
Mingyue Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7021310/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preparation and performance of a biological dust suppressant based on the synergistic effect of enzyme-induced carbonate precipitation and surfactant. Environmental Science and Pollution Research, 2022, 29, 8423-8437.	5.3	7
2	Preparation and evaluation of humic acid–based composite dust suppressant for coal storage and transportation. Environmental Science and Pollution Research, 2022, 29, 17072-17086.	5.3	13
3	Preparation and properties of cellulosenanofiber (CNF) /polyvinyl alcohol (PVA) /graphene oxide (GO): Application of CO2 absorption capacity and molecular dynamics simulation. Journal of Environmental Management, 2022, 302, 114044.	7.8	11
4	Application of zeolite as a bacterial carrier in the self-healing of cement mortar cracks. Construction and Building Materials, 2022, 331, 127324.	7.2	20
5	Self-healing performance of concrete for underground space. Materials and Structures/Materiaux Et Constructions, 2022, 55, .	3.1	5
6	Preparation of Mussel-Inspired Stable-Bonding Dust Binders for Fugitive Dust Control. ACS Applied Polymer Materials, 2022, 4, 5341-5354.	4.4	3
7	Early Warning of Coal Spontaneous Combustion: A Study of CO Response Mechanism Based on PANI/Ti ₃ AlC ₂ Composite Gas Sensing Film**. ChemistrySelect, 2022, 7, .	1.5	1
8	Study on preparation and properties of mineral surfactant – microbial dust suppressant. Powder Technology, 2021, 383, 233-243.	4.2	36
9	Preparation of new gel foam and evaluation of its fire extinguishing performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629, 127443.	4.7	29
10	Preparation of microbial dust suppressant and its application in coal dust suppression. Advanced Powder Technology, 2021, 32, 4509-4521.	4.1	36
11	Development of a novel composite inhibitor modified with proanthocyanidins and mixed with ammonium polyphosphate. Energy, 2020, 213, 118901.	8.8	29
12	Urease producing microorganisms for coal dust suppression isolated from coal: Characterization and comparative study. Advanced Powder Technology, 2020, 31, 4095-4106.	4.1	44
13	Preparation and performance evaluation of environment-friendly biological dust suppressant. Journal of Cleaner Production, 2020, 273, 123162.	9.3	70
14	Application of bacterial spores coated by a green inorganic cementitious material for the self-healing of concrete cracks. Cement and Concrete Composites, 2020, 113, 103718.	10.7	47
15	Coal Dust Consolidation Using Calcium Carbonate Precipitation Induced by Treatment with Mixed Cultures of Urease-Producing Bacteria. Water, Air, and Soil Pollution, 2020, 231, 1.	2.4	26
16	Study of resource utilization and fire prevention characteristics of a novel gel formulated from coal mine sludge (MS). Fuel, 2020, 267, 117261.	6.4	41
17	Carbon dioxide sealing-based inhibition of coal spontaneous combustion: A temperature-sensitive micro-encapsulated fire-retardant foamed gel. Fuel, 2020, 266, 117036.	6.4	56
18	Two-component polyurethane healing system: Effect of different accelerators and capsules on the healing efficiency of dynamic concrete cracks. Construction and Building Materials, 2019, 227, 116700.	7.2	23

#	Article	IF	CITATIONS
19	Growth environment optimization for inducing bacterial mineralization and its application in concrete healing. Construction and Building Materials, 2019, 209, 631-643.	7.2	152
20	Orthogonal Experimental Studies on Preparation of Mine-Filling Materials from Carbide Slag, Granulated Blast-Furnace Slag, Fly Ash, and Flue-Gas Desulphurisation Gypsum. Advances in Materials Science and Engineering, 2018, 2018, 1-12.	1.8	7