe1\(\mathbb{R}\)ux)2As2. <i>Journal of Physics:</i> Conference Series, 2012 , 400, 022038	0.3	8
153	Magnetic phase diagram in the Co-rich side of the LCo1 \square FexAsO (L = La, Sm) system. <i>Physical Review B</i> , 2012 , 86,	3.3	8
152	Magnetic polarization of Ir in underdoped nonsuperconducting Eu(Fe0.94Ir0.06)2As2. <i>Physical Review B</i> , 2016 , 93,	3.3	7
151	Superconductivity in a misfit layered compound (SnSe)(NbSe). <i>Journal of Physics Condensed Matter</i> , 2018 , 30, 355701	1.8	7
150	Effect of Zn doping in under- and over-doped LaFe 1lk Co x AsO system. <i>Europhysics Letters</i> , 2013 , 102, 37003	1.6	7
149	Raman scattering investigation of superconducting Ba2Ti2Fe2As4O. <i>Physical Review B</i> , 2014 , 89,	3.3	7
148	Structural control of d-f interaction in the CeFe 1 Ru x AsO system. <i>Europhysics Letters</i> , 2012 , 99, 57009	91.6	7

147	A comparative study on the thermoelectric effect of parent oxypnictides LaTAsO (T = Fe, Ni). Journal of Physics Condensed Matter, 2010 , 22, 072201	1.8	7
146	Growth and characterization of Bi2Se3 crystals by chemical vapor transport. <i>AIP Advances</i> , 2012 , 2, 022	1485	7
145	Coexistence of superconductivity and ferromagnetism in iron pnictides. <i>Journal of Physics:</i> Conference Series, 2012 , 391, 012123	0.3	7
144	Proton incorporations and superconductivity in a cobalt oxyhydrate. <i>Solid State Communications</i> , 2004 , 131, 125-128	1.6	7
143	Superconductivity with peculiar upper critical fields in quasi-one-dimensional Cr-based pnictides. <i>Chinese Physics B</i> , 2018 , 27, 107401	1.2	7
142	Structural evolution and superconductivity tuned by valence electron concentration in the Nb-Mo-Re-Ru-Rh high-entropy alloys. <i>Journal of Materials Science and Technology</i> , 2021 , 85, 11-17	9.1	7
141	Peculiar properties of the ferromagnetic superconductor Eu(Fe0.91Rh0.09)2As2. <i>Superconductor Science and Technology</i> , 2017 , 30, 025012	3.1	6
140	BaTh2Fe4As4(N0.7O0.3)2: An iron-based superconductor stabilized by inter-block-layer charge transfer. <i>Science China Materials</i> , 2019 , 62, 1357-1362	7.1	6
139	Multiband superconductivity in Ta4Pd3Te16 with anisotropic gap structure. <i>Journal of Physics Condensed Matter</i> , 2015 , 27, 325701	1.8	6
138	ThMnPnN (Pn = P, As): Synthesis, Structure, and Chemical Pressure Effects. <i>Inorganic Chemistry</i> , 2020 , 59, 2937-2944	5.1	6
137	Pressure effects on the electronic properties of the undoped superconductor ThFeAsN. <i>Physical Review B</i> , 2018 , 97,	3.3	6
136	Weak metal-metal transition in the vanadium oxytelluride Rb1№2Te2O. <i>Physical Review B</i> , 2018 , 97,	3.3	6
135	EuRu2As2: A New Ferromagnetic Metal with Collapsed ThCr2Si2-Type Structure. <i>Journal of Superconductivity and Novel Magnetism</i> , 2012 , 25, 441-445	1.5	6
134	Growth and characterizations of BaTiFeAsO single crystals. <i>Science and Technology of Advanced Materials</i> , 2013 , 14, 055008	7.1	6
133	Suppression of T by Zn impurity in the electron-type LaFe0.925ICo0.075Zn AsO system. <i>Journal of Physics and Chemistry of Solids</i> , 2011 , 72, 410-413	3.9	6
132	Ni doping effect and phase diagram of Ni-doped BaFe2-xNixAs2. <i>Physica C: Superconductivity and Its Applications</i> , 2010 , 470, S447-S448	1.3	6
131	Structural properties and superconductivity in the Y1\(\mathbb{R}\)PrxBaSrCu3O7\(\mathbb{I}\)system. <i>Physics Letters, Section A: General, Atomic and Solid State Physics,</i> 1994 , 196, 263-266	2.3	6
