

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7022093/publications.pdf Version: 2024-02-01

ΟΙΝΟΧΙΝ

#	Article	lF	CITATIONS
1	Mineral dust and NOx promote the conversion of SO2 to sulfate in heavy pollution days. Scientific Reports, 2014, 4, 4172.	1.6	426
2	Characteristics and formation mechanism of continuous hazes in China: a case study during the autumn of 2014 in the North China Plain. Atmospheric Chemistry and Physics, 2015, 15, 8165-8178.	1.9	192
3	Synergistic reaction between SO2 and NO2 on mineraloxides: a potential formation pathway of sulfate aerosol. Physical Chemistry Chemical Physics, 2012, 14, 1668-1676.	1.3	143
4	Degradation kinetics of levoglucosan initiated by hydroxyl radical under different environmental conditions. Atmospheric Environment, 2014, 91, 32-39.	1.9	129
5	Significant concurrent decrease in PM2.5 and NO2 concentrations in China during COVID-19 epidemic. Journal of Environmental Sciences, 2021, 99, 346-353.	3.2	126
6	Air Pollutant Correlations in China: Secondary Air Pollutant Responses to NO _{<i>x</i>} and SO ₂ Control. Environmental Science and Technology Letters, 2020, 7, 695-700.	3.9	113
7	Synergistic Effect between NO ₂ and SO ₂ in Their Adsorption and Reaction on γ-Alumina. Journal of Physical Chemistry A, 2008, 112, 6630-6635.	1.1	110
8	Structural and hygroscopic changes of soot during heterogeneous reaction with O3. Physical Chemistry Chemical Physics, 2010, 12, 10896.	1.3	86
9	A review of experimental techniques for aerosol hygroscopicity studies. Atmospheric Chemistry and Physics, 2019, 19, 12631-12686.	1.9	80
10	SO ₂ Initiates the Efficient Conversion of NO ₂ to HONO on MgO Surface. Environmental Science & Technology, 2017, 51, 3767-3775.	4.6	76
11	Heterogeneous reaction of acetic acid on MgO, α-Al2O3, and CaCO3 and the effect on the hygroscopic behaviour of these particles. Physical Chemistry Chemical Physics, 2012, 14, 8403.	1.3	71
12	Heterogeneous reaction of SO2 with soot: The roles of relative humidity and surface composition of soot in surface sulfate formation. Atmospheric Environment, 2017, 152, 465-476.	1.9	68
13	Synergistic formation of sulfate and ammonium resulting from reaction between SO ₂ and NH ₃ on typical mineral dust. Physical Chemistry Chemical Physics, 2016, 18, 956-964.	1.3	66
14	In situ DRIFTS study of hygroscopic behavior of mineral aerosol. Journal of Environmental Sciences, 2010, 22, 555-560.	3.2	64
15	Heterogeneous Reaction of SO2 on Manganese Oxides: the Effect of Crystal Structure and Relative Humidity. Scientific Reports, 2017, 7, 4550.	1.6	56
16	The Synergistic Role of Sulfuric Acid, Bases, and Oxidized Organics Governing Newâ€Particle Formation in Beijing. Geophysical Research Letters, 2021, 48, e2020GL091944.	1.5	53
17	Significant source of secondary aerosol: formation from gasoline evaporative emissions in the presence of SO ₂ and NH ₃ . Atmospheric Chemistry and Physics, 2019, 19, 8063-8081.	1.9	52
18	Structure–activity relationship of surface hydroxyl groups during NO ₂ adsorption and transformation on TiO ₂ nanoparticles. Environmental Science: Nano, 2017, 4, 2388-2394.	2.2	49

