John D Imig

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7021901/john-d-imig-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 251
 9,689
 56
 87

 papers
 citations
 h-index
 g-index

 323
 10,490
 5.1
 6.48

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
251	Kidney in the net of acute and long-haul coronavirus disease 2019: a potential role for lipid mediators in causing renal injury and fibrosis. <i>Current Opinion in Nephrology and Hypertension</i> , 2022 , 31, 36-46	3.5	2
250	SARS-CoV-2 spike protein causes cardiovascular disease independent of viral infection <i>Clinical Science</i> , 2022 , 136, 431-434	6.5	2
249	Epoxyeicosatrienoic Acid Analog and 20-HETE Antagonist Combination Prevent Hypertension Development in Spontaneously Hypertensive Rats <i>Frontiers in Pharmacology</i> , 2021 , 12, 798642	5.6	1
248	Epoxylipids and soluble epoxide hydrolase in heart diseases. <i>Biochemical Pharmacology</i> , 2021 , 195, 114	18 6 6	3
247	Tim-1 Deficiency Aggravates High-Fat Diet-Induced Steatohepatitis in Mice. <i>Frontiers in Immunology</i> , 2021 , 12, 747794	8.4	
246	Kidney-Targeted Epoxyeicosatrienoic Acid Analog, EET-F01, Reduces Inflammation, Oxidative Stress, and Cisplatin-Induced Nephrotoxicity. <i>International Journal of Molecular Sciences</i> , 2021 , 22,	6.3	4
245	Diabetes risk associated with plasma epoxylipid levels. <i>EBioMedicine</i> , 2021 , 66, 103331	8.8	O
244	Early Renal Vasodilator and Hypotensive Action of Epoxyeicosatrienoic Acid Analog (EET-A) and 20-HETE Receptor Blocker (AAA) in Spontaneously Hypertensive Rats. <i>Frontiers in Physiology</i> , 2021 , 12, 622882	4.6	3
243	Loss of Chloride Channel 6 (CLC-6) Affects Vascular Smooth Muscle Contractility and Arterial Stiffness via Alterations to Golgi Calcium Stores. <i>Hypertension</i> , 2021 , 77, 582-593	8.5	O
242	Effects of Epoxyeicosatrienoic Acid-Enhancing Therapy on the Course of Congestive Heart Failure in Angiotensin II-Dependent Rat Hypertension: From mRNA Analysis towards Functional In Vivo Evaluation. <i>Biomedicines</i> , 2021 , 9,	4.8	1
241	Multi-Target Drugs for Kidney Diseases <i>Kidney360</i> , 2021 , 2, 1645-1653	1.8	О
240	Multitarget molecule, PTUPB, to treat diabetic nephropathy in rats. <i>British Journal of Pharmacology</i> , 2021 , 178, 4468-4484	8.6	2
239	Dual sEH/COX-2 Inhibition Using PTUPB-A Promising Approach to Antiangiogenesis-Induced Nephrotoxicity <i>Frontiers in Pharmacology</i> , 2021 , 12, 744776	5.6	2
238	Epoxy Fatty Acids: From Salt Regulation to Kidney and Cardiovascular Therapeutics: 2019 Lewis K. Dahl Memorial Lecture. <i>Hypertension</i> , 2020 , 76, 3-15	8.5	9
237	Dual soluble epoxide hydrolase inhibitor/PPAR-lagonist attenuates renal fibrosis. <i>Prostaglandins and Other Lipid Mediators</i> , 2020 , 150, 106472	3.7	7
236	A SORAFENIB INDUCED MODEL OF GLOMERULAR KIDNEY DISEASE. <i>Bulletin of Taras Shevchenko National University of Kyiv Series Biology</i> , 2020 , 81, 25-31	0.2	1
235	THE EFFECT OF COMPOUND DM509 ON KIDNEY FIBROSIS IN THE CONDITIONS OF THE EXPERIMENTAL MODEL. <i>Bulletin of Taras Shevchenko National University of Kyiv Series Biology</i> , 2020 , 80, 10-15	0.2	2

