Zhengxing Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7020612/publications.pdf

Version: 2024-02-01

218381 288905 1,972 79 26 40 citations g-index h-index papers 79 79 79 1964 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Zein/gum Arabic nanoparticle-stabilized Pickering emulsion with thymol as an antibacterial delivery system. Carbohydrate Polymers, 2018, 200, 416-426.	5.1	131
2	Isolation of a novel calcium-binding peptide from wheat germ protein hydrolysates and the prediction for its mechanism of combination. Food Chemistry, 2018, 239, 416-426.	4.2	116
3	High internal phase Pickering emulsions stabilized by co-assembled rice proteins and carboxymethyl cellulose for food-grade 3D printing. Carbohydrate Polymers, 2021, 273, 118586.	5.1	85
4	Phenolic contents, cellular antioxidant activity and antiproliferative capacity of different varieties of oats. Food Chemistry, 2018, 239, 260-267.	4.2	83
5	Functional properties and structural changes of rice proteins with anthocyanins complexation. Food Chemistry, 2020, 331, 127336.	4.2	74
6	Ozonolysis pretreatment of maize stover: The interactive effect of sample particle size and moisture on ozonolysis process. Bioresource Technology, 2015, 183, 240-247.	4.8	71
7	Effect of Ozone Treatment on Deoxynivalenol and Wheat Quality. PLoS ONE, 2016, 11, e0147613.	1.1	68
8	Detoxification of zearalenone and ochratoxin A by ozone and quality evaluation of ozonised corn. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2016, 33, 1700-1710.	1.1	58
9	Formation, structural characteristics, foaming and emulsifying properties of rice glutelin fibrils. Food Chemistry, 2021, 354, 129554.	4.2	53
10	Electron beam irradiation as a tool for rice grain storage and its effects on the physicochemical properties of rice starch. International Journal of Biological Macromolecules, 2020, 164, 2915-2921.	3.6	48
11	Purification and identification of a novel heteropolysaccharide RBPS2a with anti-complementary activity from defatted rice bran. Food Chemistry, 2008, 110, 150-155.	4.2	46
12	Impact of amylosucrase modification on the structural and physicochemical properties of native and acid-thinned waxy corn starch. Food Chemistry, 2017, 220, 413-419.	4.2	46
13	Mechanistic insights into solubilization of rice protein isolates by freeze–milling combined with alkali pretreatment. Food Chemistry, 2015, 178, 82-88.	4.2	44
14	Toward water-solvation of rice proteins via backbone hybridization by casein. Food Chemistry, 2018, 258, 278-283.	4.2	41
15	Effects of Electron Beam Irradiation on Zearalenone and Ochratoxin A in Naturally Contaminated Corn and Corn Quality Parameters. Toxins, 2017, 9, 84.	1.5	38
16	Production of Bacterial Ghosts from Gram-Positive Pathogen <i>Listeria monocytogenes</i> Foodborne Pathogens and Disease, 2017, 14, 1-7.	0.8	37
17	Antitumor activities and immunomodulatory of rice bran polysaccharides and its sulfates in vitro. International Journal of Biological Macromolecules, 2016, 88, 424-432.	3.6	36
18	Biological macromolecule delivery system fabricated using zein and gum arabic to control the release rate of encapsulated tocopherol during in vitro digestion. Food Research International, 2018, 114, 251-257.	2.9	36

