Werner J Blau

List of Publications by Citations

Source: https://exaly.com/author-pdf/7021142/werner-j-blau-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 335
 24,190
 69
 149

 papers
 citations
 h-index
 g-index

 376
 25,830
 5.7
 6.59

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
335	Small but strong: A review of the mechanical properties of carbon nanotube p olymer composites. <i>Carbon</i> , 2006 , 44, 1624-1652	10.4	3269
334	Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios. <i>ACS Nano</i> , 2009 , 3, 1767-74	16.7	1343
333	Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. <i>Nature Communications</i> , 2015 , 6, 8563	17.4	764
332	Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. ACS Nano, 2013, 7, 9260-7	16.7	754
331	Identification of Electron Donor States in N-Doped Carbon Nanotubes. <i>Nano Letters</i> , 2001 , 1, 457-460	11.5	659
330	Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films. <i>Journal of Applied Physics</i> , 2002 , 92, 4024-4030	2.5	652
329	Nonlinear Optical Properties of Porphyrins. <i>Advanced Materials</i> , 2007 , 19, 2737-2774	24	644
328	Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites. <i>Applied Physics Letters</i> , 2002 , 81, 5123-5125	3.4	550
327	A Composite from Poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) and Carbon Nanotubes: A Novel Material for Molecular Optoelectronics. <i>Advanced Materials</i> , 1998 , 10, 1091-1093	24	539
326	High Performance Nanotube-Reinforced Plastics: Understanding the Mechanism of Strength Increase. <i>Advanced Functional Materials</i> , 2004 , 14, 791-798	15.6	538
325	Broadband Nonlinear Optical Response of Graphene Dispersions. <i>Advanced Materials</i> , 2009 , 21, 2430-24	435	428
324	Reinforcement of Polymers with Carbon Nanotubes: The Role of Nanotube Surface Area. <i>Nano Letters</i> , 2004 , 4, 353-356	11.5	414
323	Debundling of single-walled nanotubes by dilution: observation of large populations of individual nanotubes in amide solvent dispersions. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 15708-18	3.4	302
322	Towards Solutions of Single-Walled Carbon Nanotubes in Common Solvents. <i>Advanced Materials</i> , 2008 , 20, 1876-1881	24	299
321	Molecular Engineering of Peripherally And Axially Modified Phthalocyanines for Optical Limiting and Nonlinear Optics. <i>Advanced Materials</i> , 2003 , 15, 19-32	24	290
320	Production of Highly Monolayer Enriched Dispersions of Liquid-Exfoliated Nanosheets by Liquid Cascade Centrifugation. <i>ACS Nano</i> , 2016 , 10, 1589-601	16.7	271
319	Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors. <i>Nanoscale</i> , 2014 , 6, 10530-5	7.7	264

(1997-2004)

318	A comparative study of melt spun polyamide-12 fibres reinforced with carbon nanotubes and nanofibres. <i>Polymer</i> , 2004 , 45, 2001-2015	3.9	264
317	Transparent, flexible, and highly conductive thin films based on polymer-nanotube composites. <i>ACS Nano</i> , 2009 , 3, 714-20	16.7	256
316	Graphene oxide covalently functionalized with zinc phthalocyanine for broadband optical limiting. <i>Carbon</i> , 2011 , 49, 1900-1905	10.4	231
315	Improving the mechanical properties of single-walled carbon nanotube sheets by intercalation of polymeric adhesives. <i>Applied Physics Letters</i> , 2003 , 82, 1682-1684	3.4	227
314	A generic organometallic approach toward ultra-strong carbon nanotube polymer composites. <i>Journal of the American Chemical Society</i> , 2004 , 126, 10226-7	16.4	210
313	Reinforcement of polymers with carbon nanotubes. The role of an ordered polymer interfacial region. Experiment and modeling. <i>Polymer</i> , 2006 , 47, 8556-8561	3.9	207
312	A Microscopic and Spectroscopic Study of Interactions between Carbon Nanotubes and a Conjugated Polymer. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 2210-2216	3.4	204
311	Enhancement of Modulus, Strength, and Toughness in Poly(methyl methacrylate)-Based Composites by the Incorporation of Poly(methyl methacrylate)-Functionalized Nanotubes. <i>Advanced Functional Materials</i> , 2006 , 16, 1608-1614	15.6	196
310	Carbon nanotubes and nanotube composites for nonlinear optical devices. <i>Journal of Materials Chemistry</i> , 2009 , 19, 7425		182
309	Ultrafast Nonlinear Excitation Dynamics of Black Phosphorus Nanosheets from Visible to Mid-Infrared. <i>ACS Nano</i> , 2016 , 10, 6923-32	16.7	178
308	Electrical and rheological percolation of PMMA/MWCNT nanocomposites as a function of CNT geometry and functionality. <i>European Polymer Journal</i> , 2010 , 46, 854-868	5.2	168
307	The electrical stimulation of carbon nanotubes to provide a cardiomimetic cue to MSCs. <i>Biomaterials</i> , 2012 , 33, 6132-9	15.6	163
306	The spatial uniformity and electromechanical stability of transparent, conductive films of single walled nanotubes. <i>Carbon</i> , 2009 , 47, 2466-2473	10.4	155
305	Phthalocyanines and Phthalocyanine Analogues: The Quest for Applicable Optical Properties. <i>Monatshefte Fil Chemie</i> , 2001 , 132, 3-11	1.4	154
304	Inorganic and hybrid nanostructures for optical limiting. <i>Journal of Optics</i> , 2009 , 11, 024001		151
303	Transport properties of PMMA-Carbon Nanotubes composites. <i>Synthetic Metals</i> , 2001 , 121, 1215-1216	3.6	141
302	Versatile solution phase triangular silver nanoplates for highly sensitive plasmon resonance sensing. <i>ACS Nano</i> , 2010 , 4, 55-64	16.7	129
301	Third-order optical non-linearity in Zn(II) complexes of 5,10,15,20-tetraarylethynyl-substituted porphyrins. <i>Chemical Physics Letters</i> , 1997 , 267, 229-233	2.5	123

