Diego Fornasari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7021913/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Human-Restricted Isoform of the α7 nAChR, CHRFAM7A: A Double-Edged Sword in Neurological and Inflammatory Disorders. International Journal of Molecular Sciences, 2022, 23, 3463.	1.8	13
2	Generation of two hiPSC lines (UMILi027-A and UMILi028-A) from early and late-onset Congenital Central hypoventilation Syndrome (CCHS) patients carrying a polyalanine expansion mutation in the PHOX2B gene. Stem Cell Research, 2022, 61, 102781.	0.3	0
3	Etonogestrel Administration Reduces the Expression of PHOX2B and Its Target Genes in the Solitary Tract Nucleus. International Journal of Molecular Sciences, 2022, 23, 4816.	1.8	3
4	Acetylcholinesterase inhibitors targeting the cholinergic anti-inflammatory pathway: a new therapeutic perspective in aging-related disorders. Aging Clinical and Experimental Research, 2021, 33, 823-834.	1.4	50
5	Management of Osteoarthritis: Expert Opinion on NSAIDs. Pain and Therapy, 2021, 10, 783-808.	1.5	40
6	Acetyl-L-carnitine in chronic pain: A narrative review. Pharmacological Research, 2021, 173, 105874.	3.1	18
7	Neuropharmacology of Pain. Urodynamics, Neurourology and Pelvic Floor Dysfunctions, 2021, , 191-199.	0.0	0
8	β-blockers: Their new life from hypertension to cancer and migraine. Pharmacological Research, 2020, 151, 104587.	3.1	50
9	Not All Pain is Created Equal: Basic Definitions and Diagnostic Work-Up. Pain and Therapy, 2020, 9, 1-15.	1.5	17
10	Pharmacological Management of Adults with Chronic Non-Cancer Pain in General Practice. Pain and Therapy, 2020, 9, 17-28.	1.5	5
11	Research Advances on Therapeutic Approaches to Congenital Central Hypoventilation Syndrome (CCHS). Frontiers in Neuroscience, 2020, 14, 615666.	1.4	19
12	Effect of donepezil on the expression and responsiveness to LPS of CHRNA7 and CHRFAM7A in macrophages: A possible link to the cholinergic anti-inflammatory pathway. Journal of Neuroimmunology, 2019, 332, 155-166.	1.1	29
13	Molecular insights into the role of the polyalanine region in mediating <scp>PHOX</scp> 2B aggregation. FEBS Journal, 2019, 286, 2505-2521.	2.2	9
14	Structural and functional differences in <i>PHOX2B</i> frameshift mutations underlie isolated or syndromic congenital central hypoventilation syndrome. Human Mutation, 2018, 39, 219-236.	1.1	28
15	Advances in the molecular biology and pathogenesis of congenital central hypoventilation syndrome—implications for new therapeutic targets. Expert Opinion on Orphan Drugs, 2018, 6, 719-731.	0.5	6
16	Desogestrel down-regulates PHOX2B and its target genes in progesterone responsive neuroblastoma cells. Experimental Cell Research, 2018, 370, 671-679.	1.2	12
17	SOD1 stimulates lamellipodial protrusions in Neuro 2A cell lines. Communicative and Integrative Biology, 2018, 11, 1-7.	0.6	0
18	Regular use of acetaminophen or acetaminophen–codeine combinations and prescription of rescue therapy with non-steroidal anti-inflammatory drugs: a population-based study in primary care. Current Medical Research and Opinion, 2017, 33, 1141-1148.	0.9	1