#	Article	IF	CITATIONS
19	Impact of binding interaction characteristics on physicochemical, structural, and rheological properties of waxy rice flour. Food Chemistry, 2018, 266, 551-556.	4.2	34
20	Effect of Ozone and Electron Beam Irradiation on Degradation of Zearalenone and Ochratoxin A. Toxins, 2020, 12, 138.	1.5	33
21	Influence of sodium alginate on the gelatinization, rheological, and retrogradation properties of rice starch. International Journal of Biological Macromolecules, 2021, 185, 708-715.	3.6	33
22	Studies on Quality of Potato Flour Blends with Rice Flour for Making Extruded Noodles. Cereal Chemistry, 2016, 93, 593-598.	1.1	32
23	Protective effects of rice dreg protein hydrolysates against hydrogen peroxide-induced oxidative stress in HepG-2 cells. Food and Function, 2016, 7, 1429-1437.	2.1	31
24	Facile and Efficient Construction of Waterâ€Soluble Biomaterials with Tunable Mesoscopic Structures Using Allâ€Natural Edible Proteins. Advanced Functional Materials, 2019, 29, 1901830.	7.8	31
25	<i>In vivo</i> toxicity assessment of deoxynivalenol-contaminated wheat after ozone degradation. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2017, 34, 103-112.	1.1	29
26	Co-folding of hydrophobic rice proteins and shellac in hydrophilic binary microstructures for cellular uptake of apigenin. Food Chemistry, 2020, 309, 125695.	4.2	27
27	Rice peptide nanoparticle as a bifunctional food-grade Pickering stabilizer prepared by ultrasonication: Structural characteristics, antioxidant activity, and emulsifying properties. Food Chemistry, 2021, 343, 128545.	4.2	27
28	Entrapping curcumin in the hydrophobic reservoir of rice proteins toward stable antioxidant nanoparticles. Food Chemistry, 2022, 387, 132906.	4.2	27
29	Effects of Inorganic Phosphates on the Thermodynamic, Pasting, and Asian Noodleâ€Making Properties of Whole Wheat Flour. Cereal Chemistry, 2014, 91, 1-7.	1.1	26
30	All-natural protein-polysaccharide conjugates with bead-on-a-string nanostructures as stabilizers of high internal phase emulsions for 3D printing. Food Chemistry, 2022, 388, 133012.	4.2	22
31	Effects of protein solubilisation and precipitation pH values on the functional properties of defatted wheat germ protein isolates. International Journal of Food Science and Technology, 2013, 48, 1490-1497.	1.3	21
32	Production of glycerol monolaurateâ€enriched monoacylglycerols by lipaseâ€catalyzed glycerolysis from coconut oil. European Journal of Lipid Science and Technology, 2014, 116, 328-335.	1.0	21
33	Effects of Milk Proteins on the Bioaccessibility and Antioxidant Activity of Oat Phenolics During <i>In Vitro</i> Digestion. Journal of Food Science, 2019, 84, 895-903.	1.5	21
34	Tailoring Digestibility of Starches by Chain Elongation Using Amylosucrase from <i>Neisseria polysaccharea</i> via a Zipper Reaction Mode. Journal of Agricultural and Food Chemistry, 2020, 68, 225-234.	2.4	21
35	Structural basis for the low digestibility of starches recrystallized from side chains of amylopectin modified by amylosucrase to different chain lengths. Carbohydrate Polymers, 2020, 241, 116352.	5.1	21
36	Carboxymethylcellulose/pectin inhibiting structural folding of rice proteins via trinary structural interplays. International Journal of Biological Macromolecules, 2019, 133, 93-100.	3.6	19

#	Article	IF	CITATIONS
37	Absorption Rates and Mechanisms of Avenanthramides in a Caco-2 Cell Model and Their Antioxidant Activity during Absorption. Journal of Agricultural and Food Chemistry, 2020, 68, 2347-2356.	2.4	19
38	Dynamic Highâ€Pressure Microfluidization Treatment of Rice Bran: Effect on Pb(II) Ions Adsorption <i>In Vitro</i> Iournal of Food Science, 2018, 83, 1980-1989.	1.5	18
39	Characterization of binding behaviors of Cd2+ to rice proteins. Food Chemistry, 2019, 275, 186-192.	4.2	18
40	Amylopectin-Sodium Palmitate Complexes as Sustainable Nanohydrogels with Tunable Size and Fractal Dimensions. Journal of Agricultural and Food Chemistry, 2020, 68, 3796-3805.	2.4	16
41	Understanding the deterioration of fresh brown rice noodles from the macro and micro perspectives. Food Chemistry, 2021, 342, 128321.	4.2	16
42	Complexation of rice glutelin fibrils with cyanidin-3-O-glucoside at acidic condition: Thermal stability, binding mechanism and structural characterization. Food Chemistry, 2021, 363, 130367.	4.2	16
43	Preparation of magnetic mesoporous silica from rice husk for aflatoxin B1 removal: Optimum process and adsorption mechanism. PLoS ONE, 2020, 15, e0238837.	1.1	15
44	Preservation of hydrogen peroxide-induced oxidative damage in HepG-2 cells by rice protein hydrolysates pretreated with electron beams. Scientific Reports, 2020, 10, 8415.	1.6	15
45	Effects of Electron Beam Irradiation on the Physicochemical Properties of Quinoa and Starch Microstructure. Starch/Staerke, 2020, 72, 1900178.	1.1	15
46	CUFuse: Camera and Ultrasound Data Fusion for Rail Defect Detection. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 21971-21983.	4.7	15
47	Facile and green preparation of diverse arabinoxylan hydrogels from wheat bran by combining subcritical water and enzymatic crosslinking. Carbohydrate Polymers, 2020, 241, 116317.	5.1	14
48	Influences of Electron Beam Irradiation on the Physical and Chemical Properties of Zearalenone- and Ochratoxin A-Contaminated Corn and In Vivo Toxicity Assessment. Foods, 2020, 9, 376.	1.9	14
49	Coating oil droplets with rice proteins to control the release rate of encapsulated beta-carotene during in vitro digestion. RSC Advances, 2016, 6, 73627-73635.	1.7	13
50	Anti-digestion properties of amylosucrase modified waxy corn starch. International Journal of Biological Macromolecules, 2018, 109, 383-388.	3.6	13
51	Preparation and application of potato flour with low gelatinization degree using flash drying. Drying Technology, 2018, 36, 374-382.	1.7	13
52	Influence of Electron Beam Irradiation on the Moisture and Properties of Freshly Harvested and Sun-Dried Rice. Foods, 2020, 9, 1139.	1,9	13
53	Synthesis of Rice Husk-Based MCM-41 for Removal of Aflatoxin B1 from Peanut Oil. Toxins, 2022, 14, 87.	1.5	13
54	Removal of aflatoxin B1 from aqueous solution using amino-grafted magnetic mesoporous silica prepared from rice husk. Food Chemistry, 2022, 389, 132987.	4.2	12