300	Electrophosphoresence from a doped polymer light emitting diode. Synthetic Metals, 2001, 116, 379-38	33 .6	121
299	Selective Interaction in a PolymerBingle-Wall Carbon Nanotube Composite. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 478-482	3.4	120
298	Tunable nonlinear refractive index of two-dimensional MoS_2, WS_2, and MoSe_2 nanosheet dispersions [Invited]. <i>Photonics Research</i> , 2015 , 3, A51	6	117
297	Up-cycling of PET (polyethylene terephthalate) to the biodegradable plastic PHA (polyhydroxyalkanoate). <i>Environmental Science & Environmental Science</i>	10.3	117
296	5,15-A2B2- and 5,15-A2BC-Type Porphyrins with Donor and Acceptor Groups for Use in Nonlinear Optics and Photodynamic Therapy. <i>European Journal of Organic Chemistry</i> , 2011 , 2011, 5797-5816	3.2	113
295	Fabrication and Characterization of Silver/Polyaniline Composite Nanowires in Porous Anodic Alumina. <i>Chemistry of Materials</i> , 2007 , 19, 4252-4258	9.6	110
294	Ordered DNA wrapping switches on luminescence in single-walled nanotube dispersions. <i>Journal of the American Chemical Society</i> , 2008 , 130, 12734-44	16.4	107
293	Interconnecting carbon nanotubes with an inorganic metal complex. <i>Journal of the American Chemical Society</i> , 2002 , 124, 13694-5	16.4	105
292	Solubility of Mo6S4.5I4.5 nanowires in common solvents: a sedimentation study. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 7124-33	3.4	102
291	Alkynyl substituted phthalocyanine derivatives as targets for optical limiting. <i>Journal of Materials Chemistry</i> , 2003 , 13, 749-753		102
291 290		10.4	102 99
	Chemistry, 2003 , 13, 749-753	10.4	99
290	Chemistry, 2003, 13, 749-753 Synthesis and analysis of thin conducting pyrolytic carbon films. Carbon, 2012, 50, 1216-1226 Enhanced device performance using different carbon nanotube types in polymer photovoltaic	,	99
290 289	Chemistry, 2003, 13, 749-753 Synthesis and analysis of thin conducting pyrolytic carbon films. Carbon, 2012, 50, 1216-1226 Enhanced device performance using different carbon nanotube types in polymer photovoltaic devices. Carbon, 2008, 46, 2067-2075 Enhanced brightness in organic light-emitting diodes using a carbon nanotube composite as an	10.4	99
290 289 288	Synthesis and analysis of thin conducting pyrolytic carbon films. <i>Carbon</i> , 2012 , 50, 1216-1226 Enhanced device performance using different carbon nanotube types in polymer photovoltaic devices. <i>Carbon</i> , 2008 , 46, 2067-2075 Enhanced brightness in organic light-emitting diodes using a carbon nanotube composite as an electron-transport layer. <i>Journal of Applied Physics</i> , 2001 , 90, 969-975 Solvent Effect on Optical Limiting Properties of Single-Walled Carbon Nanotube Dispersions.	10.4	99 98 98
290 289 288 287	Chemistry, 2003, 13, 749-753 Synthesis and analysis of thin conducting pyrolytic carbon films. Carbon, 2012, 50, 1216-1226 Enhanced device performance using different carbon nanotube types in polymer photovoltaic devices. Carbon, 2008, 46, 2067-2075 Enhanced brightness in organic light-emitting diodes using a carbon nanotube composite as an electron-transport layer. Journal of Applied Physics, 2001, 90, 969-975 Solvent Effect on Optical Limiting Properties of Single-Walled Carbon Nanotube Dispersions. Journal of Physical Chemistry C, 2008, 112, 2298-2303 Carbon nanotubes for reinforcement of plastics? A case study with poly(vinyl alcohol). Composites	2.5	99 98 98 96
290 289 288 287 286	Synthesis and analysis of thin conducting pyrolytic carbon films. <i>Carbon</i> , 2012 , 50, 1216-1226 Enhanced device performance using different carbon nanotube types in polymer photovoltaic devices. <i>Carbon</i> , 2008 , 46, 2067-2075 Enhanced brightness in organic light-emitting diodes using a carbon nanotube composite as an electron-transport layer. <i>Journal of Applied Physics</i> , 2001 , 90, 969-975 Solvent Effect on Optical Limiting Properties of Single-Walled Carbon Nanotube Dispersions. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 2298-2303 Carbon nanotubes for reinforcement of plastics? A case study with poly(vinyl alcohol). <i>Composites Science and Technology</i> , 2007 , 67, 1640-1649	10.4 2.5 3.8 8.6	99 98 98 96

(2006-2007)

282	Spontaneous Debundling of Single-Walled Carbon Nanotubes in DNA-Based Dispersions. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 66-74	3.8	89
281	High-Yield, Nondestructive Purification and Quantification Method for Multiwalled Carbon Nanotubes. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 3087-3091	3.4	89
280	Third-order optical nonlinearity and all-optical switching in porous silicon. <i>Applied Physics Letters</i> , 1995 , 67, 323-325	3.4	87
279	A survey on the functionalization of single-walled nanotubes. The chemical attachment of phthalocyanine moieties. <i>Nanotechnology</i> , 2003 , 14, 765-771	3.4	86
278	Graphene and its derivatives for laser protection. <i>Progress in Materials Science</i> , 2016 , 84, 118-157	42.2	85
277	Observation of Percolation-like Scaling IFar from the Percolation Threshold In High Volume Fraction, High Conductivity Polymer-Nanotube Composite Films. <i>Advanced Materials</i> , 2007 , 19, 4443-44	4 7 4	84
276	Optimisation of the arc-discharge production of multi-walled carbon nanotubes. <i>Carbon</i> , 2002 , 40, 923-9	9 28 .4	84
275	Soluble axially substituted phthalocyanines: Synthesis and nonlinear optical response. <i>Journal of Materials Science</i> , 2006 , 41, 2169	4.3	82
274	Reinforcement of poly(vinyl chloride) and polystyrene using chlorinated polypropylene grafted carbon nanotubes. <i>Journal of Materials Chemistry</i> , 2006 , 16, 4206		81
273	Carbon-nanotube nucleated crystallinity in a conjugated polymer based composite. <i>Chemical Physics Letters</i> , 2004 , 391, 329-333	2.5	81
272	Preparation and Optical Limiting Properties of Multiwalled Carbon Nanotubes with Econjugated Metal-Free Phthalocyanine Moieties. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 13029-13035	3.8	78
271	Charge transport effects in field emission from carbon nanotube-polymer composites. <i>Applied Physics Letters</i> , 2005 , 87, 263105	3.4	77
270	Raman spectroscopy and conductivity measurements on polymer-multiwalled carbon nanotubes composites. <i>Journal of Materials Research</i> , 2002 , 17, 396-400	2.5	74
269	Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation. <i>Applied Physics Letters</i> , 2014 , 104, 141909	3.4	71
268	Reinforcement of macroscopic carbon nanotube structures by polymer intercalation: The role of polymer molecular weight and chain conformation. <i>Physical Review B</i> , 2005 , 72,	3.3	70
267	New rigid backbone conjugated organic polymers with large fluorescence quantum yields. <i>Journal of the Chemical Society Chemical Communications</i> , 1995 , 1433		70
266	Large Populations of Individual Nanotubes in Surfactant-Based Dispersions without the Need for Ultracentrifugation. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 972-977	3.8	68
265	Linear and nonlinear optical characterization of a tetraphenylporphyrin-carbon nanotube composite system. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 23136-41	3.4	68

