
Fuxiang Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/702054/publications.pdf Version: 2024-02-01

FUYIANC WEI

#	Article	IF	CITATIONS
1	Polyvinylpyrrolidone assisted transformation of Cu-MOF into N/P-co-doped Octahedron carbon encapsulated Cu3P nanoparticles as high performance anode for lithium ion batteries. Journal of Colloid and Interface Science, 2022, 608, 227-238.	5.0	21
2	Highly stable lamellar array composed of CoSe2 nanoparticles for supercapacitors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 633, 127789.	2.3	7
3	Hierarchical construction of Co3S4 nanosheet coated by 2D multi-layer MoS2 as an electrode for high performance supercapacitor. Applied Surface Science, 2022, 578, 151897.	3.1	21
4	A succulent-like structure of MoS2-coated S-doped ZIF-67@NF as the supercapacitor electrode material. Journal of Materials Science: Materials in Electronics, 2022, 33, 1930.	1.1	3
5	An improved bioinspired strategy to construct nitrogen and phosphorus dual-doped network porous carbon with boosted kinetics potassium ion capacitors. Nanoscale, 2022, 14, 6339-6348.	2.8	10
6	Theoretical evaluation and experimental design of nitrogen doped porous carbon from Cu-based metal-organic frameworks for lithium-ion batteries. Surfaces and Interfaces, 2022, 30, 101851.	1.5	1
7	Controllable construction of hierarchically porous carbon composite of nanosheet network for advanced dual-carbon potassium-ion capacitors. Journal of Colloid and Interface Science, 2022, 621, 169-179.	5.0	9
8	Effect of Ni-MOF Derivatives on the Electrochemical Corrosion Behavior of Sn-0.7Cu Solders. Metals, 2022, 12, 1172.	1.0	3
9	Effect of Ni-Coated Carbon Nanotubes Additions on the Eutectic Sn-0.7Cu Lead-Free Composite Solder. Metals, 2022, 12, 1196.	1.0	4
10	In situ transformation of sea urchin-like NixCoyP@NF as an efficient bifunctional electrocatalyst for overall water splitting. Journal of Materials Science: Materials in Electronics, 2021, 32, 1951-1961.	1.1	9
11	Carbon defects applied to potassium-ion batteries: a density functional theory investigation. Nanoscale, 2021, 13, 13719-13734.	2.8	21
12	Enhanced performance of mesoporous NiCo ₂ S ₄ nanosheets fibreâ€shaped electrode for supercapacitor. Micro and Nano Letters, 2021, 16, 263-267.	0.6	4
13	Fabrication and Degradation Properties of Nanoporous Copper with Tunable Pores by Dealloying Amorphous Ti-Cu Alloys with Minor Co Addition. Journal of Materials Engineering and Performance, 2021, 30, 1759-1767.	1.2	8
14	Self-supporting in situ growth Ni3S2/FL-Ti3C2 (MXene)/Ni composite as positive electrode for asymmetrical supercapacitor. Journal of Materials Science: Materials in Electronics, 2021, 32, 9721-9729.	1.1	8
15	Threeâ€dimensional micro–nanorodsâ€like structure bimetallic oxide fabricated by dealumination strategy for supercap electrodes. Journal of Materials Science: Materials in Electronics, 2021, 32, 8288-8294.	1.1	1
16	Construction of layered C@MnNiCo–OH/Ni3S2 core–shell heterostructure with enhanced electrochemical performance for asymmetric supercapacitor. Journal of Materials Science: Materials in Electronics, 2021, 32, 11145-11157.	1.1	5
17	MXene-modulated CoNi2S4 dendrite as enhanced electrode for hybrid supercapacitors. Surfaces and Interfaces, 2021, 25, 101274.	1.5	11
18	Design of a Scalable Dendritic Copper@Ni ²⁺ , Zn ²⁺ Cation-Substituted Cobalt Carbonate Hydroxide Electrode for Efficient Energy Storage. ACS Applied Materials & Interfaces, 2021, 13, 39205-39214.	4.0	23

