Akira Uchino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7020902/publications.pdf

Version: 2024-02-01

567281 454955 39 987 15 30 citations h-index g-index papers 41 41 41 537 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Factors destabilizing the control of Monochoria vaginalis by rice bran: its conflicting powers influence both suppression and promotion of germination in paddy soil. Plant Production Science, 2021, 24, 83-93.	2.0	3
2	Suppressive activity of volatile fatty acids and aromatic carboxylic acids on the germination of <i>Monochoria vaginalis</i> . Plant Production Science, 2021, 24, 505-511.	2.0	7
3	Gene expression shapes the patterns of parallel evolution of herbicide resistance in the agricultural weed <i>Monochoria vaginalis</i> New Phytologist, 2021, 232, 928-940.	7.3	11
4	Investigation of clomazoneâ€tolerance mechanism in a longâ€grain cultivar of rice. Pest Management Science, 2021, 77, 2454-2461.	3.4	6
5	Quinclorac resistance in Echinochloa phyllopogon is associated with reduced ethylene synthesis rather than enhanced cyanide detoxification by βâ€eyanoalanine synthase. Pest Management Science, 2020, 76, 1195-1204.	3.4	16
6	Characterization of the acetolactate synthase gene family in sensitive and resistant biotypes of two tetraploid Monochoria weeds, M. vaginalis and M. korsakowii. Pesticide Biochemistry and Physiology, 2020, 165, 104506.	3.6	10
7	Role of CYP81A cytochrome P450s in clomazone metabolism in Echinochloa phyllopogon. Plant Science, 2019, 283, 321-328.	3.6	49
8	<scp>CYP</scp> 81A P450s are involved in concomitant crossâ€resistance to acetolactate synthase and acetylâ€CoA carboxylase herbicides in ⟨i>Echinochloa phyllopogon⟨/i>. New Phytologist, 2019, 221, 2112-2122.	7.3	112
9	Promotive effect of soil solution on germination of <i>Monochoria vaginalis</i> under paddy conditions. Soil Science and Plant Nutrition, 2018, 64, 396-405.	1.9	6
10	Biology and mechanisms of sulfonylurea resistance in <i>Schoenoplectiella juncoides</i> , a noxious sedge in the rice paddy fields of <scp>J</scp> apan. Weed Biology and Management, 2017, 17, 125-135.	1.4	9
11	Mutations of acetolactate synthase gene and response of sulfonylurea-resistant biotypes of <i>Sagittaria trifolia</i> L. to several herbicides in Yamagata, Japan. Journal of Weed Science and Technology, 2017, 62, 117-125.	0.1	1
12	Copy Number Variation in Acetolactate Synthase Genes of Thifensulfuron-Methyl Resistant Alopecurus aequalis (Shortawn Foxtail) Accessions in Japan. Frontiers in Plant Science, 2017, 8, 254.	3.6	30
13	Relationship between physical property of soil and growth ofMonochoria vaginalisunder paddy condition of organic farming—analysis using settled soil volume in water of superficial layer Plant Production Science, 2016, 19, 238-245.	2.0	6
14	Multiple-herbicide resistance in Echinochloa crus-galli var. formosensis, an allohexaploid weed species, in dry-seeded rice. Pesticide Biochemistry and Physiology, 2015, 119, 1-8.	3.6	48
15	Occurrence of sulfonylurea resistance in <i>Sagittaria trifolia</i> , a basal monocot species, based on targetâ€site and nonâ€targetâ€site resistance. Weed Biology and Management, 2014, 14, 43-49.	1.4	27
16	Cytochrome P450 genes induced by bispyribacâ€sodium treatment in a multipleâ€herbicideâ€resistant biotype of <i>Echinochloa phyllopogon</i> . Pest Management Science, 2014, 70, 549-558.	3.4	102
17	Cytochrome P450 CYP81A12 and CYP81A21 Are Associated with Resistance to Two Acetolactate Synthase Inhibitors in <i>Echinochloa phyllopogon</i> Â Â. Plant Physiology, 2014, 165, 618-629.	4.8	148
18	Genetic diversity within and between sulfonylureaâ€resistant and susceptible populations of <i><scp>S</scp>choenoplectus juncoides</i> in <scp>J</scp> apan. Weed Research, 2013, 53, 290-298.	1.7	8