264	Saturable Absorption in 2D Nanomaterials and Related Photonic Devices. <i>Laser and Photonics Reviews</i> , 2019 , 13, 1800282	8.3	67
263	Nonlinear optical response of multiwalled carbon-nanotube dispersions. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2003 , 20, 49	1.7	63
262	Nonlinear absorption properties of some 1,4,8,11,15,18,22,25-octaalkylphthalocyanines and their metallated derivatives. <i>Journal of Materials Chemistry</i> , 2003 , 13, 1042		63
261	Material Investigations and Optical Properties of Phthalocyanine Nanoparticles. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 1287-1295	3.4	62
260	Biomolecules as selective dispersants for carbon nanotubes. <i>Carbon</i> , 2005 , 43, 1879-1884	10.4	62
259	Photolysis of phosphodiester bonds in plasmid DNA by high intensity UV laser irradiation. <i>Photochemistry and Photobiology</i> , 1988 , 47, 527-36	3.6	62
258	Synthesis and optical limiting properties of axially bridged phthalocyanines: [(tBu4PcGa)2O] and [(tBu4PcIn)2O]. <i>Chemistry - A European Journal</i> , 2002 , 8, 4248-54	4.8	61
257	Microscopy studies of nanotube-conjugated polymer interactions. Synthetic Metals, 2001, 121, 1225-12	26 .6	60
256	Binding Kinetics and SWNT Bundle Dissociation in Low Concentration Polymer Nanotube Dispersions. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 3446-3450	3.4	59
255	Nonlinear optical performance of chemically tailored phthalocyaninepolymer films as solid-state optical limiting devices. <i>Journal of Optics</i> , 2008 , 10, 075101		58
254	Saturable absorption behavior of free-standing graphene polymer composite films over broad wavelength and time ranges. <i>Optics Express</i> , 2015 , 23, 559-69	3.3	56
253	Cytotoxicity evaluation of nanoclays in human epithelial cell line A549 using high content screening and real-time impedance analysis. <i>Journal of Nanoparticle Research</i> , 2012 , 14, 1	2.3	55
252	Strong, Tough, Electrospun Polymer Nanotube Composite Membranes with Extremely Low Density. <i>Advanced Functional Materials</i> , 2008 , 18, 2618-2624	15.6	55
251	Investigation of different synthetic routes to and structureproperty relationships of poly(m-phenylenevinylene-co-2,5-dioctyloxy-p-phenylenevinylene). <i>Journal of Materials Chemistry</i> , 2003 , 13, 485-490		55
250	Observation of site selective binding in a polymer nanotube composite. <i>Journal of Materials Science Letters</i> , 2000 , 19, 2239-2241		55
249	Molecular Engineering of Nonplanar Porphyrin and Carbon Nanotube Assemblies: A Linear and Nonlinear Spectroscopic and Modeling Study. <i>Journal of Nanotechnology</i> , 2011 , 2011, 1-12	3.5	54
248	Photophysical and Optical Limiting Properties of Axially Modified Phthalocyanines. <i>Mini-Reviews in Organic Chemistry</i> , 2009 , 6, 55-65	1.7	54
247	Nonlinear optical and optical limiting properties of individual single-walled carbon nanotubes. <i>Applied Physics B: Lasers and Optics</i> , 2008 , 91, 521-524	1.9	54

(2010-2005)

246	Solubility of Mo6S4.5I4.5 nanowires. <i>Chemical Physics Letters</i> , 2005 , 401, 13-18	2.5	53
245	Selective Positioning and Density Control of Nanotubes within a Polymer Thin Film. <i>Nano Letters</i> , 2003 , 3, 1333-1337	11.5	51
244	Magnetic properties of ferromagnetic nanowires embedded in nanoporous alumina membranes. Journal of Magnetism and Magnetic Materials, 2002, 249, 241-245	2.8	50
243	Synthesis, Characterization, and Optical-Limiting Properties of Axially Substituted Gallium(III) Naphthalocyanines. <i>Chemistry of Materials</i> , 2002 , 14, 5163-5168	9.6	50
242	The Electronic and Non-linear Optical Properties of Oxo-titanium Phthalocyanines. <i>Journal of Porphyrins and Phthalocyanines</i> , 1999 , 03, 331-338	1.8	50
241	Facile fabrication of wafer-scale MoS2 neat films with enhanced third-order nonlinear optical performance. <i>Nanoscale</i> , 2015 , 7, 2978-86	7.7	49
240	Comparison of carbon nanotubes and nanodisks as percolative fillers in electrically conductive composites. <i>Scripta Materialia</i> , 2008 , 58, 69-72	5.6	49
239	The conversion of BTEX compounds by single and defined mixed cultures to medium-chain-length polyhydroxyalkanoate. <i>Applied Microbiology and Biotechnology</i> , 2008 , 80, 665-73	5.7	49
238	Multiwalled carbon nanotube nucleated crystallization and reinforcement in poly (vinyl alcohol) composites. <i>Synthetic Metals</i> , 2006 , 156, 332-335	3.6	49
237	Materials science. Designer nanotubes by molecular self-assembly. <i>Science</i> , 2004 , 304, 1457-8	33.3	49
236	Excited-state quenching of a highly luminescent conjugated polymer. <i>Applied Physics Letters</i> , 2001 , 78, 1059-1061	3.4	49
235	The effect of solvent choice on the mechanical properties of carbon nanotubepolymer composites. <i>Composites Science and Technology</i> , 2007 , 67, 3158-3167	8.6	48
234	Strain induced photoluminescence from silicon and germanium nanowire arrays. <i>Journal of Materials Chemistry</i> , 2005 , 15, 4809		48
233	Synthesis, characterization and optical limiting properties of a gallium phthalocyanine dimer. Journal of Materials Chemistry, 2005 , 15, 683		47
232	Characterization of an interaction between functionalized carbon nanotubes and an enzyme. Journal of Nanoscience and Nanotechnology, 2003 , 3, 209-13	1.3	47
231	MoS /Carbon Nanotube Core-Shell Nanocomposites for Enhanced Nonlinear Optical Performance. <i>Chemistry - A European Journal</i> , 2017 , 23, 3321-3327	4.8	46
230	Optical Spectroscopy of Isolated and Aggregate Hexabenzocoronene Derivatives: A Study of Self-Assembling Molecular Nanowires. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 37-43	3.4	46
229	Multi-walled carbon nanotubes covalently functionalized with polyhedral oligomeric silsesquioxanes for optical limiting. <i>Carbon</i> , 2010 , 48, 1738-1742	10.4	45

228	A functional conjugated polymer to process, purify and selectively interact with single wall carbon nanotubes. <i>Synthetic Metals</i> , 2001 , 121, 1217-1218	3.6	45
227	Amplified spontaneous emission and optical gain spectra from stilbenoid and phenylene vinylene derivative model compounds. <i>Journal of Applied Physics</i> , 1999 , 86, 6155-6159	2.5	45
226	On the factors controlling the mechanical properties of nanotube films. Carbon, 2008, 46, 41-47	10.4	44
225	A2B2-type push-pull porphyrins as reverse saturable and saturable absorbers. <i>Chemical Communications</i> , 2007 , 2166-8	5.8	44
224	Exfoliation in ecstasy: liquid crystal formation and concentration-dependent debundling observed for single-wall nanotubes dispersed in the liquid drug Ebutyrolactone. <i>Nanotechnology</i> , 2007 , 18, 45570	5 ^{3.4}	43
223	Impure carbon nanotubes as reinforcements for acrylated epoxidized soy oil composites. <i>Journal of Applied Polymer Science</i> , 2005 , 98, 1325-1338	2.9	42
222	Low power nonlinear optical response of C60 and C70 fullerene solutions. <i>Advanced Materials</i> , 1993 , 5, 930-934	24	42
221	Gas phase controlled deposition of high quality large-area graphene films. <i>Chemical Communications</i> , 2010 , 46, 1422-4	5.8	41
220	The examination of the Book of Kells using micro-Raman spectroscopy. <i>Journal of Raman Spectroscopy</i> , 2009 , 40, 1043-1049	2.3	41
219	Observation of van der Waals Driven Self-Assembly of MoSI Nanowires into a Low-Symmetry Structure Using Aberration-Corrected Electron Microscopy. <i>Advanced Materials</i> , 2007 , 19, 543-547	24	41
218	Strong Optical Limiting of Soluble Axially Substituted Gallium and Indium Phthalocyanines. <i>Advanced Materials</i> , 2003 , 15, 899-902	24	40
217	Photoinduced charge transfer in poly(p-phenylene vinylene) derivatives and carbon nanotube/C60 composites. <i>Physica B: Condensed Matter</i> , 2003 , 338, 366-369	2.8	40
216	Control of Optical Limiting of Carbon Nanotube Dispersions by Changing Solvent Parameters. Journal of Physical Chemistry C, 2010 , 114, 6148-6156	3.8	39
215	Optical limiting properties of axially substituted indium phthalocyanines in the solid PMMA composite films. <i>Materials Chemistry and Physics</i> , 2008 , 107, 189-192	4.4	39
214	Linear and nonlinear spectroscopic studies of phthalocyanine-carbon nanotube blends. <i>Chemical Physics Letters</i> , 2008 , 465, 265-271	2.5	39
213	Reversible bending of carbon nanotubes using a transmission electron microscope. <i>Applied Physics Letters</i> , 1998 , 73, 1961-1963	3.4	39
212	Modeling of nonlinear absorption of 5,10-A2B2 porphyrins in the nanosecond regime. <i>Journal of Physical Chemistry A</i> , 2013 , 117, 15-26	2.8	38
211	Bacterially synthesized tellurium nanostructures for broadband ultrafast nonlinear optical applications. <i>Nature Communications</i> , 2019 , 10, 3985	17.4	37