130	Effects of proton irradiation on the magnetic superconductor EuFe2(As1 Ik P x)2. <i>Superconductor Science and Technology</i> , 2020 , 33, 094011	3.1	6

(2014-2018)

129	Magnetism and superconductivity in Eu(Fe1 \blacksquare Nix)As2 (x = 0, 0.04). Science China: Physics, Mechanics and Astronomy, 2018 , 61, 1	3.6	6
128	Superconductivity in SnSb with a natural superlattice structure. <i>Superconductor Science and Technology</i> , 2018 , 31, 125011	3.1	6
127	Direct Observation of Vortex and Meissner Domains in a Ferromagnetic Superconductor EuFe2(As0.79P0.21)2 Single Crystal. <i>JETP Letters</i> , 2019 , 109, 521-524	1.2	5
126	NMR and NQR studies on transition-metal arsenide superconductors LaRu2As2, KCa2Fe4As4F2, and A 2Cr3As3. <i>Chinese Physics B</i> , 2020 , 29, 067402	1.2	5
125	Formation and Superconductivity of Single-Phase High-Entropy Alloys with a Tetragonal Structure. <i>ACS Applied Electronic Materials</i> , 2020 , 2, 1130-1137	4	5
124	Absence of magnetism in the superconductor Ba2Ti2Fe2As4O: Insights from inelastic neutron scattering measurements and ab initio calculations of phonon spectra. <i>Physical Review B</i> , 2017 , 95,	3.3	5
123	MBsbauer studies of spin density wave-superconducting Fe-As systems. <i>Journal of Physics:</i> Conference Series, 2010 , 217, 012121	0.3	5
122	Superconductivity around quantum critical point in P-doped iron arsenides. <i>Physica C:</i> Superconductivity and Its Applications, 2010 , 470, S458-S459	1.3	5
121	Relationships between the structural properties and the superconductivity in Y0:4Pr0:6Ba2-xSrxCu3O7- $\mathbb{I}(x = 0;1:0)$. Zeitschrift F \mathbb{I} Physik B-Condensed Matter, 1997 , 103, 29-32		5
120	Tuning Co Valence State in Cobalt Oxyhydrate Superconductor by Postreduction. <i>Chemistry of Materials</i> , 2007 , 19, 4432-4435	9.6	5
119	Pressure-induced superconductor-to-semiconductor transition in Cu1 ZnxIr2S4. <i>Physics Letters, Section A: General, Atomic and Solid State Physics,</i> 2003 , 307, 166-171	2.3	5
118	Suppression of the metal-insulator transition in the spinel Cu1IInxIr2S4 system. <i>Physical Review B</i> , 2005 , 72,	3.3	5
117	Superconductivity in the thiospinel, Cu0.7Zn0.3Ir2S4 studied by Cu-NMR. <i>Physica C:</i> Superconductivity and Its Applications, 2000 , 341-348, 737-738	1.3	5
116	Synthesis and characterization of a new Ba based Bi-2222 cuprate Bi2Ba2Nd1.6Ce0.4Cu2O10+ Physica C: Superconductivity and Its Applications, 1995, 243, 113-116	1.3	5
115	Observation of a neutron spin resonance in the bilayered superconductor CsCaFeAsF. <i>Journal of Physics Condensed Matter</i> , 2020 , 32, 435603	1.8	5
114	Synthesis, crystal structure and physical properties of a new oxypnictide Ba2Ti2Cr2As4O containing [Ti2As2O]2[and [Cr2As2]2[layers. <i>Journal of Alloys and Compounds</i> , 2017 , 694, 1149-1153	5.7	4
113	Magnetic properties of EuFeAs2 and the 14 K superconductor EuFe0.97Ni0.03As2. <i>Journal of Magnetism and Magnetic Materials</i> , 2020 , 503, 166603	2.8	4
112	Kramers non-magnetic superconductivity in LnNiAsO superconductors. <i>Journal of Physics Condensed Matter</i> , 2014 , 26, 425701	1.8	4

111	Magnetic properties of EuCuAs single crystal. <i>Journal of Alloys and Compounds</i> , 2014 , 602, 26-31	5.7	4
110	Superconductivity in Sr and Co co-doped PrFeAsO. <i>Journal of Physics and Chemistry of Solids</i> , 2011 , 72, 434-437	3.9	4