REVERSAL OF UNILATERAL URETERAL OBSTRUCTION LEADS TO SALT-SENSITIVE HYPERTENSION. <i>FASEB Journal</i> , 2020 , 34, 1-1	0.9	
DUAL ACTING COX-2 AND SOLUBLE EPOXIDE HYDROLASE INHIBITOR ATTENUATES GLOMERULAR INJURY IN FOCAL SEGMENTAL GLOMERULAR SCLEROSIS. <i>FASEB Journal</i> , 2020 , 34, 1-1	0.9	
Effective Antihypertensive Treatment with Epoxyeicosatrienoic Acid Analog (EET-A) and 20-HETE Antagonist (AAA) of Spontaneously Hypertensive Rats (SHR). <i>FASEB Journal</i> , 2020 , 34, 1-1	0.9	
A DUAL COX-2/sEH INHIBITOR TREATED KIDNEY INJURY IN A DRUG-INDUCED GLOMERULAR DISEASE MODEL. <i>FASEB Journal</i> , 2020 , 34, 1-1	0.9	
Fructose Consumption Increases Blood Pressure and Induces Changes in Renal Microvascular Function. <i>FASEB Journal</i> , 2020 , 34, 1-1	0.9	
COMBINED FARNESOID X RECEPTOR AGONIST AND SOLUBLE EPOXIDE HYDROLASE INHIBITOR TREATS PROGRESSIVE RENAL FIBROSIS. <i>FASEB Journal</i> , 2020 , 34, 1-1	0.9	
Eicosanoid blood vessel regulation in physiological and pathological states. <i>Clinical Science</i> , 2020 , 134, 2707-2727	6.5	12
Combined treatment with epoxyeicosatrienoic acid analog and 20-hydroxyeicosatetraenoic acid antagonist provides substantial hypotensive effect in spontaneously hypertensive rats. <i>Journal of Hypertension</i> , 2020 , 38, 1802-1810	1.9	6
Multi-Target Approaches in Metabolic Syndrome. Frontiers in Pharmacology, 2020, 11, 554961	5.6	11
Pharmacological Blockade of Soluble Epoxide Hydrolase Attenuates the Progression of Congestive Heart Failure Combined With Chronic Kidney Disease: Insights From Studies With Fawn-Hooded Hypertensive Rats. <i>Frontiers in Pharmacology</i> , 2019 , 10, 18	5.6	7
A dual farnesoid X receptor/soluble epoxide hydrolase modulator treats non-alcoholic steatohepatitis in mice. <i>Biochemical Pharmacology</i> , 2019 , 166, 212-221	6	13
Epoxyeicosatrienoic Acid Analog EET-A Blunts Development of Lupus Nephritis in Mice. <i>Frontiers in Pharmacology</i> , 2019 , 10, 512	5.6	9
Epoxyeicosatrienoic Acid-Based Therapy Attenuates the Progression of Postischemic Heart Failure in Normotensive Sprague-Dawley but Not in Hypertensive Transgenic Rats. <i>Frontiers in Pharmacology</i> , 2019 , 10, 159	5.6	10
Epoxyeicosatrienoic acid analog EET-B attenuates post-myocardial infarction remodeling in spontaneously hypertensive rats. <i>Clinical Science</i> , 2019 , 133, 939-951	6.5	12
Regulation of Cardiac Mast Cell Maturation and Function by the Neurokinin-1 Receptor in the Fibrotic Heart. <i>Scientific Reports</i> , 2019 , 9, 11004	4.9	8
Altered Renal Vascular Responsiveness to Vasoactive Agents in Rats with Angiotensin II-Dependent Hypertension and Congestive Heart Failure. <i>Kidney and Blood Pressure Research</i> , 2019 , 44, 792-809	3.1	9
Epoxyeicosanoids in hypertension. <i>Physiological Research</i> , 2019 , 68, 695-704	2.1	18
Glomerular Mesangial Proliferation is Mitigated by sEH/COX-2 Dual-Inhibition. <i>FASEB Journal</i> , 2019 , 33, 671.7	0.9	
	PASEB Journal, 2020, 34, 1-1 DUAL ACTING COX-2 AND SOLUBLE EPOXIDE HYDROLASE INHIBITOR ATTENUATES GLOMERULAR INJURY IN FOCAL SEGMENTAL GLOMERULAR SCLEROSIS. FASEB Journal, 2020, 34, 1-1 Effective Antihypertensive Treatment with Epoxyeicosatrienoic Acid Analog (EET-A) and 20-HETE Antagonist (AAA) of Spontaneously Hypertensive Rats (SHR). FASEB Journal, 2020, 34, 1-1 ADUAL COX-2/SEH INHIBITOR TREATED KIDNEY INJURY IN A DRUG-INDUCED GLOMERULAR DISEASE MODEL. FASEB Journal, 2020, 34, 1-1 Fructose Consumption Increases Blood Pressure and Induces Changes in Renal Microvascular Function. FASEB Journal, 2020, 34, 1-1 COMBINED FARNESOID X RECEPTOR AGONIST AND SOLUBLE EPOXIDE HYDROLASE INHIBITOR TREATS PROGRESSIVE RENAL FIBROSIS. FASEB Journal, 2020, 34, 1-1 Eicosanoid blood vessel regulation in physiological and pathological states. Clinical Science, 2020, 134, 2707-2727 Combined treatment with epoxyeicosatrienoic acid analog and 20-hydroxyeicosatetraenoic acid antagonist provides substantial hypotensive effect in spontaneously hypertensive rats. Journal of Hypertension, 2020, 38, 1802-1810 Multi-Target Approaches in Metabolic Syndrome. Frontiers in Pharmacology, 2020, 11, 554961 Pharmacological Blockade of Soluble Epoxide Hydrolase Attenuates the Progression of Congestive Heart Failure Combined With Chronic Kidney Disease: Insights From Studies With Fawn-Hooded Hypertensive Rats. Frontiers in Pharmacology, 2019, 10, 18 A dual farnesoid X receptor/soluble epoxide hydrolase modulator treats non-alcoholic steatohepatitis in mice. Biochemical Pharmacology, 2019, 166, 212-221 Epoxyeicosatrienoic Acid Analog EET-A Blunts Development of Lupus Nephritis in Mice. Frontiers in Pharmacology, 2019, 10, 159 Epoxyeicosatrienoic acid analog EET-B attenuates the Progression of Postischemic Heart Failure in Normotensive Sprayue-Dawley but Not in Hypertensive Transgenic Rats. Frontiers in Pharmacology, 2019, 10, 159 Epoxyeicosatrienoic acid analog EET-B attenuates post-myocardial infarction remodeling in spontaneously hyper	DUAL ACTING COX:2 AND SOLUBLE EPOXIDE HYDROLASE INHIBITOR ATTENUATES GLOMERULAR INJURY IN FOCAL SEGMENTAL GLOMERULAR SCLEROSIS. FASEB Journal, 2020, 34, 1-1 EFFective Antihypertensive Treatment with Epoxyeicosatrienoic Acid Analog (EET-A) and 20-HETE Antagonist (AAA) of Spontaneously Hypertensive Rats (SHR). FASEB Journal, 2020, 34, 1-1 ADUAL COX:2/SEH INHIBITOR TREATED KIDNEY INJURY IN A DRUG-INDUCED GLOMERULAR DISEASE MODEL. FASEB Journal, 2020, 34, 1-1 Fructose Consumption Increases Blood Pressure and Induces Changes in Renal Microvascular Function. FASEB Journal, 2020, 34, 1-1 COMBINED FARNESOID X RECEPTOR AGONIST AND SOLUBLE EPOXIDE HYDROLASE INHIBITOR TREATS PROGRESSIVE RENAL FIBROSIS. FASEB Journal, 2020, 34, 1-1 Eicosanoid blood vessel regulation in physiological and pathological states. Clinical Science, 2020, 134, 2707-2727 Combined treatment with epoxyeicosatrienoic acid analog and 20-hydroxyeicosatetraenoic acid analoganist provides substantial hypotensive effect in spontaneously hypertensive rats. Journal of Hypertension, 2020, 38, 1802-1810 Multi-Target Approaches in Metabolic Syndrome. Frontiers in Pharmacology, 2020, 11, 554961 Adual Farnesoid X receptor/soluble epoxide Hydrolase Attenuates the Progression of Congestive Heart Failure Combined With Chronic Kidney Disease: Insights From Studies With Fawn-Hooded Hypertensive Rats. Frontiers in Pharmacology, 2019, 10, 18 Epoxyeicosatrienoic Acid-Based Therapy Attenuates the Progression of Postischemic Heart Failure in Normotensive Sprague-Dawley but Not in Hypertensive Transgenic Rats. Frontiers in Pharmacology, 2019, 10, 189 Epoxyeicosatrienoic Acid-Based Therapy Attenuates the Progression of Postischemic Heart Failure in Normotensive Sprague-Dawley but Not in Hypertensive Transgenic Rats. Frontiers in Pharmacology, 2019, 10, 159 Epoxyeicosatrienoic acid analog EET-B attenuates post-myocardial infarction remodeling in spontaneously hypertensive Sprague-Dawley Dut Not in Hypertensive Transgenic Rats. Frontiers in Pharmacology, 2019, 10, 1

216	A Dual Farnesoid X Receptor Agonist /Soluble Epoxide Hydrolase Inhibitor Prevents Non-Alcoholic Steatohepatitis in Mice. <i>FASEB Journal</i> , 2019 , 33, 506.3	0.9		
215	EET Analogs and the Dual-Inhibition of sEH/COX-2 for the Treatment of Focal Segmental Glomerular Sclerosis. <i>FASEB Journal</i> , 2019 , 33, 863.8	0.9		
214	A Novel Dual Soluble Epoxide Hydrolase Inhibitor/Cyclooxygenase-2 Inhibitor Treats Type 2 Diabetic Complications in Obese ZSF1 Rats. <i>FASEB Journal</i> , 2019 , 33, 514.2	0.9		
213	A Dual Soluble Epoxide Hydrolase Inhibitor/PPAR-[Agonist Prevents Renal Fibrosis in Mouse Unilateral Ureteral Obstruction Model. <i>FASEB Journal</i> , 2019 , 33, 678.12	0.9	1	
212	Addition of Endothelin A-Receptor Blockade Spoils the Beneficial Effect of Combined Renin-Angiotensin and Soluble Epoxide Hydrolase Inhibition: Studies on the Course of Chronic Kidney Disease in 5/6 Nephrectomized Ren-2 Transgenic Hypertensive Rats. <i>Kidney and Blood</i>	3.1	1	
211	Pressure Research, 2019 , 44, 1493-1505 Role of the cytochrome P-450/ epoxyeicosatrienoic acids pathway in the pathogenesis of renal dysfunction in cirrhosis. <i>Nephrology Dialysis Transplantation</i> , 2018 , 33, 1333-1343	4.3	7	
210	Combined Inhibition of Soluble Epoxide Hydrolase and Renin-Angiotensin System Exhibits Superior Renoprotection to Renin-Angiotensin System Blockade in 5/6 Nephrectomized Ren-2 Transgenic Hypertensive Rats with Established Chronic Kidney Disease. <i>Kidney and Blood Pressure Research</i> ,	3.1	8	
209	Two pharmacological epoxyeicosatrienoic acid-enhancing therapies are effectively antihypertensive and reduce the severity of ischemic arrhythmias in rats with angiotensin II-dependent hypertension. <i>Journal of Hypertension</i> , 2018 , 36, 1326-1341	1.9	19	
208	Infarct size-limiting effect of epoxyeicosatrienoic acid analog EET-B is mediated by hypoxia-inducible factor-1 (via downregulation of prolyl hydroxylase 3. <i>American Journal of Physiology - Heart and Circulatory Physiology</i> , 2018 , 315, H1148-H1158	5.2	12	
207	A novel dual PPAR-lagonist/sEH inhibitor treats diabetic complications in a rat model of type 2 diabetes. <i>Diabetologia</i> , 2018 , 61, 2235-2246	10.3	27	
206	Inactivation of p66Shc Decreases Afferent Arteriolar K Channel Activity and Decreases Renal Damage in Diabetic Dahl SS Rats. <i>Diabetes</i> , 2018 , 67, 2206-2212	0.9	9	
205	The Effect of Voltage-Sensitive Chloride Channel 6 on Development of Salt-Sensitive Hypertension. <i>FASEB Journal</i> , 2018 , 32, 750.23	0.9		
204	Molecular Pathways in Hypertensive Renal Damage. <i>Updates in Hypertension and Cardiovascular Protection</i> , 2018 , 445-463	0.1	2	
203	SP074SOLUBLE EPOXIDE HYDROLASE INHIBITION AUGMENTS RAS BLOCKADE RENOPROTECTION INSUBTOTALLY NEPHRECTOMIZED REN-2 TRANSGENIC HYPERTENSIVE RATS WITH CHRONIC KIDNEY DISEASE. <i>Nephrology Dialysis Transplantation</i> , 2018 , 33, i370-i370	4.3		
202	20-Hydroxyeicosatetraenoic acid antagonist attenuates the development of malignant hypertension and reverses it once established: a study in Cyp1a1-Ren-2 transgenic rats. <i>Bioscience Reports</i> , 2018 , 38,	4.1	8	
201	Prospective for cytochrome P450 epoxygenase cardiovascular and renal therapeutics. <i>Pharmacology & Therapeutics</i> , 2018 , 192, 1-19	13.9	43	
200	Cytochrome P450 epoxygenase-derived epoxyeicosatrienoic acids contribute to insulin sensitivity in mice and in humans. <i>Diabetologia</i> , 2017 , 60, 1066-1075	10.3	24	
199	Orally Active Epoxyeicosatrienoic Acid Analogs. <i>Journal of Cardiovascular Pharmacology</i> , 2017 , 70, 211-	 2 <u>3</u> 41	27	