(2007-2005)

210	Synthesis, Characterization, and Optoelectronic Properties of a Novel Polyfluorene/Poly(p-Phenylenevinylene) Copolymer. <i>Chemistry of Materials</i> , 2005 , 17, 1661-1666	9.6	37
209	Fabrication of stable dispersions containing up to 70% individual carbon nanotubes in a common organic solvent. <i>Physica Status Solidi (B): Basic Research</i> , 2006 , 243, 3058-3062	1.3	37
208	Thermogravimetric analysis of cobalt-filled carbon nanotubes deposited by chemical vapour deposition. <i>Thin Solid Films</i> , 2006 , 494, 128-132	2.2	37
207	Fast electro-optical switching and high contrast ratio in epoxy-based polymer dispersed liquid crystals. <i>Optics and Lasers in Engineering</i> , 2003 , 39, 369-377	4.6	37
206	Scattering induced optical limiting in Si/SiO2 nanostructure dispersions. <i>Optics Communications</i> , 2007 , 276, 305-309	2	36
205	Metal Complexes of Phthalocyanines in Polymers as Suitable Materials for Optical Limiting. <i>Macromolecular Symposia</i> , 2006 , 235, 9-18	0.8	36
204	Study of the magnetic hysteresis in arrays of ferromagnetic Fe nanowires as a function of the template filling fraction. <i>Journal of Magnetism and Magnetic Materials</i> , 2004 , 272-276, 1656-1657	2.8	36
203	Ultrafast Carrier Dynamics and Bandgap Renormalization in Layered PtSe. <i>Small</i> , 2019 , 15, e1902728	11	35
202	Physical properties of novel free-standing polymerflanotube thin films. <i>Carbon</i> , 2006 , 44, 1525-1529	10.4	35
201	Optical properties of zinc phthalocyanine nanoparticle dispersions. <i>Chemical Physics Letters</i> , 2004 , 383, 555-560	2.5	35
200	Nonlinear photoluminescence from van Hove singularities in multiwalled carbon nanotubes. <i>Optics Letters</i> , 2003 , 28, 266-8	3	35
199	Complex nano-assemblies of polymers and carbon nanotubes. <i>Nanotechnology</i> , 2001 , 12, 187-190	3.4	35
198	Distributed feedback laser action from polymeric waveguides doped with oligo phenylene vinylene model compounds. <i>Applied Physics Letters</i> , 2000 , 76, 2149-2151	3.4	35
197	In vitro characterization of an electroactive carbon-nanotube-based nanofiber scaffold for tissue engineering. <i>Macromolecular Bioscience</i> , 2011 , 11, 1272-82	5.5	34
196	Synthesis and characterization of polyaniline/carbon nanotube composites. <i>Journal of Applied Polymer Science</i> , 2011 , 119, 1016-1025	2.9	34
195	Frequency Upconversion of 800 nm Ultrashort Pulses by Two-Photon Absorption in a Stilbenoid Compound-Doped Polymer Optical Fiber. <i>Advanced Functional Materials</i> , 2003 , 13, 751-754	15.6	34
194	Observation of extremely low percolation threshold in MoSI nanowire/polymer composites. <i>Scripta Materialia</i> , 2006 , 54, 417-420	5.6	33
193	Dispersion and purification of Mo6S3I6 nanowires in organic solvents. <i>Journal of Applied Physics</i> , 2007 , 101, 014317	2.5	33

192	Combination of phthalocyanine and fullerene moieties for optical limiting. <i>Chemical Physics Letters</i> , 2006 , 428, 307-311	2.5	33
191	Near-infrared laser emission from luminescent plastic waveguides. <i>Applied Physics Letters</i> , 2004 , 85, 18	85-31. 8 7	33
190	Numerical Approach for Optically Limited Pulse Transmission in Polymer-Phthalocyanine Composite Systems. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 17313-17319	3.4	33
189	Synthesis, electrical and magnetotransport properties of polypyrrole-MWCNT nanocomposite. <i>Solid State Communications</i> , 2012 , 152, 13-18	1.6	32
188	Synthesis and strong optical limiting response of graphite oxide covalently functionalized with gallium phthalocyanine. <i>Nanotechnology</i> , 2011 , 22, 205704	3.4	32
187	Graphene and Carbon Nanotube Polymer Composites for Laser Protection. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2011 , 21, 736-746	3.2	32
186	A blue light emitting perylene derivative with improved solubility and aggregation control: Synthesis, characterisation and optical limiting properties. <i>Organic Electronics</i> , 2009 , 10, 674-680	3.5	32
185	Enhanced third-order optical nonlinearity of silver nanoparticles with a tunable surface plasmon resonance. <i>Journal of Nanoscience and Nanotechnology</i> , 2004 , 4, 66-8	1.3	32
184	Electron paramagnetic resonance as a quantitative tool for the study of multiwalled carbon nanotubes. <i>Journal of Chemical Physics</i> , 2000 , 113, 9788-9793	3.9	32
183	All optical switching based on intensity induced absorption in C60. <i>Applied Physics Letters</i> , 1996 , 68, 61	9- <u>6</u> .21	32
182	Mesogenic Zinc(u) complexes of 5,10,15,20- tetraarylethynyl-substituted porphyrins. <i>Advanced Materials</i> , 1997 , 9, 313-316	24	31
181	Enhancement of optical limiting response by embedding gallium phthalocyanine into polymer host. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 189, 414-417	4.7	31
180	Synthesis of SiC nanorods from sheets of single-walled carbon nanotubes. <i>Chemical Physics Letters</i> , 2002 , 359, 397-402	2.5	31
179	Ultrafast Nonlinear Optical Properties of a Graphene Saturable Mirror in the 2 th Wavelength Region. <i>Laser and Photonics Reviews</i> , 2017 , 11, 1700166	8.3	30
178	Carbazole-linked porphyrin dimers for organic light emitting diodes: synthesis and initial photophysical studies. <i>Tetrahedron</i> , 2011 , 67, 8248-8254	2.4	30
177	The importance of solvent properties for optical limiting of carbon nanotube dispersions. <i>Optics Communications</i> , 2010 , 283, 464-468	2	30
176	Iron oxide nanoparticle impregnated mesoporous silicas as platforms for the growth of carbon nanotubes. <i>Microporous and Mesoporous Materials</i> , 2007 , 103, 142-149	5.3	30
175	Effective stimulated emission and excited state absorption measurements in the phenylene ligomer (1,4-bis-(alpha-cyanostyryl)-2,5-dimethoxybenzene)). <i>Chemical Physics Letters</i> , 1999 , 307, 163-166	2.5	30