109	THORIUM-DOPING INDUCED HIGH-Tc SUPERCONDUCTIVITY IN Dy1-xThxFeAsO. <i>International Journal of Modern Physics B</i> , 2012 , 26, 1250207	1.1	4
108	High-resolution ARPES study of electron-doped Fe-based superconductor BaFe1.85Co0.15As2. <i>Physica C: Superconductivity and Its Applications</i> , 2010 , 470, S440-S442	1.3	4
107	Extended phase diagram in LaFe1Ni AsO. <i>Physica C: Superconductivity and Its Applications</i> , 2010 , 470, S456-S457	1.3	4
106	Growth and characterization of Sr-rich Pr(Sr, Ba)2Cu3Oy single crystals. <i>Journal of Crystal Growth</i> , 1998 , 183, 159-162	1.6	4
105	Yttrium substitutional effects on geometrically frustrated system TbNiAl. <i>Journal of Alloys and Compounds</i> , 2006 , 408-412, 58-61	5.7	4
104	Superconductivity induced by aging and annealing in K1©r3As3Hx. <i>Physical Review Materials</i> , 2019 , 3,	3.2	4
103	Two superconducting domes separated by a possible Lifshitz transition in LaFeAs1\(\text{NPxO}\). <i>Journal of Applied Physics</i> , 2016 , 119, 083903	2.5	4
102	Superconductivity and high hardness in metal-rich carbides MoRe2C and WRe2C. <i>Journal of Alloys and Compounds</i> , 2021 , 856, 157314	5.7	4
101	Neutron diffraction study on magnetic structures and transitions in Sr2Cr3As2O2. <i>Physical Review B</i> , 2018 , 98,	3.3	4
100	Pd site doping effect on superconductivity in Nb 2 Pd 0.76 S 5. Europhysics Letters, 2016 , 113, 37006	1.6	3
99	MBsbauer spectroscopy study of magnetic fluctuations in superconducting RbGd2Fe4As4O2. <i>Physica C: Superconductivity and Its Applications</i> , 2018 , 548, 21-26	1.3	3
98	Universal critical behavior in the ferromagnetic superconductor Eu(Fe0.75Ru0.25)2As2. <i>Physical Review B</i> , 2019 , 100,	3.3	3
97	Reentrant phases in electron-doped EuFe2As2: Spin glass and superconductivity. <i>Physical Review B</i> , 2017 , 95,	3.3	3
96	Raman scattering investigation of the quasi-one-dimensional superconductor Ta P d I IeI <i>Journal of Physics Condensed Matter</i> , 2015 , 27, 495701	1.8	3
95	Variable range hopping conductivity and spin glass behavior in spin-ladder Ba0.6K0.4Fe2Se3 single crystals. <i>Journal of Physics Condensed Matter</i> , 2014 , 26, 026002	1.8	3
94	Quasiparticle relaxation across the multiple superconducting gaps in the electron-doped BaFe1.85Co0.15As2. <i>Journal of Applied Physics</i> , 2012 , 111, 07E134	2.5	3

(2009-2010)

93	Magnetic properties of cobalt-based oxypnictide SmCoAsO. <i>Science China: Physics, Mechanics and Astronomy</i> , 2010 , 53, 1194-1198	3.6	3
92	X-ray Rietveld analysis of Y0.4Pr0.6BaSrCu3O7-land Y0.4Pr0.6Ba2Cu3O7-ll <i>Physica C:</i> Superconductivity and Its Applications, 1997 , 282-287, 759-760	1.3	3
91	Superconductivity in Zn-doped Culr2S4. <i>Physica C: Superconductivity and Its Applications</i> , 2000 , 341-348, 735-736	1.3	3
90	Preparation and Characterization of Bi2Sr2CaCu2O8+x Thick Films on Ag Substrate by a Sol-gel Process. <i>Journal of Materials Science Letters</i> , 1999 , 18, 91-92		3
89	Topological Dirac states in a layered telluride TaPdTe5 with quasi-one-dimensional PdTe2 chains. <i>Physical Review B</i> , 2020 , 102,	3.3	3
88	Normal-state and superconducting properties of the cubic Laves phase ThIr2. <i>Intermetallics</i> , 2021 , 128, 106993	3.5	3
87	The As-surface of an iron-based superconductor CaKFe4As4. <i>Nano Research</i> ,1	10	3