(2015-2017)

Soluble epoxide hydrolase in podocytes is a significant contributor to renal function under hyperglycemia. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 2017 , 1861, 2758-2765	4	19
Epoxyeicosatrienoic Acid Analog Decreases Renal Fibrosis by Reducing Epithelial-to-Mesenchymal Transition. <i>Frontiers in Pharmacology</i> , 2017 , 8, 406	5.6	22
Mitigation of normal tissue radiation injury: evidence from rat radiation nephropathy models. <i>Journal of Radiation Oncology</i> , 2016 , 5, 1-8	0.7	1
Radiation-induced afferent arteriolar endothelial-dependent dysfunction involves decreased epoxygenase metabolites. <i>American Journal of Physiology - Heart and Circulatory Physiology</i> , 2016 , 310, H1695-701	5.2	3
A dual COX-2/sEH inhibitor improves the metabolic profile and reduces kidney injury in Zucker diabetic fatty rat. <i>Prostaglandins and Other Lipid Mediators</i> , 2016 , 125, 40-7	3.7	31
Epoxyeicosatrienoic acid analog attenuates the development of malignant hypertension, but does not reverse it once established: a study in Cyp1a1-Ren-2 transgenic rats. <i>Journal of Hypertension</i> , 2016 , 34, 2008-25	1.9	17
p66Shc regulates renal vascular tone in hypertension-induced nephropathy. <i>Journal of Clinical Investigation</i> , 2016 , 126, 2533-46	15.9	28
Novel Omega-3 Fatty Acid Epoxygenase Metabolite Reduces Kidney Fibrosis. <i>International Journal of Molecular Sciences</i> , 2016 , 17,	6.3	20
The epoxyeicosatrienoic acid analog PVPA ameliorates cyclosporine-induced hypertension and renal injury in rats. <i>American Journal of Physiology - Renal Physiology</i> , 2016 , 311, F576-85	4.3	14
Interlobular Arteries From 2-Kidney, 1-Clip Goldblatt Hypertensive RatsÆxhibit-Impaired Vasodilator Response to Epoxyeicosatrienoic Acids. <i>American Journal of the Medical Sciences</i> , 2016 , 351, 513-9	2.2	7
Epoxyeicosatrienoic acid analogue mitigates kidney injury in a rat model of radiation nephropathy. <i>Clinical Science</i> , 2016 , 130, 587-99	6.5	20
Epoxyeicosatrienoic Acids and 20-Hydroxyeicosatetraenoic Acid on Endothelial and Vascular Function. <i>Advances in Pharmacology</i> , 2016 , 77, 105-41	5.7	51
Epoxyeicosatrienoic acids, hypertension, and kidney injury. <i>Hypertension</i> , 2015 , 65, 476-82	8.5	60
Characterization of Dahl salt-sensitive rats with genetic disruption of the A2B adenosine receptor gene: implications for A2B adenosine receptor signaling during hypertension. <i>Purinergic Signalling</i> , 2015 , 11, 519-31	3.8	8
Tumour necrosis factor-Etontributes to improved cardiac ischaemic tolerance in rats adapted to chronic continuous hypoxia. <i>Acta Physiologica</i> , 2015 , 214, 97-108	5.6	14
Orally active epoxyeicosatrienoic acid analog does not exhibit antihypertensive and reno- or cardioprotective actions in two-kidney, one-clip Goldblatt hypertensive rats. <i>Vascular Pharmacology</i> , 2015 , 73, 45-56	5.9	11
Cytochrome P450 and Lipoxygenase Metabolites on Renal Function. <i>Comprehensive Physiology</i> , 2015 , 6, 423-41	7.7	15
Reply to "Letter to the editor: C oncern regarding quantification of urinary nephrin by commercially available ELISAR. <i>American Journal of Physiology - Renal Physiology</i> , 2015 , 309, F271	4.3	
	hyperglycemia. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 2017, 1861, 2758-2765 Epoxyeicosatrienoic Acid Analog Decreases Renal Fibrosis by Reducing Epithelial-to-Mesenchymal Transition. <i>Frontiers in Pharmacology</i> , 2016, 5, 1-8 Mitigation of normal tissue radiation injury: evidence from rat radiation nephropathy models. <i>Journal of Radiation Oncology</i> , 2016, 5, 1-8 Radiation-induced afferent arteriolar endothelial-dependent dysfunction involves decreased epoxygenase metabolites. <i>American Journal of Physiology - Heart and Circulatory Physiology</i> , 2016, 310, H1695-701 A dual COX-2/SEH inhibitor improves the metabolic profile and reduces kidney injury in Zucker diabetic fatty rat. <i>Prostaglandins and Other Lipid Mediators</i> , 2016, 125, 40-7 Epoxyeicosatrienoic acid analog attenuates the development of malignant hypertension, but does not reverse it once established: a study in Cyp1a1-Ren-2 transgenic rats. <i>Journal of Hypertension</i> , 2016, 34, 2008-25 Beostic regulates renal vascular tone in hypertension-induced nephropathy. <i>Journal of Clinical Investigation</i> , 2016, 126, 2533-46 Novel Omega-3 Fatty Acid Epoxygenase Metabolite Reduces Kidney Fibrosis. <i>International Journal of Molecular Sciences</i> , 2016, 17, The epoxyeicosatrienoic acid analog PVPA ameliorates cyclosporine-induced hypertension and renal injury in rats. <i>American Journal of Physiology - Renal Physiology</i> , 2016, 311, E576-85 Interlobular Arteries From 2-Kidney, 1-Clip Goldblatt Hypertensive RatsÆxhibit-impaired Vasodilator Response to Epoxyeicosatrienoic Acids. <i>American Journal of the Medical Sciences</i> , 2016, 351, 513-9 Epoxyeicosatrienoic acid analogue mitigates kidney injury in a rat model of radiation nephropathy. <i>Clinical Science</i> , 2016, 130, 587-99 Epoxyeicosatrienoic acids and 20-Hydroxyeicosatetraenoic Acid on Endothelial and Vascular Function. <i>Advances in Pharmacology</i> , 2016, 77, 105-41 Epoxyeicosatrienoic acids, hypertension, and kidney injury. <i>Hypertension</i> , 2015, 65, 476-82 Characterization of Dahl salt-sensitive	Epoxyeicosatrienoic Acid Analog Decreases Renal Fibrosis by Reducing Epithelial-to-Mesenchymal Transition. Frontiers in Pharmacology, 2017, 8, 406 Mitigation of normal tissue radiation injury: evidence from rat radiation nephropathy models. Journal of Radiation Oncology, 2016, 5, 1-8 Mitigation of normal tissue radiation injury: evidence from rat radiation nephropathy models. Journal of Radiation Oncology, 2016, 5, 1-8 Mitigation of normal tissue radiation injury: evidence from rat radiation nephropathy models. Journal of Radiation-induced afferent arteriolar endothelial-dependent dysfunction involves decreased epoxygenase metabolites. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H1695-701 A dual COX-2/SEH inhibitor improves the metabolic profile and reduces kidney injury in Zucker diabetic fatty rat. Prostaglandins and Other Lipid Mediators, 2016, 125, 40-7 Epoxyeicosatrienoic acid analog attenuates the development of malignant hypertension, but does not reverse it once established: a Study in Cyp1a1-Ren-2 transgenic rats. Journal of Hypertension, 2016, 310, 808-25 p665hc regulates renal vascular tone in hypertension-induced nephropathy. Journal of Clinical Investigation, 2016, 126, 2533-46 Novel Omega-3 Fatty Acid Epoxygenase Metabolite Reduces Kidney Fibrosis. International Journal of Modecular Sciences, 2016, 17, The epoxyeicosatrienoic acid analog PVPA ameliorates cyclosporine-induced hypertension and renal injury in rats. American Journal of Physiology - Renal Physiology, 2016, 311, F576-85 Interlobular Arteries From 2-Kidney, 1-Clip Goldblatt Hypertensive Rats Exhibit-Impaired Vasodilator Response to Epoxyeicosatrienoic Acids. American Journal of the Medical Sciences, 2016, 22, 2351, 513-9 Epoxyeicosatrienoic acid analogue mitigates kidney injury in a rat model of radiation nephropathy. Clinical Science, 2016, 130, 587-99 Epoxyeicosatrienoic Acids and 20-Hydroxyeicosatetraenoic Acid on Endothelial and Vascular Function. Advances in Pharmacology, 2016, 77, 105-4