(2011-2018)

174	Intensity-dependent nonlinear refraction of antimonene dispersions in the visible and near-infrared region. <i>Applied Optics</i> , 2018 , 57, E147-E153	1.7	29	
173	Synthesis and characterisation of controllably functionalised polyaniline nanofibres. <i>Synthetic Metals</i> , 2009 , 159, 741-748	3.6	29	
172	Towards tough, yet stiff, composites by filling an elastomer with single-walled nanotubes at very high loading levels. <i>Nanotechnology</i> , 2008 , 19, 415709	3.4	29	
171	A carbon nanotube composite as an electron transport layer for M3EH-PPV based light-emitting diodes. <i>Synthetic Metals</i> , 2001 , 121, 1683-1684	3.6	29	
170	Beam waist changes in lithium niobate during Z-scan measurement. <i>Journal of Applied Physics</i> , 1995 , 78, 1373-1375	2.5	29	
169	Controllable broadband nonlinear optical response of graphene dispersions by tuning vacuum pressure. <i>Optics Express</i> , 2013 , 21, 16486-93	3.3	28	
168	Correlation studies on structurally diverse porphyrin monomers, dimers and trimers and their nonlinear optical responses. <i>Chemical Physics Letters</i> , 2009 , 477, 330-335	2.5	28	
167	Comparison of different methods to contact to nanowires. <i>Journal of Vacuum Science & Technology B</i> , 2006 , 24, 2306		28	
166	Nonlinear absorption properties of 5,10-A2B2 porphyrinscorrelation of molecular structure with the nonlinear responses. <i>Photochemical and Photobiological Sciences</i> , 2013 , 12, 996-1007	4.2	27	
165	Optical limiting study of double wall carbon nanotube Eullerene hybrids. <i>Chemical Physics Letters</i> , 2010 , 489, 207-211	2.5	27	
164	Debundling by dilution: Observation of significant populations of individual MoSI nanowires in high concentration dispersions. <i>Chemical Physics Letters</i> , 2006 , 425, 89-93	2.5	27	
163	New axially aryloxy substituted gallium phthalocyanines for nonlinear optics. <i>Journal of Materials Chemistry</i> , 2003 , 13, 2405		27	
162	Two-Photon Absorption in Monolayer MXenes. Advanced Optical Materials, 2020, 8, 1902021	8.1	26	
161	Nonlinear optical performance of few-layer molybdenum diselenide as a slow-saturable absorber. <i>Photonics Research</i> , 2018 , 6, 674	6	26	
160	Photophysical studies on axially substituted indium and gallium phthalocyanines upon UVIV is laser irradiation. <i>Solid State Communications</i> , 2004 , 131, 773-778	1.6	26	
159	Characterization of Covalent Functionalized Carbon Nanotubes. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 9665-9668	3.4	26	
158	Nonlinear optical properties of carbon nanotube hybrids in polymer dispersions. <i>Materials Chemistry and Physics</i> , 2012 , 133, 992-997	4.4	25	
157	Anomalous electrical transport properties of polyvinyl alcohol-multiwall carbon nanotubes composites below room temperature. <i>Journal of Applied Physics</i> , 2011 , 109, 033707	2.5	25	

156	Activation behavior and dielectric relaxation in polyvinyl alcohol and multiwall carbon nanotube composite films. <i>Solid State Communications</i> , 2011 , 151, 754-758	1.6	25
155	Optical properties of a novel alkoxy-substituted poly (p-phenylene 1,3,4-oxadiazoles) for electro-optical devices. <i>Materials Chemistry and Physics</i> , 2003 , 77, 945-951	4.4	25
154	Spectroscopic investigation of conjugated polymer/single-walled carbon nanotube interactions. <i>Chemical Physics Letters</i> , 2001 , 350, 27-32	2.5	25
153	Spectroscopic changes induced by sonication of porphyrinBarbon nanotube composites in chlorinated solvents. <i>Carbon</i> , 2007 , 45, 2665-2671	10.4	24
152	A facile organolithium route to ferrocene-based triarylmethyl dyes with substantial near IR and NLO properties. <i>Journal of Organometallic Chemistry</i> , 2005 , 690, 1620-1626	2.3	24
151	Multiwalled carbon nanotubes covalently functionalized with poly(N-vinylcarbazole) via RAFT polymerization: Synthesis and nonliner optical properties. <i>Journal of Polymer Science Part A</i> , 2010 , 48, 3161-3168	2.5	23
150	Quantifying the contributions of inner-filter, re-absorption and aggregation effects in the photoluminescence of high-concentration conjugated polymer solutions. <i>Journal of Luminescence</i> , 2008 , 128, 31-40	3.8	23
149	Hybrid light-emitting polymer device fabricated on a metallic nanowire array. <i>Applied Physics Letters</i> , 2005 , 86, 143503	3.4	23
148	Photophysical and nonlinear optical properties of Ebxo-bridged indium and gallium phthalocyanines. <i>Dyes and Pigments</i> , 2007 , 75, 88-92	4.6	22
147	Optoelectronic and nonlinear optical properties of tBu4PcTiO/polymer composite materials. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2007 , 185, 263-270	4.7	22
146	Layered PtSe for Sensing, Photonic, and (Opto-)Electronic Applications. <i>Advanced Materials</i> , 2021 , 33, e2004070	24	22
145	Toughening of artificial silk by incorporation of carbon nanotubes. <i>Biomacromolecules</i> , 2007 , 8, 3973-6	6.9	21
144	Base-specific photocleavage of DNA induced by nanosecond U.V. pulsed laser radiation or methylene blue sensitisation. <i>Journal of the Chemical Society Chemical Communications</i> , 1987 , 751		21
143	Fabrication and near-infrared optical responses of 2D periodical Au/ITO nanocomposite arrays. <i>Photonics Research</i> , 2017 , 5, 280	6	20
142	Exploring the mechanisms of carbon-nanotube dispersion aggregation in a highly polar solvent. <i>Europhysics Letters</i> , 2008 , 83, 66009	1.6	20
141	Scaling of Surface Plasmon Resonances in Triangular Silver Nanoplate Sols for Enhanced Refractive Index Sensing. <i>Plasmonics</i> , 2011 , 6, 351-362	2.4	19
140	Light amplification at 501nm and large nanosecond optical gain in organic dye-doped polymeric waveguides. <i>Applied Physics Letters</i> , 2006 , 88, 161114	3.4	19
139	Functionalised multi-walled carbon nanotubes for epoxy nanocomposites with improved performance. <i>Polymer International</i> , 2009 , 58, 1002-1009	3.3	18