86	VTeO: A Two-Dimensional van der Waals Correlated Metal. <i>Inorganic Chemistry</i> , 2018 , 57, 14617-14623	5.1	3
85	Pressure effects on superconductivity and structural parameters of ThFeAsN. <i>Europhysics Letters</i> , 2018 , 123, 67004	1.6	3
84	Anisotropic lattice expansion and enhancement of superconductivity induced by interstitial carbon doping in Rhenium. <i>Journal of Alloys and Compounds</i> , 2021 , 878, 160290	5.7	3
83	Unveiling pairing mechanism in quasi-one-dimensional Cr-based superconductors. <i>Science Bulletin</i> , 2017 , 62, 206-207	10.6	2
82	Type-II superconductivity in W5Si3-type Nb5Sn2Al. <i>Superconductor Science and Technology</i> , 2019 , 32, 045010	3.1	2
81	Superconductivity-induced transverse plasma mode and phonon anomaly in the c-axis response of the bilayer compound RbCa2Fe4As4F2. <i>Physical Review B</i> , 2020 , 101,	3.3	2
80	Superconductivity in ternary borides MReB (M Mathematical Motorial Motorial Motorial Motorial Mathematical Motorial Mathematical Mathematical Motorial Motorial Mathematical Motorial Mathematical Motorial Motorial Motorial Mathematical Motorial M	5.7	2
79	Enhancement of the upper critical field in the cubic Laves-phase superconductor HfV2 by Nb doping. <i>Superconductor Science and Technology</i> , 2019 , 32, 125004	3.1	2
78	Anisotropic upper critical magnetic fields in RbCrAs superconductor. <i>Journal of Physics Condensed Matter</i> , 2017 , 29, 424002	1.8	2
77	Effects of pressure and magnetic field on the reentrant superconductor Eu(Fe0.93Rh0.07)2As2. <i>Physical Review B</i> , 2017 , 95,	3.3	2
76	Magneto-thermopower of parent compound LaFeAsO. Frontiers of Physics in China, 2009, 4, 455-458		2

75	Suppression of superconductivity in the Y1NPrxBa2Cu2.95Li0.05O7-Isystem. <i>Physica C:</i> Superconductivity and Its Applications, 1997 , 282-287, 757-758	1.3	2
74	Photoemission and raman studies of Y1 lkPrxBa2 lySryCu3O7 lbystem. <i>Journal of Physics and Chemistry of Solids</i> , 1997 , 58, 769-775	3.9	2
73	Upper critical field of an aligned Nax(H3O)zCoO2JH2O superconductor from magnetization measurements. <i>Physical Review B</i> , 2007 , 76,	3.3	2
72	Giant dielectric permittivity caused by carrier hopping in a layered cuprate Bi2Ba2Nd1.6Ce0.4Cu2O10+□ <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2004 , 333, 450-456	2.3	2
71	Oxygen Content, Crystal Structure, and Superconductivity in YSr2Cu2.75Mo0.25O7+\(\preceip\)Physica Status Solidi (B): Basic Research, 1995 , 189, 171-175	1.3	2
70	Structural variation and recovery of superconductivity by Ca substitution in Y0.4Pr0.6Bs2\(\mathbb{\text{L}}\) Ca x Cu3. Journal of Superconductivity and Novel Magnetism, 1996 , 9, 89-91		2
69	Superconducting phase diagram and nontrivial band topology of structurally modulated Sn1\(\text{Sbx}. \) Physical Review Materials, 2019 , 3,	3.2	2
68	Self-doped iron-based superconductors with intergrowth structures. Wuli Xuebao/Acta Physica Sinica, 2018 , 67, 207406	0.6	2
67	Crossover from ferromagnetic superconductor to superconducting ferromagnet in P-doped EuFe2(As1\(\mathbb{U}\)Px)2. <i>Physical Review B</i> , 2020 , 102,	3.3	2
66	Type-I superconductivity in noncentrosymmetric NbGe2. <i>Physical Review B</i> , 2020 , 102,	3.3	2
65	Anisotropic transport and de Haas🏿an Alphen oscillations in quasi-one-dimensional TaPtTe5. Physical Review B, 2021 , 103,	2.2	2
	Thysical Neview D, 2021, 105,	3.3	
