Maria Garcia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7020985/publications.pdf Version: 2024-02-01

MADIA CADCIA

#	Article	IF	CITATIONS
1	Gas temperature and air fraction diagnosis of helium cold atmospheric plasmas by means of atomic emission lines. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2022, 193, 106437.	2.9	2
2	Promise of nonthermal plasmas in addressing emerging environmental and health problems: Present and future. Physics of Plasmas, 2022, 29, .	1.9	7
3	The variation in self-organized anode plasma pattern structure with solution electrolyte type in 1 atm DC glow discharge. Plasma Sources Science and Technology, 2021, 30, 015007.	3.1	14
4	Study of the plasma–liquid interaction for an argon nonthermal microwave plasma jet from the analysis of benzene degradation. Plasma Processes and Polymers, 2020, 17, 2000030.	3.0	8
5	Preparation of graphene-based nanomaterials by pulsed RF discharges on liquid organic compounds. Journal Physics D: Applied Physics, 2020, 53, 435202.	2.8	3
6	Self-organization in 1 atm DC glows with liquid anodes: current understanding and potential applications. Plasma Sources Science and Technology, 2020, 29, 034004.	3.1	25
7	Measuring the air fraction and the gas temperature in non-thermal argon plasma jets through the study of the air influence on the collisional broadening of some argon atomic emission lines. Plasma Sources Science and Technology, 2020, 29, 055006.	3.1	5
8	Optical Emission Spectroscopy Investigation of a 1-atm DC Glow Discharge With Liquid Anode and Associated Self-Organization Patterns. IEEE Transactions on Plasma Science, 2019, 47, 3214-3227.	1.3	24
9	Application of LIBS technology for determination of Cl concentrations in mortar samples. Construction and Building Materials, 2019, 204, 716-726.	7.2	10
10	Characterization of an Air-Based Coaxial Dielectric Barrier Discharge Plasma Source for Biofilm Eradication. Plasma Chemistry and Plasma Processing, 2018, 38, 535-556.	2.4	7
11	Gas temperature determination in an argon non-thermal plasma at atmospheric pressure from broadenings of atomic emission lines. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2017, 129, 14-20.	2.9	14
12	Gas temperature determination of non-thermal atmospheric plasmas from the collisional broadening of argon atomic emission lines. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 198, 93-103.	2.3	19
13	Microwave atmospheric pressure plasma jets for wastewater treatment: Degradation of methylene blue as a model dye. Chemosphere, 2017, 180, 239-246.	8.2	116
14	Overview of Experimental Studies of Plasma in Liquid Water at the University of Michigan and Progress towards a Practical Plasma Water Reactor. , 2017, , .		0
15	Using the Pairs of Lines Broadened by Collisions with Neutral and Charged Particles for Gas Temperature Determination of Argon Non-Thermal Plasmas at Atmospheric Pressure. Atoms, 2017, 5, 41.	1.6	3
16	Clinical and Biological Principles of Cold Atmospheric Plasma Application in Skin Cancer. Advances in Therapy, 2016, 33, 894-909.	2.9	107
17	Understanding the plasma and power characteristics of a self-generated steam bubble discharge. Journal Physics D: Applied Physics, 2015, 48, 355203.	2.8	13
18	Measuring the electron density in plasmas from the difference of Lorentzian part of the widths of two Balmer series hydrogen lines. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2015, 107, 164-169.	2.9	11

MARIA GARCIA

#	Article	IF	CITATIONS
19	An investigation of an underwater steam plasma discharge as alternative to air plasmas for water purification. Plasma Sources Science and Technology, 2015, 24, 055005.	3.1	23
20	Gas temperature determination in microwave discharges at atmospheric pressure by using different Optical Emission Spectroscopy techniques. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2013, 90, 61-67.	2.9	14
21	Selectivity Control in a Microwave Surfaceâ€Wave Plasma Reactor for Hydrocarbon Conversion. Plasma Processes and Polymers, 2011, 8, 709-717.	3.0	9
22	Virtual web sound laboratories as an educational tool in physics teaching in engineering. Computer Applications in Engineering Education, 2011, 19, 759-769.	3.4	6
23	Excitation of Species in an Expanded Argon Microwave Plasma at Atmospheric Pressure. Plasma Chemistry and Plasma Processing, 2010, 30, 241-255.	2.4	22
24	Transformation of light paraffins in a microwave-induced plasma-based reactor at reduced pressure. International Journal of Hydrogen Energy, 2010, 35, 4111-4122.	7.1	27
25	Spectroscopic characterization of a neon surface-wave sustained (2.45ÂCHz) discharge at atmospheric pressure. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2008, 63, 948-956.	2.9	15
26	Using the van der Waals broadening of the spectral atomic lines to measure the gas temperature of an argon microwave plasma at atmospheric pressure. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2007, 62, 169-176.	2.9	56
27	On the use of the Hα spectral line to determine the electron density in a microwave (2.45GHz) plasma torch at atmospheric pressure. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2006, 61, 540-544.	2.9	40
28	Tutorial and Simulation Electrooptic and Acoustooptic Software as Innovative Methodology to Improve the Quality of Electronic and Computer Engineering Formation. IEEE Transactions on Education, 2006, 49, 302-308.	2.4	7
29	Using the Stark Broadening of the Hα, Hβ and Hγ Lines for the Measurement of Electron Density and Temperature in a Plasma at Atmospheric Pressure. Journal of the Physical Society of Japan, 2005, 74, 2249-2254.	1.6	52
30	Experimental Method for Determining the Damping Parameter of Spectral Lines Emitted by a Microwave Plasma at Atmospheric Pressure. Applied Spectroscopy, 2005, 59, 1457-1464.	2.2	5
31	Role of dissociative recombination in the excitation kinetics of an argon microwave plasma at atmospheric pressure. Journal of Applied Physics, 2005, 97, 113305.	2.5	34
32	Self-absorbing method to measure the population of the metastable levels in an argon microwave plasma at atmospheric pressure. EPJ Applied Physics, 2004, 28, 325-330.	0.7	9
33	Influence of the thermodynamic equilibrium state in the excitation of samples by a plasma at atmospheric pressure. Journal of Applied Physics, 2002, 92, 2269-2275.	2.5	32
34	Experimental study of the creation of a surface-wave-sustained argon plasma column at atmospheric pressure. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2002, 57, 1727-1737.	2.9	13
35	Spectroscopic study of a surface-wave-sustained argon plasma column at atmospheric pressure by means of a power interruption technique. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2000, 55, 1611-1621.	2.9	8
36	Spectroscopic study of a stationary surface-wave sustained argon plasma column at atmospheric pressure. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2000, 55, 1733-1745.	2.9	58

MARIA GARCIA

#	Article	IF	CITATIONS
37	Characterization and study of the thermodynamic equilibrium departure of an argon plasma flame produced by a surface-wave sustained discharge. Journal of Applied Physics, 2000, 88, 34-39.	2.5	42
38	Determination of the Excitation Temperature in a Nonthermodynamic-Equilibrium High-Pressure Helium Microwave Plasma Torch. Applied Spectroscopy, 1997, 51, 778-784.	2.2	55
39	An experimental study of the deviation from equilibrium in a high-pressure microwave helium plasma produced by an axial injection torch. Journal Physics D: Applied Physics, 1996, 29, 681-686.	2.8	22