(2001-2010)

138	Characterization and electrical transport properties of polyaniline and multiwall carbon nanotube composites. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2010 , 48, 1767-1775	2.6	18
137	Simple setup for rapid testing of third-order nonlinear optical materials. <i>Applied Optics</i> , 1990 , 29, 31-6	1.7	18
136	Wash-free highly sensitive detection of C-reactive protein using gold derivatised triangular silver nanoplates. <i>RSC Advances</i> , 2014 , 4, 29022-29031	3.7	17
135	Phthalocyaninatoindium(III) Acetylacetonates for Nonlinear Optics. <i>European Journal of Organic Chemistry</i> , 2004 , 2004, 101-108	3.2	17
134	An Axially Grafted Charm Bracelet Type Indium Phthalocyanine Copolymer. <i>Macromolecules</i> , 2003 , 36, 3786-3788	5.5	17
133	Covalent modification of graphene oxide with carbazole groups for laser protection. <i>Chemistry - A European Journal</i> , 2015 , 21, 4622-7	4.8	16
132	Optical and nonlinear optical properties of an octasubstituted liquid crystalline copper phthalocyanine. <i>Dyes and Pigments</i> , 2008 , 76, 569-573	4.6	16
131	Conjugated polymer covalently modified multiwalled carbon nanotubes for optical limiting. <i>Journal of Polymer Science Part A</i> , 2011 , 49, 101-109	2.5	15
130	Cavity-enhanced stimulated emission cross section in polymer microlasers. <i>Applied Physics Letters</i> , 2008 , 93, 143306	3.4	15
129	Exfoliation of Mo6SxI9-xnanowires in common solvents. <i>EPJ Applied Physics</i> , 2007 , 37, 149-159	1.1	15
128	Nonlinear optical response of Mo6S4.5I4.5 nanowires. <i>Chemical Physics Letters</i> , 2007 , 435, 109-113	2.5	15
127	Optimal polymer characteristics for nanotube solubility. <i>Synthetic Metals</i> , 2001 , 121, 1187-1188	3.6	15
126	The effect of Nd:YAG pulse duration on dentine crater depth. <i>Journal of Dentistry</i> , 2001 , 29, 43-53	4.8	15
125	Systematic trends in the synthesis of (meta-phenylene vinylene) copolymers. <i>Synthetic Metals</i> , 2001 , 119, 151-152	3.6	14
124	Strong nonlinear photonic responses from microbiologically synthesized tellurium nanocomposites. <i>Chemical Physics Letters</i> , 2010 , 484, 242-246	2.5	13
123	Blue-green small-signal gain and saturation in a luminescent polymer gain medium. <i>Applied Physics Letters</i> , 2006 , 89, 131119	3.4	13
122	Measurement of nanotube content in pyrolytically generated carbon soot. <i>Chemical Communications</i> , 2000 , 2001-2002	5.8	13
121	Blue amplified spontaneous emission from a stilbenoid-compound-doped polymer optical fiber. <i>Optics Letters</i> , 2001 , 26, 1952-4	3	13

120	Nonlinear absorption in polydiacetylene waveguides. <i>Applied Physics Letters</i> , 1995 , 66, 786-788	3.4	13
119	Hybrid Plasmonic Nanostructures with Unconventional Nonlinear Optical Properties. <i>Advanced Optical Materials</i> , 2014 , 2, 331-337	8.1	12
118	In situ synthesis and optical limiting response of poly(N-vinylcarbazole) functionalized single-walled carbon nanotubes. <i>Nanotechnology</i> , 2011 , 22, 015204	3.4	12
117	Characterization of melanin-overproducing transposon mutants of Pseudomonas putida F6. <i>FEMS Microbiology Letters</i> , 2009 , 298, 174-83	2.9	12
116	Low-power continuous-wave nonlinearity and all-optical switching in fullerene solution 1996,		12
115	Silver Nanoparticle Self-organization into Dendritic Fractals. Synthetic Metals, 2005, 154, 205-208	3.6	12
114	Carbon Nanotube Nucleated Polymer Crystallization. <i>Fullerenes Nanotubes and Carbon Nanostructures</i> , 2005 , 13, 431-434	1.8	12
113	Solubility and purity of nanotubes in arc discharge carbon powder. Synthetic Metals, 2001, 121, 1229-1	23306	12
112	Third order optical non-linearity of substituted triazolehemiporphyrazines. <i>Synthetic Metals</i> , 2001 , 121, 1481-1482	3.6	12
111	Indium(III) and Gallium(III) phthalocyanines-based nanohybrid materials for optical limiting. <i>Materials Chemistry and Physics</i> , 2012 , 137, 188-193	4.4	11
110	Optical switching property from a laser beam propagating in a polymer dispersed liquid crystal film. Liquid Crystals, 2001 , 28, 1831-1837	2.3	11
109	Broadband saturable absorption and exciton-exciton annihilation in MoSe2 composite thin films. <i>Optical Materials Express</i> , 2019 , 9, 483	2.6	11
108	A general strategy for hybrid thin film fabrication and transfer onto arbitrary substrates. <i>Scientific Reports</i> , 2014 , 4, 4822	4.9	10
107	Nonlinear optical propagation in a tandem structure comprising nonlinear absorption and scattering materials. <i>Applied Physics Letters</i> , 2014 , 104, 021110	3.4	10
106	A COMPOSITE FROM SOY OIL AND CARBON NANOTUBES. <i>International Journal of Nanoscience</i> , 2003 , 02, 185-194	0.6	10
105	Light amplification and lasing in a stilbenoid compound-doped glass-clad polymer optical fiber. <i>IEEE Journal of Quantum Electronics</i> , 2003 , 39, 664-672	2	10
104	Nonlinear photoluminescence in multiwall carbon nanotubes. <i>Synthetic Metals</i> , 2001 , 119, 641-642	3.6	10
103	Laser emission at 0.8th from photopumped luminescent polymer microresonators. <i>Applied Physics Letters</i> , 2006 , 88, 181119	3.4	9