64	Coexistence of superconductivity and antiferromagentic order in Er2O2Bi with anti-ThCr2Si2 structure. <i>Frontiers of Physics</i> , 2021 , 16, 1	3.7	2
64	Coexistence of superconductivity and antiferromagentic order in Er2O2Bi with anti-ThCr2Si2		2
	Coexistence of superconductivity and antiferromagentic order in Er2O2Bi with anti-ThCr2Si2 structure. <i>Frontiers of Physics</i> , 2021 , 16, 1 Enhanced superconductivity in a misfit compound (PbSe)1.12 (TaSe2)2 with double TaSe2 layers.	3.7	
63	Coexistence of superconductivity and antiferromagentic order in Er2O2Bi with anti-ThCr2Si2 structure. <i>Frontiers of Physics</i> , 2021 , 16, 1 Enhanced superconductivity in a misfit compound (PbSe)1.12 (TaSe2)2 with double TaSe2 layers. <i>Europhysics Letters</i> , 2019 , 128, 17004 Superconductivity and paramagnetism in Cr-containing tetragonal high-entropy alloys. <i>Journal of</i>	3.7	2
63	Coexistence of superconductivity and antiferromagentic order in Er2O2Bi with anti-ThCr2Si2 structure. Frontiers of Physics, 2021, 16, 1 Enhanced superconductivity in a misfit compound (PbSe)1.12 (TaSe2)2 with double TaSe2 layers. Europhysics Letters, 2019, 128, 17004 Superconductivity and paramagnetism in Cr-containing tetragonal high-entropy alloys. Journal of Alloys and Compounds, 2021, 869, 159293 Interstitially carbon-alloyed refractory high-entropy alloys with a body-centered cubic structure.	3.7 1.6 5.7	2
63 62 61	Coexistence of superconductivity and antiferromagentic order in Er2O2Bi with anti-ThCr2Si2 structure. Frontiers of Physics, 2021, 16, 1 Enhanced superconductivity in a misfit compound (PbSe)1.12 (TaSe2)2 with double TaSe2 layers. Europhysics Letters, 2019, 128, 17004 Superconductivity and paramagnetism in Cr-containing tetragonal high-entropy alloys. Journal of Alloys and Compounds, 2021, 869, 159293 Interstitially carbon-alloyed refractory high-entropy alloys with a body-centered cubic structure. Science China Materials,1 Superconducting interstitial MoReRuC medium-entropy alloys with a hexagonal structure. Journal	3.7 1.6 5.7 7.1	2 2 2

57	Normal-state properties of the quasi-one-dimensional superconductor TaPdTe. <i>Journal of Physics Condensed Matter</i> , 2019 , 31, 325601	1.8	1
56	New high-T c iron-selenide superconductor with hydroxide spacer layers. <i>Science China Materials</i> , 2015 , 58, 1-2	7.1	1
55	Superconductivity and magnetism in RbEu(Fe Co)As. Journal of Physics Condensed Matter, 2020, 32, 17	′57 <u>7</u> 081	1
54	Evidence for nodal superconductivity in a layered compound TaPdTe. <i>Journal of Physics Condensed Matter</i> , 2018 , 30, 055701	1.8	1
53	Fluence-dependent femtosecond quasiparticle and Eu2+ spin relaxation dynamics in EuFe2(As,P)2. <i>Physical Review B</i> , 2016 , 94,	3.3	1
52	Competition of 3d/4f orbitals due to competing conductivity and ferromagnetism in Fe/CoAs layers in Eu(Fe0.89Co0.11)2As2. <i>Journal of Applied Physics</i> , 2013 , 113, 013907	2.5	1
51	Interplay of superconductivity and dfl correlation in CeFeAs1NPxO1NFy. <i>Chinese Physics B</i> , 2013 , 22, 087415	1.2	1
50	Chemical pressure effect in CeFeAs1 B O0.95F0.05. <i>Journal of Physics and Chemistry of Solids</i> , 2011 , 72, 430-433	3.9	1
49	Anisotropic intrinsic spin Hall effect in quantum wires. <i>Journal of Physics Condensed Matter</i> , 2011 , 23, 465301	1.8	1
48	Effect of Zn impurity in K0.8Fe(2-Ex)Zn(x)Se2. <i>Journal of Physics Condensed Matter</i> , 2012 , 24, 232202	1.8	1
