José Enrique Barquera-Lozada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7022015/publications.pdf

Version: 2024-02-01

35 papers	516 citations	687363 13 h-index	677142 22 g-index
39	39	39	669
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	lodine-promoted insertion of the oxygen atom from water in i- ⁴ -vinylketene[Fe(CO) ₃] complexes. Dalton Transactions, 2022, , .	3.3	1
2	Benzene and Borazine, so Different, yet so Similar: Insight from Experimental Charge Density Analysis. Inorganic Chemistry, 2022, 61, 6785-6798.	4.0	11
3	Gold-Catalyzed Ascorbic Acid-Induced Arylative Carbocyclization of Alkynes with Aryldiazonium Tetrafluoroborates. ACS Catalysis, 2021, 11, 8968-8977.	11.2	11
4	Effect of the nO â†' Ï€*Câ•O Interaction on the Conformational Preference of 1,3-Diketones: A Case Study of Riolozatrione Derivatives. Journal of Organic Chemistry, 2021, 86, 9540-9551.	3.2	1
5	Are Metallacyclopentadienes Always Non-Aromatic?. Chemistry, 2021, 3, 1302-1313.	2.2	2
6	Laplacian of the Hamiltonian Kinetic Energy Density as an Indicator of Binding and Weak Interactions. ChemPhysChem, 2020, 21, 194-203.	2.1	11
7	Ascorbic Acid as an Aryl Radical Inducer in the Goldâ€Mediated Arylation of Indoles with Aryldiazonium Chlorides. Chemistry - A European Journal, 2020, 26, 634-642.	3.3	14
8	Triangulenes and theirs ions: reaching the limits of Clar's rule. Physical Chemistry Chemical Physics, 2020, 22, 24704-24711.	2.8	6
9	Unveiling the Impact of Aggregation on Optical Anisotropy of Triazaacephenanthrylene Single Crystals. A Combined Quantum Crystallography and Conceptual Density Functional Theory Approach. Journal of Physical Chemistry A, 2020, 124, 2931-2941.	2.5	4
10	How to Bend a Cumulene. Chemistry - A European Journal, 2020, 26, 4633-4639.	3.3	6
11	Vorticity: Simplifying the analysis of the current density. Journal of Computational Chemistry, 2019, 40, 2602-2610.	3.3	14
12	Ruthenocenyl phosphinated chalcones and their Pt(II) and Pd(II) complexes: Usual bidentate [PO] and unusual tridentate [PCO] coordination. Inorganica Chimica Acta, 2019, 497, 119074.	2.4	2
13	Origin of the Photoinduced Geometrical Change of Copper(I) Complexes from the Quantum Chemical Topology View. Chemistry - A European Journal, 2019, 25, 775-784.	3.3	10
14	Frontispiece: Origin of the Photoinduced Geometrical Change of Copper(I) Complexes from the Quantum Chemical Topology View. Chemistry - A European Journal, 2019, 25, .	3.3	0
15	The vorticity of the current density tensor and 3Dâ€aromaticity. International Journal of Quantum Chemistry, 2019, 119, e25848.	2.0	14
16	Delocalized and localized donating–accepting Mn–C interactions in half-sandwich cyclopentadienyl and pentadienyl complexes. Dalton Transactions, 2017, 46, 6958-6967.	3.3	7
17	Chiral bidentate [N,S]-ferrocene ligands based on a thiazoline framework. Synthesis and use in palladium-catalyzed asymmetric allylic alkylation. Dalton Transactions, 2017, 46, 1510-1519.	3.3	18
18	<i>J</i> (Si,H) Coupling Constants of Activated Si–H Bonds. Journal of Physical Chemistry A, 2017, 121, 7219-7235.	2.5	18

#	Article	IF	CITATIONS
19	Interaction between aromatic rings as organizing tools and semi-coordination in Cu(<scp>ii</scp>) compounds. CrystEngComm, 2017, 19, 4595-4604.	2.6	9
20	Are boat transition states likely to occur in Cope rearrangements? A DFT study of the biogenesis of germacranes. Beilstein Journal of Organic Chemistry, 2017, 13, 1969-1976.	2.2	2
21	The Role of Bulkiness in Haptotropic Shifts of Metal–Cumulene Complexes. European Journal of Inorganic Chemistry, 2016, 2016, 4226-4233.	2.0	2
22	<i>J</i> (Si,H)â€Kopplungskonstanten in nichtâ€klassischen Übergangsmetallsilankomplexen. Angewandte Chemie, 2016, 128, 11846-11850.	2.0	2
23	<i>J</i> (Si,H) Coupling Constants in Nonclassical Transitionâ€Metal Silane Complexes. Angewandte Chemie - International Edition, 2016, 55, 11673-11677.	13.8	19
24	Torquoselectivity in Cyclobutene Ring Openings and the Interatomic Interactions That Control Them. Journal of Physical Chemistry A, 2016, 120, 8450-8460.	2.5	13
25	The role of induced current density in Steroelectronic effects: Perlin effect. Journal of Computational Chemistry, 2015, 36, 1573-1578.	3.3	13
26	Anagostic Interactions under Pressure: Attractive or Repulsive?. Angewandte Chemie, 2015, 127, 2535-2539.	2.0	30
27	Anagostic Interactions under Pressure: Attractive or Repulsive?. Angewandte Chemie - International Edition, 2015, 54, 2505-2509.	13.8	81
28	Low-activated Li-ion mobility and metal to semiconductor transition in CdP ₂ @Li phases. Journal of Materials Chemistry A, 2015, 3, 6484-6491.	10.3	8
29	On the Chemical Shifts of Agostic Protons. Journal of Physical Chemistry A, 2013, 117, 4304-4315.	2.5	47
30	A Unifying Bonding Concept for Metal Hydrosilane Complexes. Angewandte Chemie - International Edition, 2013, 52, 6092-6096.	13.8	47
31	Remanent Si-H Interactions in Late Transition Metal Silane Complexes. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 1996-2004.	1.2	26
32	Role of Carbocation's Flexibility in Sesquiterpene Biosynthesis: Computational Study of the Formation Mechanism of Terrecyclene. Journal of Organic Chemistry, 2011, 76, 1572-1577.	3.2	16
33	Conformational Properties of the Germacradienolide 6-Epidesacetyllaurenobiolide by Theory and NMR Analyses. Journal of Organic Chemistry, 2010, 75, 2139-2146.	3.2	7
34	Biogenesis of Sesquiterpene Lactones Pseudoguaianolides from Germacranolides: Theoretical Study on the Reaction Mechanism of Terminal Biogenesis of 8-Epiconfertin. Journal of Organic Chemistry, 2009, 74, 874-883.	3.2	29
35	Effect of spectator ligands on haptotropic rearrangements of metalâ€azulene complexes European Journal of Inorganic Chemistry, 0, , .	2.0	0