Qingxin

#	Article	IF	CITATIONS
19	Enhancement of aqueous sulfate formation by the coexistence of NO2/NH3 under high ionic strengths in aerosol water. Environmental Pollution, 2019, 252, 236-244.	3.7	49
20	Novel CeMnaOx catalyst for highly efficient catalytic decomposition of ozone. Applied Catalysis B: Environmental, 2020, 264, 118498.	10.8	47
21	Hygroscopic properties of oxalic acid and atmospherically relevant oxalates. Atmospheric Environment, 2013, 69, 281-288.	1.9	46
22	A case study of Asian dust storm particles: Chemical composition, reactivity to SO2 and hygroscopic properties. Journal of Environmental Sciences, 2012, 24, 62-71.	3.2	43
23	Comparative study of the effect of water on the heterogeneous reactions of carbonyl sulfide on the surface of α-Al ₂ O ₃ and MgO. Atmospheric Chemistry and Physics, 2009, 9, 6273-6286.	1.9	36
24	Review of heterogeneous photochemical reactions of NOy on aerosol — A possible daytime source of nitrous acid (HONO) in the atmosphere. Journal of Environmental Sciences, 2013, 25, 326-334.	3.2	36
25	Effect of mineral dust on secondary organic aerosol yield and aerosol size in α-pinene/NOx photo-oxidation. Atmospheric Environment, 2013, 77, 781-789.	1.9	35
26	Water adsorption and hygroscopic growth of six anemophilous pollen species: the effect of temperature. Atmospheric Chemistry and Physics, 2019, 19, 2247-2258.	1.9	35
27	Heterogeneous Uptake of Amines by Citric Acid and Humic Acid. Environmental Science & Technology, 2012, 46, 11112-11118.	4.6	34
28	Synergistic effect in the humidifying process of atmospheric relevant calcium nitrate, calcite and oxalic acid mixtures. Atmospheric Environment, 2012, 50, 97-102.	1.9	34
29	Effect of relative humidity on SOA formation from aromatic hydrocarbons: Implications from the evolution of gas- and particle-phase species. Science of the Total Environment, 2021, 773, 145015.	3.9	34
30	Mesoporous transition alumina with uniform pore structure synthesized by alumisol spray pyrolysis. Chemical Engineering Journal, 2010, 163, 133-142.	6.6	33
31	Temperature Dependence of the Heterogeneous Reaction of Carbonyl Sulfide on Magnesium Oxide. Journal of Physical Chemistry A, 2008, 112, 2820-2826.	1.1	32
32	The Utilization of Physisorption Analyzer for Studying the Hygroscopic Properties of Atmospheric Relevant Particles. Journal of Physical Chemistry A, 2010, 114, 4232-4237.	1.1	30
33	Differences in the reactivity of ammonium salts with methylamine. Atmospheric Chemistry and Physics, 2012, 12, 4855-4865.	1.9	30
34	The effect of water on the heterogeneous reactions of SO ₂ and NH ₃ on the surfaces of α-Fe ₂ O ₃ and γ-Al ₂ O ₃ . Environmental Science: Nano, 2019, 6, 2749-2758.	2.2	30
35	Differences of the oxidation process and secondary organic aerosol formation at low and high precursor concentrations. Journal of Environmental Sciences, 2019, 79, 256-263.	3.2	29
36	Laboratory Study on the Hygroscopic Behavior of External and Internal C ₂ –C ₄ Dicarboxylic Acid–NaCl Mixtures. Environmental Science & Technology, 2013, 47, 130827153621004.	4.6	27

Qingxin

#	Article	IF	CITATIONS
37	Contrary Role of H ₂ O and O ₂ in the Kinetics of Heterogeneous Photochemical Reactions of SO ₂ on TiO ₂ . Journal of Physical Chemistry A, 2019, 123, 1311-1318.	1.1	26
38	Secondary Organic Aerosol Formation Potential from Ambient Air in Beijing: Effects of Atmospheric Oxidation Capacity at Different Pollution Levels. Environmental Science & Technology, 2021, 55, 4565-4572.	4.6	26
39	Influence of photochemical loss of volatile organic compounds on understanding ozone formation mechanism. Atmospheric Chemistry and Physics, 2022, 22, 4841-4851.	1.9	26
40	Heterogeneous and multiphase formation pathways of gypsum in the atmosphere. Physical Chemistry Chemical Physics, 2013, 15, 19196.	1.3	25
41	Role of NH ₃ in the Heterogeneous Formation of Secondary Inorganic Aerosols on Mineral Oxides. Journal of Physical Chemistry A, 2018, 122, 6311-6320.	1.1	25
42	Comprehensive Study about the Photolysis of Nitrates on Mineral Oxides. Environmental Science & Technology, 2021, 55, 8604-8612.	4.6	25
43	Understanding the knowledge gaps between air pollution controls and health impacts including pathogen epidemic. Environmental Research, 2020, 189, 109949.	3.7	23
44	Heterogeneous Kinetics of <i>cis</i> -Pinonic Acid with Hydroxyl Radical under Different Environmental Conditions. Journal of Physical Chemistry A, 2015, 119, 6583-6593.	1,1	22
45	Impacts of SO ₂ , Relative Humidity, and Seed Acidity on Secondary Organic Aerosol Formation in the Ozonolysis of Butyl Vinyl Ether. Environmental Science & Technology, 2019, 53, 8845-8853.	4.6	22
46	Effects of NO&Itsub>2&It/sub> and C&Itsub>3&It/sub>H&Itsub>6&It/sub> on the heterogeneous oxidation of SO&Itsub>2&It/sub> on TiO&Itsub>2&It/sub> in the presence or absence of UV–Vis irradiation. Atmospheric Chemistry and Physics 2019, 19, 14777,14790	1.9	21
47	Admospheric chemistry and Physics, 2013, 13, 14777-14750. Application of smog chambers in atmospheric process studies. National Science Review, 2022, 9, nwab103.	4.6	21
48	The adsorption and oxidation of SO ₂ on MgO surface: experimental and DFT calculation studies. Environmental Science: Nano, 2020, 7, 1092-1101.	2.2	18
49	Measurement report: Effects of photochemical aging on the formation and evolution of summertime secondary aerosol in Beijing. Atmospheric Chemistry and Physics, 2021, 21, 1341-1356.	1.9	18
50	Influence of sulfur in fuel on the properties of diffusion flame soot. Atmospheric Environment, 2016, 142, 383-392.	1.9	17
51	Chemical characterization of submicron aerosol in summertime Beijing: A case study in southern suburbs in 2018. Chemosphere, 2020, 247, 125918.	4.2	17
52	Measurement of heterogeneous uptake of NO2 on inorganic particles, sea water and urban grime. Journal of Environmental Sciences, 2021, 106, 124-135.	3.2	17
53	A Comprehensive Study about the Hygroscopic Behavior of Mixtures of Oxalic Acid and Nitrate Salts: Implication for the Occurrence of Atmospheric Metal Oxalate Complex. ACS Earth and Space Chemistry, 2019, 3, 1216-1225.	1.2	16
54	Heterogeneous photochemical reaction of ozone with anthracene adsorbed on mineral dust. Atmospheric Environment, 2013, 72, 165-170.	1.9	15