47	EFFECT OF ZINC IMPURITY AND ITS IMPLICATION TO THE PAIRING SYMMETRY IN IRON-BASED SUPERCONDUCTORS. <i>Modern Physics Letters B</i> , 2012 , 26, 1230012	1.6	1
46	Spin glass instead of superconductivity in Ba(Fe1\(\mathbb{R}\)Crx/2Nix/2)2As2. <i>Journal of Physics: Conference Series</i> , 2012 , 400, 032115	0.3	1
45	Stabilization of cobalt oxyhydrate superconductor. Chemical Communications, 2008, 2155-7	5.8	1
44	Mean-Field Analysis of the Three-Band Hubbard Model. <i>International Journal of Modern Physics B</i> , 1998 , 12, 2831-2845	1.1	1
43	STUDY ON THE SUPERCONDUCTIVITY IN Y1\(\text{IPrxBa2Cu3}\)\(\text{ILiyO7}\)\(\text{IModern Physics Letters B, 1996}\), 10, 1477-1482	1.6	1
42	Superconductivity at 55 K enhanced by silver-doping in Pb0.9AgxSr2La2Cu3.1Oy. <i>Physica C:</i> Superconductivity and Its Applications, 1992 , 197, 42-46	1.3	1
41	Superconductivity and phase separation in electrochemically hydrogenized K1 [1r3As3Hx. <i>Physical Review Materials</i> , 2020 , 4,	3.2	1
40	Structural transformation of MoReRu medium-entropy alloy by carbon addition. <i>Scripta Materialia</i> , 2022 , 210, 114464	5.6	1

39	Doping-Induced Superconductivity in the Topological Semimetal Mo5Si3. <i>Chemistry of Materials</i> , 2020 , 32, 8930-8937	9.6	1
38	MBsbauer study of Ba2Ti2Fe2As4O. <i>Journal of Alloys and Compounds</i> , 2020 , 848, 155706	5.7	1
37	Evidence for the random singlet phase in the honeycomb iridate SrIr2O6. <i>Physical Review B</i> , 2021 , 103,	3.3	1
36	Effect of pressure on the self-hole-doped superconductor RbGdFeAsO. <i>Journal of Physics Condensed Matter</i> , 2019 , 31, 044001	1.8	1
35	Synthesis and superconductivity of new TiNiSi-type equiatomic germanide ThIrGe. <i>Materials Advances</i> ,	3.3	1
34	Spin glass, single-ion and dense Kondo effects in La 1☑ Ce x FePO. <i>Europhysics Letters</i> , 2018 , 123, 57002	1.6	1
33	Block-layer model for intergrowth structures. <i>Nano Research</i> , 2021 , 14, 3629-3635	10	1
32	Superconductivity and strong spin-orbit coupling in a new noncentrosymmetric compound ThIrP. <i>Science China: Physics, Mechanics and Astronomy</i> , 2021 , 64, 1	3.6	1
31	Flux growth, mixed valence state and superconductivity of Sn4Sb3 intermetallic crystals. <i>Intermetallics</i> , 2021 , 137, 107301	3.5	1
30	Effect of Zn doping in hole-type 1111 phase (Pr, Sr)FeAsO. <i>Journal of Physics Condensed Matter</i> , 2011 , 23, 464203	1.8	1
29	Commensurate Stacking Phase Transitions in an Intercalated Transition Metal Dichalcogenide. <i>Advanced Materials</i> , 2021 , e2108550	24	1
28	Electronic structure of Eu(Fe0.79Ru0.21)2As2 studied by angle-resolved photoemission spectroscopy. <i>Journal of Physics Condensed Matter</i> , 2014 , 26, 265701	1.8	O
27	Magnetic structure of the high temperature superconductor Gd1\(\text{MThxFeAsO}.\) Journal of Applied Physics, 2014 , 115, 17D705	2.5	O
26	Investigation of Hole Distribution in Y 1-x Pr x Ba 2 Cu 3 O 7. <i>Chinese Physics Letters</i> , 1998 , 15, 525-527	1.8	O
25	Polymorphism, Structural Transition, and Superconductivity in the Equiatomic Ternary Germanide ThRhGe. <i>Chemistry of Materials</i> , 2022 , 34, 1235-1244	9.6	О
24	Combined Study of Structural, Magnetic and Transport Properties of Eu0.5 Ln 0.5BiS2F Superconductor*. <i>Chinese Physics Letters</i> , 2021 , 38, 047402	1.8	O