#	Article	IF	CITATIONS
19	Suppressive effect of rice bran incorporation in paddy soil on germination of Monochoria vaginalisand its relationship with electric conductivity. Soil Science and Plant Nutrition, 2012, 58, 200-205.	1.9	12
20	Isolation and expression of genes for acetolactate synthase and acetylâ€CoA carboxylase in Echinochloa phyllopogon, a polyploid weed species. Pest Management Science, 2012, 68, 1098-1106.	3.4	79
21	Hybridizations and genetic relationships among Lindernia species (Scrophulariaceae): L. procumbens and two subspecies of L. dubia. Aquatic Botany, 2011, 94, 165-171.	1.6	2
22	Tolerance of Rice (Oryza satival.) and Echinochloa Weeds to Growth Suppression by Rice Straw Added to Paddy Soil in Relation to Iron Toxicity. Plant Production Science, 2010, 13, 314-318.	2.0	10
23	Dose responses to bensulfuron-methyl and mutations of the acetolactate synthase gene in Sagittaria pygmaea biotypes collected in Yamagata and Aichi Prefecture Journal of Weed Science and Technology, 2010, 55, 254-257.	0.1	0
24	Effects of ferrous iron (Fe) on the germination and root elongation of paddy rice and weeds. Weed Biology and Management, 2009, 9, 20-26.	1.4	19
25	Difference in ultraweak photon emissions between sulfonylureaâ€resistant and sulfonylureaâ€susceptible biotypes of <i>Scirpus juncoides</i> following the application of a sulfonylurea herbicide. Weed Biology and Management, 2008, 8, 78-84.	1.4	11
26	Molecular basis of diverse responses to acetolactate synthase-inhibiting herbicides in sulfonylurea-resistant biotypes of Schoenoplectus juncoides. Weed Biology and Management, 2007, 7, 89-96.	1.4	74
27	Effects of pyruvate and sucrose on acetolactate synthase activity in <i>Lindernia</i> species and <i>Schoenoplectus juncoides</i> in an <i>in vivo</i> assay. Weed Biology and Management, 2007, 7, 184-187.	1.4	7
28	Molecular Characterization of Resistance to Acetolactate Synthase Inhibitors in Lindernia micrantha: Origin and Expansion of Resistant Biotypes. ACS Symposium Series, 2005, , 244-254.	0.5	0
29	Resistance to ALS-Inhibiting Herbicides in Weeds. Journal of Pesticide Sciences, 2003, 28, 479-483.	1.4	3
30	Inheritance of Sulfonylurea Resistance in a Paddy Weed, Monochoria korsakowii. Journal of Pesticide Sciences, 2003, 28, 212-214.	1.4	9
31	Estimation of Out-Crossing Rate in Monochoria korsakowii Using the Herbicide Resistance Trait as a Marker. Journal of Pesticide Sciences, 2003, 28, 429-430.	1.4	2
32	Mutations in the acetolactate synthase genes of sulfonylurea-resistant biotypes of Lindernia spp Weed Biology and Management, 2002, 2, 104-109.	1.4	56
33	Sulfonylurea-Resistant Weeds in Paddy Rice Fields of Japan. ACS Symposium Series, 2001, , 168-180.	0.5	2
34	Response of a Sulfonylurea (SU)-Resistant Biotype of Limnophila sessiliflora to Selected SU and Alternative Herbicides. Pesticide Biochemistry and Physiology, 2000, 68, 59-66.	3.6	15
35	Sulfonylurea Resistant Biotypes of Lindernia Species in the Tohoku Region and their Response to Several Herbicides Journal of Weed Science and Technology, 2000, 45, 13-20.	0.1	17
36	Light Requirement in Rapid Diagnosis of Sulfonylurea-Resistant Weeds of Lindernia spp. (Scrophulariaceae). Weed Technology, 1999, 13, 680-684.	0.9	28

Akira Uchino

#	Article	IF	CITATIONS
37	C4-type gene expression is not directly dependent on Kranz anatomy in an amphibious sedge Eleocharis vivipara Link. Plant Journal, 1998, 14, 565-572.	5.7	14
38	Photosynthetic Carbon Metabolism in an Amphibious Sedge, Eleocharis baldwinii (Torr.) Chapman: Modified Expression of C4 Characteristics under Submerged Aquatic Conditions. Plant and Cell Physiology, 1995, 36, 229-238.	3.1	25
39	Suppressive and promotive effects of rice bran on germination of <i>Monochoria vaginalis</i> in organic rice (<i>Oryza sativa</i> L.) production. Soil Science and Plant Nutrition, 0, , 1-9.	1.9	1