DIEGO FORNASARI

#	Article	IF	CITATIONS
19	Pharmacotherapy for Neuropathic Pain: A Review. Pain and Therapy, 2017, 6, 25-33.	1.5	166
20	Aflibercept in the Treatment of Diabetic Macular Edema: A Review and Consensus Paper. European Journal of Ophthalmology, 2017, 27, 627-639.	0.7	22
21	Paracetamol: a probably still safe drug. Annals of the Rheumatic Diseases, 2016, 75, e57-e57.	0.5	11
22	Novel localisation and possible function of LIN7 and IRSp53 in mitochondria of HeLa cells. European Journal of Cell Biology, 2016, 95, 285-293.	1.6	5
23	Alanine Expansions Associated with Congenital Central Hypoventilation Syndrome Impair PHOX2B Homeodomain-mediated Dimerization and Nuclear Import. Journal of Biological Chemistry, 2016, 291, 13375-13393.	1.6	19
24	Tryptophan hydroxylase type 2 variants modulate severity and outcome of addictive behaviors in Parkinson's disease. Parkinsonism and Related Disorders, 2016, 29, 96-103.	1.1	26
25	PHOX2A and PHOX2B are differentially regulated during retinoic acid-driven differentiation of SK-N-BE(2)C neuroblastoma cell line. Experimental Cell Research, 2016, 342, 62-71.	1.2	9
26	Association between SNAP-25 gene polymorphisms and cognition in autism: functional consequences and potential therapeutic strategies. Translational Psychiatry, 2015, 5, e500-e500.	2.4	76
27	Identification of novel pathways and molecules able to down-regulate PHOX2B gene expression by in vitro drug screening approaches in neuroblastoma cells. Experimental Cell Research, 2015, 336, 43-57.	1.2	9
28	Pharmacology of pain. Reumatismo, 2014, 66, 14-17.	0.4	5
29	Functional variations modulating PRKCA expression and alternative splicing predispose to multiple sclerosis. Human Molecular Genetics, 2014, 23, 6746-6761.	1.4	32
30	Breakthrough Cancer Pain (BTcP): a Synthesis of Taxonomy, Pathogenesis, Therapy, and Good Clinical Practice in Adult Patients in Italy. Advances in Therapy, 2014, 31, 657-682.	1.3	16
31	Pain pharmacology: focus on opioids. Clinical Cases in Mineral and Bone Metabolism, 2014, 11, 165-8.	1.0	15
32	Transcriptional dysregulation and impairment of PHOX2B auto-regulatory mechanism induced by polyalanine expansion mutations associated with congenital central hypoventilation syndrome. Neurobiology of Disease, 2013, 50, 187-200.	2.1	29
33	Identification and characterization of regulatory elements in the promoter of ACVR1, the gene mutated in Fibrodysplasia Ossificans Progressiva. Orphanet Journal of Rare Diseases, 2013, 8, 145.	1.2	11
34	The Expression of GHS-R in Primary Neurons Is Dependent upon Maturation Stage and Regional Localization. PLoS ONE, 2013, 8, e64183.	1.1	18
35	LIN7 regulates the filopodia and neurite promoting activity of IRSp53. Journal of Cell Science, 2012, 125, 4543-54.	1.2	20
36	The E3 ubiquitin ligase TRIM11 mediates the degradation of congenital central hypoventilation syndrome-associated polyalanine-expanded PHOX2B. Journal of Molecular Medicine, 2012, 90, 1025-1035.	1.7	17

DIEGO FORNASARI

#	Article	IF	CITATIONS
37	Barriers to Pain Management. Clinical Drug Investigation, 2012, 32, 11-19.	1.1	53
38	The Appropriate Treatment of Chronic Pain. Clinical Drug Investigation, 2012, 32, 21-33.	1.1	70
39	Adverse Effects Associated with Non-opioid and Opioid Treatment in Patients with Chronic Pain. Clinical Drug Investigation, 2012, 32, 53-63.	1.1	149
40	Pain Mechanisms in Patients with Chronic Pain. Clinical Drug Investigation, 2012, 32, 45-52.	1.1	100
41	In vitro drug treatments reduce the deleterious effects of aggregates containing polyAla expanded PHOX2B proteins. Neurobiology of Disease, 2012, 45, 508-518.	2.1	32
42	Expression of the $\hat{1}\pm7$ nAChR subunit duplicate form (CHRFAM7A) is down-regulated in the monocytic cell line THP-1 on treatment with LPS. Journal of Neuroimmunology, 2011, 230, 74-84.	1.1	48
43	PHOX2B-Mediated Regulation of ALK Expression: In Vitro Identification of a Functional Relationship between Two Genes Involved in Neuroblastoma. PLoS ONE, 2010, 5, e13108.	1.1	40
44	Functional expression of an α5β2 nicotinic acetylcholine receptor. Biochemical Pharmacology, 2009, 78, 901.	2.0	0
45	The Pharmacogenetics of Morphine-Induced Analgesia: A Case Report. Journal of Pain and Symptom Management, 2008, 36, e10-e12.	0.6	4
46	The expression of PHOX2A, PHOX2B and of their target gene dopamine-β-hydroxylase (DβH) is not modified by exposure to extremely-low-frequency electromagnetic field (ELF-EMF) in a human neuronal model. Toxicology in Vitro, 2008, 22, 1489-1495.	1.1	13
47	Transcription Factor PHOX2A Regulates the Human α3 Nicotinic Receptor Subunit Gene Promoter. Journal of Biological Chemistry, 2007, 282, 13290-13302.	1.6	34
48	Transcriptional regulation of TLX2 and impaired intestinal innervation: possible role of the PHOX2A and PHOX2B genes. European Journal of Human Genetics, 2007, 15, 848-855.	1.4	22
49	Extremely low-frequency electromagnetic field (ELF-EMF) does not affect the expression of α3, α5 and α7 nicotinic receptor subunit genes in SH-SY5Y neuroblastoma cell line. Toxicology Letters, 2006, 164, 268-277.	0.4	20
50	The TLX2 homeobox gene is a transcriptional target of PHOX2B in neural-crest-derived cells. Biochemical Journal, 2006, 395, 355-361.	1.7	41
51	PHOX2B Regulates Its Own Expression by a Transcriptional Auto-regulatory Mechanism. Journal of Biological Chemistry, 2005, 280, 37439-37448.	1.6	37
52	The expression of the human neuronal α3 Na+,K+-ATPase subunit gene is regulated by the activity of the Sp1 and NF-Y transcription factors. Biochemical Journal, 2005, 386, 63-72.	1.7	25
53	In vivo RNA–RNA duplexes from human α3 and α5 nicotinic receptor subunit mRNAs. Gene, 2005, 345, 155-164.	1.0	24
54	Molecular mechanism of the aryl hydrocarbon receptor activation by the fungicide iprodione in rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquatic Toxicology, 2005, 72, 209-220.	1.9	7