180	Hypertension is a major contributor to 20-hydroxyeicosatetraenoic acid-mediated kidney injury in diabetic nephropathy. <i>Journal of the American Society of Nephrology: JASN</i> , 2015 , 26, 597-610	12.7	35
179	Pharmacological inhibition of soluble epoxide hydrolase prevents renal interstitial fibrogenesis in obstructive nephropathy. <i>American Journal of Physiology - Renal Physiology</i> , 2015 , 308, F131-9	4.3	47
178	Elevated Aminopeptidase P Attenuates Cerebral Arterial Responses to Bradykinin in Fawn-Hooded Hypertensive Rats. <i>PLoS ONE</i> , 2015 , 10, e0145335	3.7	1
177	Radiation Nephropathy is Mitigated by Epoxyeicosatrienoic acid Analog. <i>FASEB Journal</i> , 2015 , 29, 938.4	0.9	
176	Azilsartan improves glycemic status and reduces kidney damage in zucker diabetic fatty rats. <i>American Journal of Hypertension</i> , 2014 , 27, 1087-95	2.3	12
175	14,15-Epoxyeicosa-5,8,11-trienoic Acid (14,15-EET) surrogates: carboxylate modifications. <i>Journal of Medicinal Chemistry</i> , 2014 , 57, 6965-72	8.3	24
174	Azilsartan decreases renal and cardiovascular injury in the spontaneously hypertensive obese rat. <i>Cardiovascular Drugs and Therapy</i> , 2014 , 28, 313-22	3.9	17
173	The Cyp2c44 epoxygenase regulates epithelial sodium channel activity and the blood pressure responses to increased dietary salt. <i>Journal of Biological Chemistry</i> , 2014 , 289, 4377-86	5.4	45
172	Epoxyeicosatrienoic acid analog attenuates angiotensin II hypertension and kidney injury. <i>Frontiers in Pharmacology</i> , 2014 , 5, 216	5.6	27
171	Inhibition of soluble epoxide hydrolase is renoprotective in 5/6 nephrectomized Ren-2 transgenic hypertensive rats. <i>Clinical and Experimental Pharmacology and Physiology</i> , 2014 , 41, 227-37	3	30
170	Inhibition of soluble epoxide hydrolase prevents renal interstitial fibrosis and inflammation. <i>American Journal of Physiology - Renal Physiology</i> , 2014 , 307, F971-80	4.3	62
169	Fructose stimulates Na/H exchange activity and sensitizes the proximal tubule to angiotensin II. <i>Hypertension</i> , 2014 , 63, e68-73	8.5	55
168	Epoxyeicosatrienoic acid analogue lowers blood pressure through vasodilation and sodium channel inhibition. <i>Clinical Science</i> , 2014 , 127, 463-74	6.5	52
167	Different mechanisms of acute versus long-term antihypertensive effects of soluble epoxide hydrolase inhibition: studies in Cyp1a1-Ren-2 transgenic rats. <i>Clinical and Experimental Pharmacology and Physiology</i> , 2014 , 41, 1003-13	3	16
166	Thioredoxin-interacting protein is required for endothelial NLRP3 inflammasome activation and cell death in a rat model of high-fat diet. <i>Diabetologia</i> , 2014 , 57, 413-23	10.3	102
165	A dual COX-sEH inhibitor improved glycemic status and reduced kidney injury in Zucker diabetic fatty rat (689.4). <i>FASEB Journal</i> , 2014 , 28, 689.4	0.9	
164	Novel orally active epoxyeicosatrienoic acid (EET) analogs attenuate cisplatin nephrotoxicity. <i>FASEB Journal</i> , 2013 , 27, 2946-56	0.9	59
163	Epoxyeicosatrienoic acids, 20-hydroxyeicosatetraenoic acid, and renal microvascular function. Prostaglandins and Other Lipid Mediators, 2013, 104-105, 2-7	3.7	49