#	Article	IF	Citations
55	A new surface modification method to improve the dispersity of nano-silica in organic solvents. Journal of Sol-Gel Science and Technology, 2011, 58, 290-295.	1.1	10
56	New insights into the action mode of amylosucrase on amylopectin. International Journal of Biological Macromolecules, 2016, 88, 380-384.	3.6	10
57	High-temperature airÂ-fluidization-induced changes in the starch texture, rheological properties, and digestibility of germinated brown rice. Starch/Staerke, 2017, 69, 1600328.	1.1	10
58	Nanostructures: Facile and Efficient Construction of Waterâ€soluble Biomaterials with Tunable Mesoscopic Structures Using Allâ€Natural Edible Proteins (Adv. Funct. Mater. 31/2019). Advanced Functional Materials, 2019, 29, 1970216.	7.8	10
59	Simultaneous Refolding of Wheat Proteins and Soy Proteins Forming Novel Antibiotic Superstructures by Carrying Eugenol. Journal of Agricultural and Food Chemistry, 2021, 69, 7698-7708.	2.4	10
60	Magnetization of eugenol to fabricate magnetic-responsive emulsions for targeted delivery of caffeic acid phenethyl ester. RSC Advances, 2017, 7, 43455-43463.	1.7	8
61	Self-emulsification of eugenol by modified rice proteins to design nano delivery systems for controlled release of caffeic acid phenethyl ester. RSC Advances, 2017, 7, 49953-49961.	1.7	8
62	Effects of highâ€temperature air fluidization (HTAF) on eating quality, digestibility, and antioxidant activity of black rice (<i>Oryza sativa</i> L.). Starch/Staerke, 2017, 69, 1600274.	1.1	7
63	Coordination of Fe ^(II) to Eugenol to Engineer Selfâ€Assembled Emulsions by Rice Proteins for Iron Fortification. Journal of Food Science, 2019, 84, 276-283.	1.5	7
64	Inhibition of aggregation of physically modified rice proteins by isoconcentration of l-Arg and l-Glu. International Journal of Biological Macromolecules, 2019, 127, 693-700.	3.6	7
65	<i>In vivo</i> toxicity assessment of aflatoxin B ₁ -contaminated corn after ozone degradation. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2018, 35, 341-350.	1.1	6
66	Effect of Solidâ€State Fermentation by <i>Lactobacillus plantarum</i> on the Cooking Quality, Microstructure, and Physicochemical Properties of Brown Rice. Starch/Staerke, 2019, 71, 1800160.	1.1	6
67	Triboelectric separation of wheat bran tissues: Influence of triboâ€material, water content, and particle size. Journal of Food Process Engineering, 2020, 43, e13346.	1.5	5
68	Effects of high-temperature air fluidization (HTAF) on the structural, functional, and in vitro digestive properties of corn. Starch/Staerke, 2017, 69, 1600137.	1.1	4
69	Characterization of the physical properties of electron-beam-irradiated white rice and starch during short-term storage. PLoS ONE, 2019, 14, e0226633.	1.1	4
70	Preparation and characterization of pH-responsive microgel using arabinoxylan from wheat bran for BSA delivery. Food Chemistry, 2021, 342, 128220.	4.2	4
71	Improved aqueous solubility, bioaccessibility and cellular uptake of quercetin following pHâ€driven encapsulation in whey protein isolate. International Journal of Food Science and Technology, 2022, 57, 2747-2755.	1.3	1
72	Title is missing!. , 2019, 14, e0226633.		0

ZHENGXING CHEN

#	Article	IF	CITATIONS
73	Title is missing!. , 2019, 14, e0226633.		O
74	Title is missing!. , 2019, 14, e0226633.		O
75	Title is missing!. , 2019, 14, e0226633.		O
76	Title is missing!. , 2019, 14, e0226633.		0
77	Title is missing!. , 2019, 14, e0226633.		O
78	Title is missing!. , 2019, 14, e0226633.		0
79	Title is missing!. , 2019, 14, e0226633.		O