DIEGO FORNASARI

#	Article	IF	CITATIONS
55	SP Proteins and PHOX2B Regulate the Expression of the Human <i>PHOX2a</i> Gene. Journal of Neuroscience, 2001, 21, 7037-7045.	1.7	49
56	Neuronal and Extraneuronal Expression and Regulation of the Human α5 Nicotinic Receptor Subunit Gene. Journal of Neurochemistry, 2001, 75, 18-27.	2.1	40
57	Transcriptional regulation of the human α5 nicotinic receptor subunit gene in neuronal and non-neuronal tissues. European Journal of Pharmacology, 2000, 393, 85-95.	1.7	26
58	Neuronal nicotinic receptors, important new players in brain function. European Journal of Pharmacology, 2000, 393, 3-10.	1.7	101
59	The Minimal Promoter of the Human α3 Nicotinic Receptor Subunit Gene. Journal of Biological Chemistry, 2000, 275, 41495-41503.	1.6	22
60	Expression of the α3 nicotinic receptor subunit mRNA in aging and Alzheimer's disease. Molecular Brain Research, 1998, 63, 72-78.	2.5	48
61	Neuronal nicotinic receptors (nNAChRs). Expert Opinion on Therapeutic Targets, 1998, 2, 43-44.	1.0	О
62	Expression and Transcriptional Regulation of the Human α3 Neuronal Nicotinic Receptor Subunit in T Lymphocyte Cell Lines. Journal of Neurochemistry, 1998, 71, 1261-1270.	2.1	45
63	Structural and Functional Characterization of the Human α3 Nicotinic Subunit Gene Promoter. Molecular Pharmacology, 1997, 51, 250-261.	1.0	49
64	Transgenic Mice Expressing Human ?3 Na,K-ATPase Isoform in Heart. Annals of the New York Academy of Sciences, 1997, 834, 687-689.	1.8	1
65	Distribution of nicotinic receptors in cynomolgus monkey brain and ganglia: Localization of α3 subunit mRNA, α-bungarotoxin and nicotine binding sites. Neuroscience, 1992, 51, 77-86.	1.1	87
66	Chromosomal localization and physical linkage of the genes encoding the human α3, α5, and β4 neuronal nicotinic receptor subunits. Genomics, 1992, 12, 849-850.	1.3	47
67	Molecular cloning of human neuronal nicotinic receptor α3-subunit. Neuroscience Letters, 1990, 111, 351-356.	1.0	45
68	The binding site for α-bungarotoxin resides in the sequence 188–201 of the α-subunit of acetylcholine receptor: Structure, conformation and binding characteristics of peptide [Lys] 188–201. Neuroscience Letters, 1987, 82, 113-120.	1.0	26