102	Synthesis and Optical Limiting Properties of Axially Bridged Phthalocyanines: [(tBu4PcGa)2O] and [(tBu4PcIn)2O]. <i>Chemistry - A European Journal</i> , 2002 , 8, 4829-4829	4.8	9
101	Light amplification and lasing in a (meta-phenylene vinylene) copolymer. <i>Journal of Applied Physics</i> , 2003 , 93, 1871-1873	2.5	9
100	Laser emission from conjugated polymer in fibre waveguide structure. <i>Electronics Letters</i> , 2002 , 38, 67	1.1	9
99	Nonlinear optics: Dipoles align inside a nanotube. <i>Nature Nanotechnology</i> , 2015 , 10, 205-6	28.7	8
98	Laser induced protonation of free base porphyrin in chloroform results in the enhancement of positive nonlinear absorption due to conformational distortion. <i>Journal of Porphyrins and Phthalocyanines</i> , 2013 , 17, 1129-1133	1.8	8
97	Optical characterization of oxide encapsulated silicon nanowires of various morphologies. <i>Journal of Nanoscience and Nanotechnology</i> , 2008 , 8, 4202-6	1.3	8
96	Synthesis of highly oriented carbon nanotube thin films by nickel functionalisation. <i>Diamond and Related Materials</i> , 2007 , 16, 1195-1199	3.5	8
95	Polymer-phthalocyanine composite systems as solid state passive optical limiters 2004 , 5464, 269		8
94	Effect of Nd:YAG radiation at millisecond pulse duration on dentine crater depth. <i>Lasers in Surgery and Medicine</i> , 2000 , 27, 213-23	3.6	8
93	Mechanism of large optical nonlinearity in gold nanoparticle films. <i>Optics Letters</i> , 2018 , 43, 1455-1458	3	7
92	Solvent effect on the nonlinear absorption of 5,10-A(2)B(2) meso substituted porphyrins. <i>Photochemical and Photobiological Sciences</i> , 2013 , 12, 1811-23	4.2	7
91	Low Temperature Graphene Growth. ECS Transactions, 2009, 19, 175-181	1	7
90	Attachment of Functionalized Single-Walled Carbon Nanotubes (SWNTs) to Silicon Surfaces. Journal of Nanoscience and Nanotechnology, 2008 , 8, 1545-1550	1.3	7
89	Near-infrared luminescent polymer waveguide with a 20dB small-signal gain. <i>Applied Physics Letters</i> , 2008 , 92, 083306	3.4	7
88	Alternating and direct current characterization and photoinduced absorption studies of modified conjugated polymer thin films. <i>Journal of Applied Physics</i> , 2004 , 95, 6138-6144	2.5	7
87	The effect of Nd:YAG radiation at nanosecond pulse duration on dentine crater depth. <i>Biomaterials</i> , 2002 , 23, 51-8	15.6	7
86	Optical nonlinearity near the bandgap in semiconductors. <i>Contemporary Physics</i> , 1987 , 28, 59-68	3.3	7
85	A Composite from Poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) and Carbon Nanotubes: A Novel Material for Molecular Optoelectronics 1998 , 10, 1091		7

84	Preparation of WS2PMMA composite films for optical applications. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 10805-10815	7.1	6
83	Sonication of porphyrinflanotube composites: a cautionary tale. <i>Physica Status Solidi (B): Basic Research</i> , 2007 , 244, 4227-4230	1.3	6
82	Non-linear absorption of alkylsulfonyl metallophthalocyanines. <i>Synthetic Metals</i> , 2003 , 137, 1479-1480	3.6	6
81	Experimental Results on Optical Effects Induced in Epoxy Resin Based PDLC. <i>Molecular Crystals and Liquid Crystals</i> , 2001 , 359, 53-65		6
80	Materials and Devices for Organic Electronics. <i>Journal of Nanotechnology</i> , 2011 , 2011, 1-2	3.5	5
79	Doping properties of polydithienylmethine: a study on the correlation between polymer chain length, spectroscopy, and transport. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 3924-9	3.4	5
78	The optical gain and effective stimulated emission cross-section for dimethoxy-PmPV and dimethyl-PmPV-ONV copolymers in toluene solution. <i>Journal of Optics</i> , 2003 , 5, 341-344		5
77	Nanotube Content in Arc Generated Carbon Powder. <i>Monatshefte Fil Chemie</i> , 2001 , 132, 53-61	1.4	5
76	Distributed response analysis of conductive behavior in single molecules. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99 Suppl 2, 6514-7	11.5	5
75	Transient nonlinear optical behavior of fluorescein-doped boric acid glass. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1992 , 9, 2225	1.7	5
74	Influence of Graphene Oxide/Ag Nanoparticle Composites on the Fluorescence Properties of Organic Dyes. <i>Journal of Nanoscience and Nanotechnology</i> , 2017 , 17, 8901-8911	1.3	4
73	Near-infrared electroluminescence and stimulated emission from semiconducting nonconjugated polymer thin films. <i>Journal of Applied Physics</i> , 2010 , 107, 023103	2.5	4
72	Fabrication and field emission property studies of vertically aligned multiwalled carbon nanotubes grown by double plasma chemical vapour deposition technique. <i>Diamond and Related Materials</i> , 2009 , 18, 967-971	3.5	4
71	Geometrical effect on the first hyperpolarizability of thiophene-substituted stilbene derivatives. <i>Computational and Theoretical Chemistry</i> , 2006 , 762, 87-91		4
70	Nonlinear optical properties of metal and semiconductor nanoparticles 2003 , 4876, 1257		4
69	Picosecond transient absorption studies of dipyridophenazine 2003,		4
68	Effect of Solvents and Dispersants on the Bundle Dissociation of Single-walled Carbon Nanotube. <i>AIP Conference Proceedings</i> , 2005 ,	0	4
67	Controllable Charge-Transfer Mechanism at Push B ull Porphyrin/Nanocarbon Interfaces. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 14283-14291	3.8	3

66	Characterization of low-threshold polymer microring lasers using optical microscopy and spectral analysis. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2007 , 24, 808	1.7	3
65	Spectroscopic studies of CSA-doped poly[C-hydroxyl-(4-N-dimethylamino)phenyl]dithienylmethine and doping effects on ionic conductivity. <i>Synthetic Metals</i> , 2006 , 156, 482-487	3.6	3
64	Preparation and nonlinear optical properties of phthalocyanine nanocrystals 2003, 4991, 124		3
63	Mechanical and thermal properties of carbon-nanotube-reinforced polymer composites 2003 , 4876, 6	76	3
62	Ultrafast transient absorption studies of ruthenium and rhenium dipyridophenazine complexes bound to DNA and polynucleotides 2003 ,		3
61	Scattering and reflective properties of a hexagonal lattice of nanorods. <i>Optics Communications</i> , 2003 , 226, 125-134	2	3
60	Effect of solvent and dispersant on the bundle dissociation of single-walled carbon nanotube 2005 ,		3
59	Ultrafast Relaxation Dynamics of the Optical Nonlinearity in Nanometric Gold Particles. <i>Journal of Nanoparticle Research</i> , 2001 , 3, 13-21	2.3	3
58	Blue lasing from a stilbenoid-compound-doped glass clad polymer optical fibre. <i>Journal of Optics</i> , 2002 , 4, L1-L3		3
57	Investigation of photoluminescence efficiency in thin polymer films of poly(m-phenylenevinylene-co-2,5-dioctyloxy-p-phenylenevinylene). <i>Synthetic Metals</i> , 2001 , 121, 1405-	1406	3
56	Nearly resonant third-order optical non-linearity in c60 cast films. <i>Advanced Materials for Optics and Electronics</i> , 1994 , 4, 413-416		3
55	Photoablative etching of polymers for integrated optoelectronic devices. <i>Microelectronic Engineering</i> , 1991 , 13, 447-450	2.5	3
54	Photoablation of polymers. <i>Applied Surface Science</i> , 1992 , 54, 240-243	6.7	3
53	Feature issue introduction: nanocarbon for photonics and optoelectronics. <i>Optical Materials Express</i> , 2012 , 2, 891	2.6	2
52	Fabrication of vertically aligned carbon nanotubes for spintronic device applications. <i>Journal of Materials Chemistry</i> , 2009 , 19, 7216		2
51	Third-order optical nonlinearity of C60 and C70 and their metal derivatives under picosecond laser excitation 1996 ,		2
50	Optical limiting properties of single-walled carbon nanotube dispersions in amide solvents 2008,		2
49	Magnetoresistance and spin diffusion in multi-wall carbon nanotubes. <i>Microelectronic Engineering</i> , 2007 , 84, 1593-1595	2.5	2