Qingxin

#	Article	IF	CITATIONS
55	Nanodispersed Mn ₃ O ₄ /Ĵ³-Al ₂ O ₃ for NO ₂ Elimination at Room Temperature. Environmental Science & Technology, 2019, 53, 10855-10862.	4.6	15
56	Efficient Conversion of NO to NO ₂ on SO ₂ -Aged MgO under Atmospheric Conditions. Environmental Science & Technology, 2020, 54, 11848-11856.	4.6	15
57	Laboratory study on OH-initiated degradation kinetics of dehydroabietic acid. Physical Chemistry Chemical Physics, 2015, 17, 10953-10962.	1.3	14
58	Secondary aerosol formation and oxidation capacity in photooxidation in the presence of Al2O3 seed particles and SO2. Science China Chemistry, 2015, 58, 1426-1434.	4.2	14
59	Distinct potential aerosol masses under different scenarios of transport at a suburban site of Beijing. Journal of Environmental Sciences, 2016, 39, 52-61.	3.2	13
60	Oxidation Potential Reduction of Carbon Nanomaterials during Atmospheric-Relevant Aging: Role of Surface Coating. Environmental Science & Technology, 2019, 53, 10454-10461.	4.6	13
61	Hygroscopicity of particles generated from photooxidation of α-pinene under different oxidation conditions in the presence of sulfate seed aerosols. Journal of Environmental Sciences, 2014, 26, 129-139.	3.2	10
62	Mechanistic Study of the Aqueous Reaction of Organic Peroxides with HSO ₃ ^{â^'} on the Surface of a Water Droplet. Angewandte Chemie - International Edition, 2021, 60, 20200-20203.	7.2	9
63	Effect of aluminium dust on secondary organic aerosol formation in m-xylene/NO x photo-oxidation. Science China Earth Sciences, 2015, 58, 245-254.	2.3	8
64	A laboratory study on the hygroscopic behavior of H2C2O4-containing mixed particles. Atmospheric Environment, 2019, 200, 34-39.	1.9	7
65	Large Variations in Hygroscopic Properties of Unconventional Mineral Dust. ACS Earth and Space Chemistry, 2020, 4, 1823-1830.	1.2	7
66	Alumina with Various Pore Structures Prepared by Spray Pyrolysis of Inorganic Aluminum Precursors. Industrial & Engineering Chemistry Research, 2013, 52, 13377-13383.	1.8	6
67	Key Factors Determining Heterogeneous Uptake Kinetics of NO ₂ Onto Alumina: Implication for the Linkage Between Laboratory Work and Modeling Study. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034694.	1.2	6
68	Comprehensive characterization of hygroscopic properties of methanesulfonates. Atmospheric Environment, 2020, 224, 117349.	1.9	5
69	Impacts of Mixed Gaseous and Particulate Pollutants on Secondary Particle Formation during Ozonolysis of Butyl Vinyl Ether. Environmental Science & Technology, 2020, 54, 3909-3919.	4.6	4
70	Characterization of an indoor environmental chamber and identification of C ₁ –C ₄ OVOCs during isoprene ozonolysis. Indoor and Built Environment, 2021, 30, 554-564.	1.5	3
71	Increased primary and secondary H ₂ SO ₄ showing the opposing roles in secondary organic aerosol formation from ethyl methacrylate ozonolysis. Atmospheric Chemistry and Physics 2021-21-2099-7112	1.9	1
72	Current progress towards the heterogeneous reactions on mineral dust and soot. Chinese Science Bulletin, 2015, 60, 122-136.	0.4	1