162	Immune and inflammatory role in renal disease. Comprehensive Physiology, 2013, 3, 957-76	7.7	185
161	Anti-inflammatory effects of EB polyunsaturated fatty acids and soluble epoxide hydrolase inhibitors in angiotensin-II-dependent hypertension. <i>Journal of Cardiovascular Pharmacology</i> , 2013 , 62, 285-97	3.1	78
160	Orally active epoxyeicosatrienoic acid analog attenuates kidney injury in hypertensive Dahl salt-sensitive rat. <i>Hypertension</i> , 2013 , 62, 905-13	8.5	47
159	Antihypertensive action of soluble epoxide hydrolase inhibition in Ren-2 transgenic rats is mediated by suppression of the intrarenal renin-angiotensin system. <i>Clinical and Experimental Pharmacology and Physiology</i> , 2013 , 40, 273-81	3	17
158	Afferent Arteriolar Responses to Emethylene ATP and 20-HETE are not Blocked by ENaC Inhibition. <i>Physiological Reports</i> , 2013 , 1, e00082	2.6	7
157	Antihypertensive and renoprotective actions of soluble epoxide hydrolase inhibition in ANG II-dependent malignant hypertension are abolished by pretreatment with L-NAME. <i>Journal of Hypertension</i> , 2013 , 31, 321-32	1.9	18
156	A novel epoxyeicosatrienoic acid analog attenuates hypertension and renal injury in Cyp2c44 KO mice. <i>FASEB Journal</i> , 2013 , 27, 880.1	0.9	
155	Captopril attenuates hypertension and renal injury induced by the vascular endothelial growth factor inhibitor sorafenib. <i>Clinical and Experimental Pharmacology and Physiology</i> , 2012 , 39, 454-61	3	18
154	Inhibition of soluble epoxide hydrolase by cis-4-[4-(3-adamantan-1-ylureido)cyclohexyl-oxy]benzoic acid exhibits antihypertensive and cardioprotective actions in transgenic rats with angiotensin II-dependent hypertension. <i>Clinical Science</i> , 2012 , 122, 513-25	6.5	54
153	Epoxides and soluble epoxide hydrolase in cardiovascular physiology. <i>Physiological Reviews</i> , 2012 , 92, 101-30	47.9	261
153 152		47·9 5·2	261 16
	92, 101-30 11,12,20-Trihydroxy-eicosa-8(Z)-enoic acid: a selective inhibitor of 11,12-EET-induced relaxations of bovine coronary and rat mesenteric arteries. <i>American Journal of Physiology - Heart and Circulatory</i>		,
152	92, 101-30 11,12,20-Trihydroxy-eicosa-8(Z)-enoic acid: a selective inhibitor of 11,12-EET-induced relaxations of bovine coronary and rat mesenteric arteries. <i>American Journal of Physiology - Heart and Circulatory Physiology</i> , 2012 , 302, H1574-83 Soluble epoxide hydrolase inhibition and peroxisome proliferator activated receptor lagonist improve vascular function and decrease renal injury in hypertensive obese rats. <i>Experimental</i>	5.2	16
152 151	92, 101-30 11,12,20-Trihydroxy-eicosa-8(Z)-enoic acid: a selective inhibitor of 11,12-EET-induced relaxations of bovine coronary and rat mesenteric arteries. <i>American Journal of Physiology - Heart and Circulatory Physiology</i> , 2012 , 302, H1574-83 Soluble epoxide hydrolase inhibition and peroxisome proliferator activated receptor lagonist improve vascular function and decrease renal injury in hypertensive obese rats. <i>Experimental Biology and Medicine</i> , 2012 , 237, 1402-12 Soluble epoxide hydrolase inhibition exhibits antihypertensive actions independently of nitric oxide	5.2 3·7	16 50
152 151 150	92, 101-30 11,12,20-Trihydroxy-eicosa-8(Z)-enoic acid: a selective inhibitor of 11,12-EET-induced relaxations of bovine coronary and rat mesenteric arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H1574-83 Soluble epoxide hydrolase inhibition and peroxisome proliferator activated receptor lagonist improve vascular function and decrease renal injury in hypertensive obese rats. Experimental Biology and Medicine, 2012, 237, 1402-12 Soluble epoxide hydrolase inhibition exhibits antihypertensive actions independently of nitric oxide in mice with renovascular hypertension. Kidney and Blood Pressure Research, 2012, 35, 595-607 Soluble epoxide hydrolase deficiency alters pancreatic islet size and improves glucose homeostasis in a model of insulin resistance. FASEB Journal, 2012, 26, 686.4	5.2 3.7 3.1	16 50
152 151 150	92, 101-30 11,12,20-Trihydroxy-eicosa-8(Z)-enoic acid: a selective inhibitor of 11,12-EET-induced relaxations of bovine coronary and rat mesenteric arteries. <i>American Journal of Physiology - Heart and Circulatory Physiology</i> , 2012, 302, H1574-83 Soluble epoxide hydrolase inhibition and peroxisome proliferator activated receptor lagonist improve vascular function and decrease renal injury in hypertensive obese rats. <i>Experimental Biology and Medicine</i> , 2012, 237, 1402-12 Soluble epoxide hydrolase inhibition exhibits antihypertensive actions independently of nitric oxide in mice with renovascular hypertension. <i>Kidney and Blood Pressure Research</i> , 2012, 35, 595-607 Soluble epoxide hydrolase deficiency alters pancreatic islet size and improves glucose homeostasis in a model of insulin resistance <i>FASEB Journal</i> , 2012, 26, 686.4 Novel Orally Active Epoxyeicosatrienoic Acid (EET) Analogs Attenuate Cisplatin Nephrotoxicity.	5.2 3.7 3.1	16 50
152 151 150 149 148	92, 101-30 11,12,20-Trihydroxy-eicosa-8(Z)-enoic acid: a selective inhibitor of 11,12-EET-induced relaxations of bovine coronary and rat mesenteric arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H1574-83 Soluble epoxide hydrolase inhibition and peroxisome proliferator activated receptor lagonist improve vascular function and decrease renal injury in hypertensive obese rats. Experimental Biology and Medicine, 2012, 237, 1402-12 Soluble epoxide hydrolase inhibition exhibits antihypertensive actions independently of nitric oxide in mice with renovascular hypertension. Kidney and Blood Pressure Research, 2012, 35, 595-607 Soluble epoxide hydrolase deficiency alters pancreatic islet size and improves glucose homeostasis in a model of insulin resistance FASEB Journal, 2012, 26, 686.4 Novel Orally Active Epoxyeicosatrienoic Acid (EET) Analogs Attenuate Cisplatin Nephrotoxicity. FASEB Journal, 2012, 26, 851.7 Inhibition of soluble epoxide hydrolase improves the impaired pressure-natriuresis relationship and attenuates the development of hypertension and hypertension-associated end-organ damage in	5.2 3.7 3.1 0.9 0.9	16 50 23

144	Deletion of soluble epoxide hydrolase gene improves renal endothelial function and reduces renal inflammation and injury in streptozotocin-induced type 1 diabetes. <i>American Journal of Physiology - Regulatory Integrative and Comparative Physiology</i> , 2011 , 301, R1307-17	3.2	62
143	Cytochrome P450 eicosanoids and cerebral vascular function. <i>Expert Reviews in Molecular Medicine</i> , 2011 , 13, e7	6.7	55
142	Soluble epoxide hydrolase deficiency alters pancreatic islet size and improves glucose homeostasis in a model of insulin resistance. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 9038-43	11.5	115
141	Glomerular expression of kidney injury molecule-1 and podocytopenia in diabetic glomerulopathy. <i>American Journal of Nephrology</i> , 2011 , 34, 268-80	4.6	41
140	Role of cytochrome P-450 metabolites in the regulation of renal function and blood pressure in 2-kidney 1-clip hypertensive rats. <i>American Journal of Physiology - Regulatory Integrative and Comparative Physiology</i> , 2011 , 300, R1468-75	3.2	30
139	Soluble epoxide hydrolase contamination of specific catalase preparations inhibits epoxyeicosatrienoic acid vasodilation of rat renal arterioles. <i>American Journal of Physiology - Renal Physiology</i> , 2011 , 301, F765-72	4.3	4
138	CYP Pathway Modulators Alter Development and Angiogenesis in Zebrafish Embryos. <i>FASEB Journal</i> , 2011 , 25, lb437	0.9	
137	Deletion of soluble epoxide hydrolase gene improves renal endothelial function and reduces renal inflammation and injury in streptozotocin-induced type 1 diabetes. <i>FASEB Journal</i> , 2011 , 25, 664.10	0.9	
136	Development of epoxyeicosatrienoic acid analogs with in vivo anti-hypertensive actions. <i>Frontiers in Physiology</i> , 2010 , 1, 157	4.6	43
135	20-hydroxyeicosatetraenoic acid and angiotensin: a positive feedback system to cause hypertension. <i>Hypertension</i> , 2010 , 56, 822-3	8.5	2
134	Endothelial expression of human cytochrome P450 epoxygenases lowers blood pressure and attenuates hypertension-induced renal injury in mice. <i>FASEB Journal</i> , 2010 , 24, 3770-81	0.9	116
133	Simvastatin and tempol protect against endothelial dysfunction and renal injury in a model of obesity and hypertension. <i>American Journal of Physiology - Renal Physiology</i> , 2010 , 298, F86-94	4.3	39
132	Regulation of ENaC-Mediated Sodium Reabsorption by Peroxisome Proliferator-Activated Receptors. <i>PPAR Research</i> , 2010 , 2010, 703735	4.3	12
131	Epoxyeicosatrienoic acid analogs and vascular function. <i>Current Medicinal Chemistry</i> , 2010 , 17, 1181-90	4.3	85
130	Intrarenal cytochrome P-450 metabolites of arachidonic acid in the regulation of the nonclipped kidney function in two-kidney, one-clip Goldblatt hypertensive rats. <i>Journal of Hypertension</i> , 2010 , 28, 582-93	1.9	18
129	Targeting epoxides for organ damage in hypertension. <i>Journal of Cardiovascular Pharmacology</i> , 2010 , 56, 329-35	3.1	49
128	Obesity is the major contributor to vascular dysfunction and inflammation in high-fat diet hypertensive rats. <i>Clinical Science</i> , 2010 , 118, 291-301	6.5	66
127	Combined inhibition of 20-hydroxyeicosatetraenoic acid formation and of epoxyeicosatrienoic acids degradation attenuates hypertension and hypertension-induced end-organ damage in Ren-2 transgenic rats. Clinical Science 2010, 118, 617-32	6.5	37