23	Superconductivity in ThMo2Si2C with Mo2C square net. <i>Science China: Physics, Mechanics and Astronomy</i> , 2021 , 64, 1	3.6	O
22	Neutron Powder Diffraction Study on the Non-Superconducting Phases of ThFeAsN1 $\[mu]$ O x (x = 0.15, 0.6) Iron Pnictide*. <i>Chinese Physics Letters</i> , 2019 , 36, 107403	1.8	O

21	MBsbauer Study of BaTh2Fe4As4(N0.7O0.3)2. Physica Status Solidi (B): Basic Research, 2021, 258, 21001	2 5.3	O
20	Anisotropic transport in a possible quasi-one-dimensional topological candidate: TaNi2Te3. <i>Tungsten</i> ,1	4.6	O
19	Structural transformation and superconductivity in carbon-added hexagonal high-entropy alloys. <i>Journal of Alloys and Compounds</i> , 2022 , 909, 164700	5.7	O
18	Study of the Rare Earth Effects on the Magnetic Fluctuations in RbLn2Fe4As4O2 (Ln (=) Tb, Dy, and Ho) by M\(\text{B}\)sbauer Spectroscopy. <i>Journal of Superconductivity and Novel Magnetism</i> , 2019 , 32, 361-365	1.5	
17	Photoexcited Eu2+ spin dynamics in EuFe2As2. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2014 , 116, 832-835	0.7	
16	Effect of nonmagnetic zinc impurity on Tc in LaFe1⊠ZnxPO0.94F0.06 superconductors. <i>AIP Advances</i> , 2012 , 2, 041406	1.5	
15	Quantum Criticality and Superconductivity in SmFe1\(\mathbb{R}\)CoxAsO. <i>Journal of Physics: Conference Series</i> , 2012 , 400, 022047	0.3	
14	Phase diagram of the SmCo1NFexAsO system. <i>Journal of Physics: Conference Series</i> , 2012 , 400, 022062	0.3	
13	Experimental evidence of coupling interaction between charge ordering and spin ordering. <i>Science China: Physics, Mechanics and Astronomy</i> , 2010 , 53, 1255-1260	3.6	
12	Angle-resolved photoemission study of heavily electron-doped BaFe2©o As2. <i>Physica C:</i> Superconductivity and Its Applications, 2010 , 470, S394-S396	1.3	
11	Transport and Electronic Properties of Y0.4Pr0.6Ba2-ySryCu3O7-[y=0,1.0). <i>International Journal of Modern Physics B</i> , 1997 , 11, 3455-3460	1.1	
10	Origin of the ionic size effect on Pr-induced Tc suppression in R1\(\mathbb{R}\)PrxBa2\(\mathbb{Q}\)SryCu3O7-\(\mathbb{P}\)Physica C: Superconductivity and Its Applications, 1997 , 282-287, 761-762	1.3	
9	Observation of anisotropy of in-plane resistivities in PrBa2Cu3O7 single crystals. <i>Physica C:</i> Superconductivity and Its Applications, 1997 , 282-287, 1177-1178	1.3	
8	Superexchange in the cuprates: a mean-field study. <i>Physica C: Superconductivity and Its Applications</i> , 1998 , 307, 137-144	1.3	
7	Synthesis of NaxAy(H3O)zCoO2? wH2O (A=Mg, Ca, Sr and Ba) superconductors via ion exchange. <i>Solid State Communications</i> , 2007 , 143, 136-139	1.6	
6	THERMAL STABILITY AND TRANSPORT PROPERTIES OF Na0.495CoO2 SINGLE CRYSTALS. International Journal of Modern Physics B, 2006 , 20, 3365-3372	1.1	
5	Magnetic properties of Pr1.1Sr1.3Ba0.6Cu3O7 single crystals. <i>Physica C: Superconductivity and Its Applications</i> , 2003 , 390, 277-280	1.3	
4	Pressure effect on the superconductivity and the metal@nsulator transition in Cu1 kZnxIr2S4. <i>Journal of Physics Condensed Matter</i> , 2002 , 14, 10723-10726	1.8	

3	4 O. <i>Chinese Physics Letters</i> , 2018 , 35, 057401	1.8
2	Synthesis, Structure and Properties of Layered Phosphide Nitrides AkTh2Mn4P4N2 (Ak = Rb, Cs) Chinese Journal of Chemistry, 2021 , 39, 2873-2880	4.9
1	Chemical pressure effects in ZrCuSiAs-type manganese-based compound ThMnSbN. <i>Wuli Xuebao/Acta Physica Sinica</i> , 2022 , 71, 046103	0.6