48	Operating characteristics of near-infrared self-assembled polymer microlasers. <i>Optics Letters</i> , 2007 , 32, 1375-7	3	2
47	Mo6S4.5I4.5Nanowires: Structure Studies by HRTEM and Aberration Corrected STEM. <i>Journal of Physics: Conference Series</i> , 2006 , 26, 260-263	0.3	2
46	Characterization of nanotube-based artificial muscle materials 2003,		2
45	Magnetization switching of Fe nanowires at very low temperatures. <i>Journal of Magnetism and Magnetic Materials</i> , 2004 , 272-276, 1637-1639	2.8	2
44	Photosensitive magnetism of radicals coupled with carbon nanotubes. <i>Organic Electronics</i> , 2003 , 4, 15	- 20 3.5	2
43	Luminescent polymer optical fibers: gain spectroscopy and lasing 2003,		2
42	Growth of carbon nano-structures in ceramic materials 2005 ,		2
41	The Photophysics of Thin Polymer Films of Poly-(meta-phenylene). <i>Monatshefte Fil Chemie</i> , 2001 , 132, 151-158	1.4	2
40	Bulky sidegroup polymers Bynthesis and characterisation. Synthetic Metals, 2001, 119, 85-86	3.6	2
39	Solvent effects on the luminescent properties of conjugated molecules. <i>Synthetic Metals</i> , 2001 , 119, 555-556	3.6	2
38	Excited state inhibition of luminescence in DPOP-PPV. Synthetic Metals, 2001, 119, 567-568	3.6	2
37	Nonlinear Properties of Graphene Dispersions and Thin Films at a Wavelength of 1.2 h. <i>Journal of Nanoelectronics and Optoelectronics</i> , 2013 , 8, 23-27	1.3	2
36	Hydrogen in chemical vapour deposited carbon nanotubes: an active site for functionalization. <i>Journal of Nanoscience and Nanotechnology</i> , 2008 , 8, 4017-22	1.3	1
35	A sensitivity study of the localised surface plasmon resonance of high-definition structured silver nanoparticles in solution 2008 ,		1
34	Nanowire array electrode structure for organic light-emitting diodes. 2003, 4876, 168		1
33	Intermolecular vibronic coupling in self-assembling molecular nanowires of hexabenzocoronene derivatives 2003 , 4991, 460		1
32	Controlling The Position And Morphology of Nanotubes For Device Fabrication. <i>AIP Conference Proceedings</i> , 2004 ,	Ο	1
31	Reverse-saturable-absorption-based optical limiting properties of indium and gallium phthalocyanines and naphthalocyanines 2003 ,		1

30	Near-infrared optical gain and stimulated emission in organic-compound-doped polymer waveguides 2004 , 5351, 210		1
29	Optical Absorption and Photo-Luminescence Spectra of Molecular van der Waals Systems: Frenkel Exciton Resonance Effects. <i>Macromolecular Symposia</i> , 2005 , 230, 116-125	0.8	1
28	Characterisation of Single-walled Carbon Nanotube Bundle Dissociation in Amide Solvents. <i>AIP Conference Proceedings</i> , 2005 ,	Ο	1
27	Nonlinear photoluminescence from multiwalled carbon nanotubes 2001 , 4461, 56		1
26	Enhanced brightness in organic light-emitting diodes using a carbon nanotube composite as an electron-transport layer 2002 ,		1
25	Correlation of molecular vibrational structure with luminescent quantum yields. <i>Synthetic Metals</i> , 2000 , 111-112, 559-561	3.6	1
24	Wavelength dependence of laser polymerization of acrylic monomers. <i>Polymers for Advanced Technologies</i> , 1991 , 2, 21-24	3.2	1
23	Feasibility of graphenepolymer composite membranes for forward osmosis applications. <i>Materials Advances</i> ,	3.3	1
22	Ferromagnetic behaviour of nickel contacted multiwalled carbon nanotubes. <i>Journal of Nanoscience and Nanotechnology</i> , 2010 , 10, 2606-10	1.3	
21	Growth of carbon nanotubes on Si substrate using Fe catalyst produced by pulsed laser deposition. <i>Journal of Nanoscience and Nanotechnology</i> , 2008 , 8, 5748-52	1.3	
20	Carbon Nanotube Composites as Efficient Charge Transport Media in Organic Optoelectronic Devices 2003 , 4876, 338		
19	Light amplification and lasing in doped polymer optical fibers 2003 , 4876, 330		
18	Third-order nonlinear optical response and nonlinear photoluminescence in multiwalled carbon nanotubes 2003 , 4876, 649		
17	Controlling the position and morphology of nanotubes within a polymer thin film. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 782, 1		
16	Optical limiting properties of carbon nanostructure and polymer dispersions 2003, 4991, 194		
15	Effective Stimulated Emission Cross-Sections of Poly(Phenylene Vinylene) Copolymers in Toluene Solution. <i>Optical and Quantum Electronics</i> , 2004 , 36, 819-826	2.4	
14	Nanostructured metal filled porous alumina as an anode in polymer light-emitting diodes 2005 , 5824, 114		
13	Near-infrared laser emission from high-Q polymer cavities 2005 , 5956, 64		

- 12 Controlled growth of arrays of straight and branched carbon nanotubes **2005**, 5824, 62
- Purification and processing of carbon nanotubes using self-assembly and selective interaction with a semiconjugated polymer **2001**, 4468, 112
- Purity and Solubility of Nanotubes in Arc Discharge Carbon Powder. *Materials Research Society Symposia Proceedings*, **2000**, 633, 1361
- 9 Solubility of carbon nanotubes. *Materials Research Society Symposia Proceedings*, **2000**, 633, 531
- Laser gain and excited-state absorption measurements in phenylene-vinylene oligomer (1,4-bis-(alpha-cyanostyryl)-2,5-dimethoxybenzene). *Journal of Luminescence*, **2000**, 87-89, 754-756
- Optical gain spectra from doped polymeric waveguides. Synthetic Metals, **2000**, 111-112, 567-570 3.6
- 6 Luminescent Polymer Fibers for Light Amplification and Lasing. *Materials Research Society Symposia Proceedings*, **2001**, 665, 1
- MRS 2001 (Boston): Design and Quantification of a Nanoscale Field Effect Transistor: Distributed Response Analysis for Investigating Conductive Behaviour.. *Materials Research Society Symposia Proceedings*, **2001**, 706, 1
- Measurement of Degree of Order in Mixed Polarised Fluorescent Polymer Liquid Crystal Films.

 Molecular Crystals and Liquid Crystals, 1998, 325, 79-90
- 3 CARBON NANOTUBES AS POLYMER BUILDING BLOCKS **2006**, 223-224
- EFFECT OF SOLVENT AND DISPERSANT ON THE BUNDLE DISSOCIATION OF SINGLE-WALLED CARBON NANOTUBES. NATO Science Series Series II, Mathematics, Physics and Chemistry, 2006, 211-212
- Nonlinear Optics in Quantum Confined Semiconductors 1989, 419-422