(2009-2010)

126	Impaired mesenteric resistance artery relaxation to KATP channel activation in cardiometabolic syndrome is improved by rosiglitazone treatment. <i>FASEB Journal</i> , 2010 , 24, 978.9	0.9	
125	Soluble Epoxide Hydrolase Inhibition (SEHi) and Thiazolidinedione (TZD) in combination provide greater renal injury protection in Spontaneously Hypertensive Obese (SHROB) Rats <i>FASEB Journal</i> , 2010 , 24, 812.9	0.9	
124	Attenuated endothelin-1 (ET-1) vasoconstrictor responses in cardiometabolic syndrome are attributed to increased ET-B receptors. <i>FASEB Journal</i> , 2010 , 24, 978.10	0.9	
123	Vascular Endothelial Growth Factor (VEGF) Inhibitors Induce Hypertension, Afferent Arteriolar Dysfunction, and Glomerular Injury. <i>FASEB Journal</i> , 2010 , 24, 575.9	0.9	
122	The Soluble Epoxide Hydrolase Inhibitor AR9281 Decreases Blood Pressure, Ameliorates Renal Injury and Improves Vascular Function in Hypertension. <i>Pharmaceuticals</i> , 2009 , 2, 217-227	5.2	17
121	Increased renal proximal convoluted tubule transport contributes to hypertension in Cyp4a14 knockout mice. <i>Nephron Physiology</i> , 2009 , 113, p23-8		21
120	Soluble epoxide hydrolase gene deletion attenuates renal injury and inflammation with DOCA-salt hypertension. <i>American Journal of Physiology - Renal Physiology</i> , 2009 , 297, F740-8	4.3	109
119	Adenosine2A receptors and epoxyeicosatrienoic acids: a recipe for salt and blood pressure regulation. <i>Hypertension</i> , 2009 , 54, 1223-5	8.5	2
118	Mechanisms involved in oleamide-induced vasorelaxation in rat mesenteric resistance arteries. <i>European Journal of Pharmacology</i> , 2009 , 607, 143-50	5.3	36
117	Soluble epoxide hydrolase as a therapeutic target for cardiovascular diseases. <i>Nature Reviews Drug Discovery</i> , 2009 , 8, 794-805	64.1	458
116	Obesity induced renal oxidative stress contributes to renal injury in salt-sensitive hypertension. <i>Clinical and Experimental Pharmacology and Physiology</i> , 2009 , 36, 724-8	3	23
115	Soluble epoxide inhibition is protective against cerebral ischemia via vascular and neural protection. <i>American Journal of Pathology</i> , 2009 , 174, 2086-95	5.8	93
114	Administration of a substituted adamantyl urea inhibitor of soluble epoxide hydrolase protects the kidney from damage in hypertensive Goto-Kakizaki rats. <i>Clinical Science</i> , 2009 , 116, 61-70	6.5	69
113	SPARC deficiency ameliorates renal damage resulting from angiotensin II and a high salt diet. <i>FASEB Journal</i> , 2009 , 23, 604.1	0.9	
112	Renal mechanisms of antihypertensive effects caused by inhibition of soluble epoxide hydrolase in Cyp1a1-Ren-2 transgenic rats <i>FASEB Journal</i> , 2009 , 23, 1016.4	0.9	
111	LC-MS measurement of the epoxyeicosatrienoic acid mimetic EET-8-ZE-D in rat serum. <i>FASEB Journal</i> , 2009 , 23, 1019.13	0.9	
110	Development of combined soluble epoxide hydrolase inhibitors and epoxide analogs with vasodilator activity. <i>FASEB Journal</i> , 2009 , 23, 766.2	0.9	
109	Epoxyeicosatrienoic acids (EET) contribute to flow-induced dilation in mice mesenteric resistance artery. <i>FASEB Journal</i> , 2009 , 23, 932.1	0.9	

108	SPARC ameliorates ovarian cancer-associated inflammation. <i>Neoplasia</i> , 2008 , 10, 1092-104	6.4	50
107	The Renal Microcirculation 2008 , 550-683		6
106	Identification of novel endogenous cytochrome p450 arachidonate metabolites with high affinity for cannabinoid receptors. <i>Journal of Biological Chemistry</i> , 2008 , 283, 24514-24	5.4	58
105	The Renal Microcirculation 2008 , 550-683		20
104	Increased blood pressure in mice lacking cytochrome P450 2J5. FASEB Journal, 2008, 22, 4096-108	0.9	52
103	TNF-alpha inhibition reduces renal injury in DOCA-salt hypertensive rats. <i>American Journal of Physiology - Regulatory Integrative and Comparative Physiology</i> , 2008 , 294, R76-83	3.2	108
102	Endothelial dysfunction and the development of renal injury in spontaneously hypertensive rats fed a high-fat diet. <i>Hypertension</i> , 2008 , 51, 352-9	8.5	74
101	Eicosanoids and renal damage in cardiometabolic syndrome. <i>Expert Opinion on Drug Metabolism and Toxicology</i> , 2008 , 4, 165-74	5.5	46
100	Afferent arteriolar dilation to 11, 12-EET analogs involves PP2A activity and Ca2+-activated K+ Channels. <i>Microcirculation</i> , 2008 , 15, 137-50	2.9	56
99	Soluble Epoxide Inhibition Differentially Modulates Flow Induced Vascular Remodeling in Spontaneously Hypertensive Stroke Prone Rats and Wistar Kyoto Rats. <i>FASEB Journal</i> , 2008 , 22, 479.42	0.9	
98	Soluble epoxide hydrolase inhibition attenuates the development of renovascular hypertension in 2K1C rats <i>FASEB Journal</i> , 2008 , 22, 479.7	0.9	
97	Simvastatin and Tempol Protect Against Endothelial Dysfunction and Renal Injury in a Model of Obesity and Hypertension. <i>FASEB Journal</i> , 2008 , 22, 947.8	0.9	
96	Soluble Epoxide Hydrolase Inhibition Modulates Gene Expression of Anti-Apoptotic and Apoptotic Factors. <i>FASEB Journal</i> , 2008 , 22, 733.11	0.9	1
95	Soluble epoxide hydrolase inhibitor improves cardiac ischemic tolerance in Ren-2 transgenic rats. <i>FASEB Journal</i> , 2008 , 22, 479.6	0.9	
94	The divergent role of epoxyeicosatrienoic acids in the regulation of renal function in normotensive and two-kidney one-clip Goldblatt hypertensive rats. <i>FASEB Journal</i> , 2008 , 22, 761.1	0.9	
93	Ether epoxyeicosatrienoic acid (EET) analogs lower blood pressure when administered in-vivo to the spontaneously hypertensive rats. <i>FASEB Journal</i> , 2008 , 22, 479.44	0.9	2
92	Synergistic actions of enalapril and tempol during chronic angiotensin II-induced hypertension. <i>Vascular Pharmacology</i> , 2007 , 46, 144-51	5.9	12
91	Effects of chronic cytochrome P-450 inhibition on the course of hypertension and end-organ damage in Ren-2 transgenic rats. <i>Vascular Pharmacology</i> , 2007 , 47, 145-59	5.9	32

(2006-2007)

90	Protein phosphatase 2A and Ca2+-activated K+ channels contribute to 11,12-epoxyeicosatrienoic acid analog mediated mesenteric arterial relaxation. <i>Prostaglandins and Other Lipid Mediators</i> , 2007 , 83, 50-61	3.7	41
89	Obesity, insulin resistance, and renal function. <i>Microcirculation</i> , 2007 , 14, 349-62	2.9	59
88	Roles of the cytochrome P450 arachidonic acid monooxygenases in the control of systemic blood pressure and experimental hypertension. <i>Kidney International</i> , 2007 , 72, 683-9	9.9	88
87	Chemokine receptor 2b inhibition provides renal protection in angiotensin II - salt hypertension. <i>Hypertension</i> , 2007 , 50, 1069-76	8.5	62
86	Novel nitric oxide synthasedependent mechanism of vasorelaxation in small arteries from hypertensive rats. <i>Hypertension</i> , 2007 , 49, 893-901	8.5	38
85	Normalization of the ovarian cancer microenvironment by SPARC. <i>Molecular Cancer Research</i> , 2007 , 5, 1015-30	6.6	69
84	IL6 suppression provides renal protection independent of blood pressure in a murine model of salt-sensitive hypertension. <i>Kidney and Blood Pressure Research</i> , 2007 , 30, 195-202	3.1	17
83	The roles of intrarenal 20-hydroxyeicosatetraenoic and epoxyeicosatrienoic acids in the regulation of renal function in hypertensive Ren-2 transgenic rats. <i>Kidney and Blood Pressure Research</i> , 2007 , 30, 335-46	3.1	9
82	Secreted protein acidic and rich in cysteine deficiency ameliorates renal inflammation and fibrosis in angiotensin hypertension. <i>American Journal of Pathology</i> , 2007 , 171, 1104-12	5.8	51
81	Antihypertensive effects of selective prostaglandin E2 receptor subtype 1 targeting. <i>Journal of Clinical Investigation</i> , 2007 , 117, 2496-505	15.9	77
80	Dietary fat increases renal injury in SHR in the absence of changes in insulin sensitivity or blood pressure. <i>FASEB Journal</i> , 2007 , 21, A1194	0.9	
79	Rosaglitazone (RGZ) decreases renal damage in spontaneously diabetic Goto-Kakizaki (GK) rats. <i>FASEB Journal</i> , 2007 , 21, A1194	0.9	
78	Peroxisome proliferators-activated receptor-alpha activation increases renal CYP2C23 and decreases cyclin D1 and blood pressure in Zucker diabetic fatty rats. <i>FASEB Journal</i> , 2007 , 21, A842	0.9	
77	Long-term high fat diet treatment activates NF kappa B signaling and increases endothelial dysfunction in angiotensin II hypertensive rats. <i>FASEB Journal</i> , 2007 , 21, A1196	0.9	
76	High fat diet induces insulin resistance and heightened renal inflammation in angiotensin II hypertensive rats. <i>FASEB Journal</i> , 2007 , 21, A504	0.9	
75	PPAR-alpha activator fenofibrate increases renal CYP-derived eicosanoid synthesis and improves endothelial dilator function in obese Zucker rats. <i>American Journal of Physiology - Heart and Circulatory Physiology</i> , 2006 , 290, H2187-95	5.2	44
74	Angiotensin II hypertension is attenuated in interleukin-6 knockout mice. <i>American Journal of Physiology - Heart and Circulatory Physiology</i> , 2006 , 290, H935-40	5.2	183
73	Endothelin antagonism prevents early EGFR transactivation but not increased matrix metalloproteinase activity in diabetes. <i>American Journal of Physiology - Regulatory Integrative and Comparative Physiology</i> , 2006 , 290, R435-41	3.2	30

72	Tumor necrosis factor alpha blockade increases renal Cyp2c23 expression and slows the progression of renal damage in salt-sensitive hypertension. <i>Hypertension</i> , 2006 , 47, 557-62	8.5	103
71	Increased RhoA/Rho-kinase signaling mediates spontaneous tone in aorta from angiotensin II-induced hypertensive rats. <i>Journal of Pharmacology and Experimental Therapeutics</i> , 2006 , 318, 288-95	4.7	81
70	Cytochrome P450 epoxygenases provide a novel mechanism for penile erection. <i>FASEB Journal</i> , 2006 , 20, 539-41	0.9	19
69	Substituted adamantyl-urea inhibitors of the soluble epoxide hydrolase dilate mesenteric resistance vessels. <i>Journal of Pharmacology and Experimental Therapeutics</i> , 2006 , 318, 1307-14	4.7	38
68	Eicosanoids and renal vascular function in diseases. Clinical Science, 2006, 111, 21-34	6.5	71
67	Eicosanoid Inhibitors as Therapeutic Targets for Metabolic Syndrome Related Kidney Disease. <i>Current Enzyme Inhibition</i> , 2006 , 2, 73-77	0.5	1
66	Cardiovascular therapeutic aspects of soluble epoxide hydrolase inhibitors. <i>Cardiovascular Drug Reviews</i> , 2006 , 24, 169-88		78
65	Urea-based soluble epoxide hydrolase inhibitors dilate mesenteric resistance vessels. <i>FASEB Journal</i> , 2006 , 20, A669	0.9	1
64	Physiological roles of soluble epoxide hydrolase and therapeutic prospects of its inhibition. <i>FASEB Journal</i> , 2006 , 20,	0.9	3
63	CYP450, COX-2 and Obesity Related Renal Damage. <i>Toxicology Mechanisms and Methods</i> , 2005 , 15, 125-	36 6	9
62	An epoxide hydrolase inhibitor, 12-(3-adamantan-1-yl-ureido)dodecanoic acid (AUDA), reduces ischemic cerebral infarct size in stroke-prone spontaneously hypertensive rats. <i>Journal of Cardiovascular Pharmacology</i> , 2005 , 46, 842-8	3.1	106
61	ETA and ETB receptors differentially modulate afferent and efferent arteriolar responses to endothelin. <i>British Journal of Pharmacology</i> , 2005 , 146, 1019-26	8.6	81
60	Decreased epoxygenase and increased epoxide hydrolase expression in the mesenteric artery of obese Zucker rats. <i>American Journal of Physiology - Regulatory Integrative and Comparative Physiology</i> , 2005 , 288, R188-96	3.2	64
59	An orally active epoxide hydrolase inhibitor lowers blood pressure and provides renal protection in salt-sensitive hypertension. <i>Hypertension</i> , 2005 , 46, 975-81	8.5	205
58	Calcium and chloride channel activation by angiotensin II-AT1 receptors in preglomerular vascular smooth muscle cells. <i>American Journal of Physiology - Renal Physiology</i> , 2005 , 289, F760-7	4.3	24
57	L-type calcium channels in the renal microcirculatory response to endothelin. <i>American Journal of Physiology - Renal Physiology</i> , 2005 , 288, F771-7	4.3	26
56	Impaired Ca2+ signaling attenuates P2X receptor-mediated vasoconstriction of afferent arterioles in angiotensin II hypertension. <i>Hypertension</i> , 2005 , 46, 562-8	8.5	36
55	Peroxisome proliferator-activated receptor-alpha activation reduces salt-dependent hypertension during chronic endothelin B receptor blockade. <i>Hypertension</i> , 2005 , 46, 366-71	8.5	34

(2002-2005)

54	Epoxide hydrolase and epoxygenase metabolites as therapeutic targets for renal diseases. <i>American Journal of Physiology - Renal Physiology</i> , 2005 , 289, F496-503	4.3	183
53	Age-related alterations in NOS and oxidative stress in mesenteric arteries from male and female rats. <i>Journal of Applied Physiology</i> , 2004 , 97, 1268-74	3.7	19
52	ACE Inhibition and Bradykinin-Mediated Renal Vascular Responses: EDHF Involvement. <i>Hypertension</i> , 2004 , 43, 533-5	8.5	36
51	P2X receptor-stimulated calcium responses in preglomerular vascular smooth muscle cells involves 20-hydroxyeicosatetraenoic acid. <i>Journal of Pharmacology and Experimental Therapeutics</i> , 2004 , 311, 1211-7	4.7	29
50	20-HETE or EETs: which arachidonic acid metabolite regulates proximal tubule transporters and contributes to pressure natriuresis?. <i>American Journal of Physiology - Regulatory Integrative and Comparative Physiology</i> , 2004 , 287, R3-5	3.2	13
49	Renal autoregulation in P2X1 knockout mice. Acta Physiologica Scandinavica, 2004 , 181, 445-53		58
48	Altered kidney CYP2C and cyclooxygenase-2 levels are associated with obesity-related albuminuria. <i>Obesity</i> , 2004 , 12, 1278-89		41
47	Elevated arterial pressure impairs autoregulation independently of AT(1) receptor activation. <i>Journal of Hypertension</i> , 2004 , 22, 811-8	1.9	28
46	Rofecoxib decreases renal injury in obese Zucker rats. Clinical Science, 2004, 107, 561-70	6.5	40
45	Soluble epoxide hydrolase inhibition protects the kidney from hypertension-induced damage. <i>Journal of the American Society of Nephrology: JASN</i> , 2004 , 15, 1244-53	12.7	147
44	The Bradykinin B2 receptor is required for full expression of renal COX-2 and renin. <i>Peptides</i> , 2003 , 24, 1141-7	3.8	16
43	Salt-sensitive hypertension after exposure to angiotensin is associated with inability to upregulate renal epoxygenases. <i>Hypertension</i> , 2003 , 42, 775-80	8.5	33
42	Decreased renal cytochrome P450 2C enzymes and impaired vasodilation are associated with angiotensin salt-sensitive hypertension. <i>Hypertension</i> , 2003 , 41, 709-14	8.5	92
41	12-Hydroxyeicosatetraenoic acid participates in angiotensin II afferent arteriolar vasoconstriction by activating L-type calcium channels. <i>Journal of Lipid Research</i> , 2003 , 44, 2391-9	6.3	41
40	Downregulation of renal CYP-derived eicosanoid synthesis in rats with diet-induced hypertension. <i>Hypertension</i> , 2003 , 42, 594-9	8.5	63
39	Physiological role for P2X1 receptors in renal microvascular autoregulatory behavior. <i>Journal of Clinical Investigation</i> , 2003 , 112, 1895-905	15.9	131
38	Renal AT1 receptor protein expression during the early stage of diabetes mellitus. <i>International Journal of Experimental Diabetes Research</i> , 2002 , 3, 97-108		36
37	Ang II accumulation in rat renal endosomes during Ang II-induced hypertension: role of AT(1) receptor. <i>Hypertension</i> , 2002 , 39, 116-21	8.5	137

36	Soluble epoxide hydrolase inhibition lowers arterial blood pressure in angiotensin II hypertension. <i>Hypertension</i> , 2002 , 39, 690-4	8.5	345
35	Contribution of prostaglandin EP(2) receptors to renal microvascular reactivity in mice. <i>American Journal of Physiology - Renal Physiology</i> , 2002 , 283, F415-22	4.3	41
34	Adaptations of the renal microcirculation to hypertension. <i>Microcirculation</i> , 2002 , 9, 315-28	2.9	9
33	Adaptations of the Renal Microcirculation to Hypertension. <i>Microcirculation</i> , 2002 , 9, 315-328	2.9	17
32	Epoxygenase metabolites contribute to nitric oxide-independent afferent arteriolar vasodilation in response to bradykinin. <i>Journal of Vascular Research</i> , 2001 , 38, 247-55	1.9	104
31	Alterations in the regulation of androgen-sensitive Cyp 4a monooxygenases cause hypertension. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2001 , 98, 5211-6	11.5	207
30	The CYP450 hydroxylase pathway contributes to P2X receptor-mediated afferent arteriolar vasoconstriction. <i>American Journal of Physiology - Heart and Circulatory Physiology</i> , 2001 , 281, H2089-96	5.2	39
29	Calcium signaling pathways utilized by P2X receptors in freshly isolated preglomerular MVSMC. <i>American Journal of Physiology - Renal Physiology</i> , 2001 , 280, F1054-61	4.3	39
28	Enhanced renal microvascular reactivity to angiotensin II in hypertension is ameliorated by the sulfonimide analog of 11,12-epoxyeicosatrienoic acid. <i>Journal of Hypertension</i> , 2001 , 19, 983-92	1.9	52
27	Early diabetes mellitus stimulates proximal tubule renin mRNA expression in the rat. <i>Kidney International</i> , 2000 , 58, 2320-30	9.9	95
26	Postglomerular vasoconstriction to angiotensin II and norepinephrine depends on intracellular calcium release. <i>General Pharmacology</i> , 2000 , 34, 409-15		20
25	Epoxygenase metabolites. Epithelial and vascular actions. <i>Molecular Biotechnology</i> , 2000 , 16, 233-51	3	35
24	Eicosanoid regulation of the renal vasculature. <i>American Journal of Physiology - Renal Physiology</i> , 2000 , 279, F965-81	4.3	128
23	Cytochrome P450 and cyclooxygenase metabolites contribute to the endothelin-1 afferent arteriolar vasoconstrictor and calcium responses. <i>Hypertension</i> , 2000 , 35, 307-12	8.5	81
22	Endothelin-mediated calcium signaling in preglomerular smooth muscle cells. <i>Hypertension</i> , 2000 , 35, 280-6	8.5	37
21	Afferent arteriolar reactivity to angiotensin II is enhanced during the early phase of angiotensin II hypertension. <i>American Journal of Hypertension</i> , 2000 , 13, 810-8	2.3	40
20	ATP-mediated Ca2+ signaling in preglomerular smooth muscle cells. <i>American Journal of Physiology - Renal Physiology</i> , 1999 , 276, F450-6	4.3	13
19	Renal endosomes contain angiotensin peptides, converting enzyme, and AT(1A) receptors. <i>American Journal of Physiology - Renal Physiology</i> , 1999 , 277, F303-11	4.3	57

18	Purinoceptor-mediated calcium signaling in preglomerular smooth muscle cells. <i>Hypertension</i> , 1999 , 33, 195-200	8.5	40
17	Afferent arteriolar vasodilation to the sulfonimide analog of 11, 12-epoxyeicosatrienoic acid involves protein kinase A. <i>Hypertension</i> , 1999 , 33, 408-13	8.5	87
16	Early onset salt-sensitive hypertension in bradykinin B(2) receptor null mice. <i>Hypertension</i> , 1999 , 34, 17	6 -889	72
15	Cyclooxygenase-2 modulates afferent arteriolar responses to increases in pressure. <i>Hypertension</i> , 1999 , 34, 843-7	8.5	54
14	Neuronal nitric oxide synthase-dependent afferent arteriolar function in angiotensin II-induced hypertension. <i>Hypertension</i> , 1999 , 33, 462-6	8.5	25
13	Contribution of cytochrome P450 epoxygenase and hydroxylase pathways to afferent arteriolar autoregulatory responsiveness. <i>British Journal of Pharmacology</i> , 1999 , 127, 1399-405	8.6	70
12	Heterogeneous activation mechanisms in the renal microvasculature. <i>Kidney International</i> , 1998 , 67, S1	7 -2 9	25
11	Renal uptake of circulating angiotensin II in Val5-angiotensin II infused rats is mediated by AT1 receptor. <i>American Journal of Hypertension</i> , 1998 , 11, 570-8	2.3	84
10	Interactive nitric oxide-angiotensin II influences on renal microcirculation in angiotensin II-induced hypertension. <i>Hypertension</i> , 1998 , 31, 1255-60	8.5	40
9	Calcium mobilization contributes to pressure-mediated afferent arteriolar vasoconstriction. <i>Hypertension</i> , 1998 , 31, 421-8	8.5	38
8	Neuronal nitric oxide synthase modulates rat renal microvascular function. <i>American Journal of Physiology - Renal Physiology</i> , 1998 , 274, F516-24	4.3	61
7	Cyclooxygenase-2 participates in tubular flow-dependent afferent arteriolar tone: interaction with neuronal NOS. <i>American Journal of Physiology - Renal Physiology</i> , 1998 , 275, F605-12	4.3	39
6	Unraveling the Mystery of Goldblatt Hypertension. <i>Physiology</i> , 1998 , 13, 170-176	9.8	50
5	Role of renal nerves in afferent arteriolar reactivity in angiotensin-induced hypertension. <i>Hypertension</i> , 1997 , 29, 442-9	8.5	46
4	Afferent and efferent arteriolar vasoconstriction to angiotensin II and norepinephrine involves release of Ca2+ from intracellular stores. <i>Hypertension</i> , 1997 , 29, 222-7	8.5	59
3	Renal accumulation of circulating angiotensin II in angiotensin II-infused rats. <i>Hypertension</i> , 1996 , 27, 658-62	8.5	76
2	Receptor-mediated intrarenal angiotensin II augmentation in angiotensin II-infused rats. <i>Hypertension</i> , 1996 , 28, 669-77	8.5	135
1	Identification of a putative microvascular oxygen sensor. Circulation Research, 1996, 79, 54-61	15.7	137