#	Article	IF	CITATIONS
19	Highly stable Co3O4 nanoparticles/carbon nanosheets array derived from flake-like ZIF-67 as an advanced electrode for supercapacacitor. Chemical Engineering Journal, 2021, 419, 129631.	6.6	52
20	CuO@NiCoFe-S core–shell nanorod arrays based on Cu foam for high performance energy storage. Journal of Colloid and Interface Science, 2021, 599, 34-45.	5.0	19
21	Ni-Co-Fe layered double hydroxide coated on Ti3C2 MXene for high-performance asymmetric supercapacitor. Applied Surface Science, 2021, 562, 150116.	3.1	74
22	Electrothermal, magnetic properties and microstructure of CrFeNiTi <i>_x</i> compositionally complex alloys. Ferroelectrics, 2021, 584, 100-112.	0.3	1
23	Controllable synthesis of ZIF-derived nano-hexahedron porous carbon for supercapacitor electrodes. Materials Letters, 2020, 258, 126761.	1.3	27
24	Facile synthesis of hierarchical NiCoP nanowires@NiCoP nanosheets core–shell nanoarrays for high-performance asymmetrical supercapacitor. Journal of Materials Science, 2020, 55, 1157-1169.	1.7	31
25	Hierarchical NiCo layered double hydroxide on reduced graphene oxide-coated commercial conductive textile for flexible high-performance asymmetric supercapacitors. Journal of Power Sources, 2020, 445, 227342.	4.0	56
26	Facile synthesis of NiCoP nanosheets on carbon cloth and their application as positive electrode material in asymmetric supercapacitor. Ionics, 2020, 26, 355-366.	1.2	31
27	3D core-shell pistil-like MnCo2O4.5/polyaniline nanocomposites as high performance supercapacitor electrodes. Composite Interfaces, 2020, 27, 631-644.	1.3	9
28	Recycle of industrial waste: a new method of applying the paint residue to supercapacitors. Journal of Materials Science: Materials in Electronics, 2020, 31, 274-285.	1.1	2
29	Hierarchical NiS@CoS with Controllable Coreâ€Shell Structure by Twoâ€Step Strategy for Supercapacitor Electrodes. Advanced Materials Interfaces, 2020, 7, 1901618.	1.9	98
30	Self-supported NiSe@Ni3S2 core-shell composite on Ni foam for a high-performance asymmetric supercapacitor. lonics, 2020, 26, 3997-4007.	1.2	19
31	Hierarchical Nickel–Cobalt Phosphide/Phosphate/Carbon Nanosheets for High-Performance Supercapacitors. ACS Applied Nano Materials, 2020, 3, 11945-11954.	2.4	130
32	Flake-like nickel/cobalt metal-organic framework as high-performance electrodes for supercapacitors. Journal of Materials Science: Materials in Electronics, 2020, 31, 16260-16268.	1.1	12
33	Flexible wire-shaped symmetric supercapacitors with Zn–Co layered double hydroxide nanosheets grown on Ag-coated cotton wire. Journal of Materials Science, 2020, 55, 16683-16696.	1.7	12
34	One-step phosphating synthesis of CoP nanosheet arrays combined with Ni ₂ P as a high-performance electrode for supercapacitors. Nanoscale, 2020, 12, 20710-20718.	2.8	52
35	In Situ Synchrotron X-ray Diffraction Investigations of the Nonlinear Deformation Behavior of a Low Modulus β-Type Ti36Nb5Zr Alloy. Metals, 2020, 10, 1619.	1.0	4
36	A facile method for synthesizing NiS nanoflower grown on MXene (Ti3C2Tx) as positive electrodes for "supercapattery― Electrochimica Acta, 2020, 353, 136526.	2.6	55

#	Article	IF	CITATIONS
37	Interconnected NiS-nanosheets@porous carbon derived from Zeolitic-imidazolate frameworks (ZIFs) as electrode materials for high-performance hybrid supercapacitors. International Journal of Hydrogen Energy, 2020, 45, 19237-19245.	3.8	43
38	Formation of hollow-cubic Ni(OH)2/CuS2 nanocomposite via sacrificial template method for high performance supercapacitors. Journal of Materials Science: Materials in Electronics, 2020, 31, 10489-10498.	1.1	5
39	One‣tep Synthesis of Nanostructured CoS ₂ Grown on Titanium Carbide MXene for Highâ€Performance Asymmetrical Supercapacitors. Advanced Materials Interfaces, 2020, 7, 1901659.	1.9	77
40	Threeâ€dimensional nanoporous copper with tunable structure prepared by dealloying titanium–copper–cobalt metallic glasses for supercapacitors. Micro and Nano Letters, 2020, 15, 283-286.	0.6	8
41	Thermal stability of intermetallic compounds at Sn-0.7Cu-10Bi-xNi/Co interface during reflows. Materials Letters, 2019, 254, 69-72.	1.3	6
42	Sustainable synthesis of N/S-doped porous carbon sheets derived from waste newspaper for high-performance asymmetric supercapacitor. Materials Research Express, 2019, 6, 095605.	0.8	9
43	Effect of Ni on the kinetics of intermetallic compounds evolution on the Sn-0.7Cu-10Bi- <i>x</i> Ni/Co interface during various reflow. Materials Research Express, 2019, 6, 096532.	0.8	1
44	Growth and evolution kinetics of intermetallic compounds in Sn-0.7Cu-10Bi-0.15Co/Cu interface. Materials Research Express, 2019, 6, 0965d2.	0.8	1
45	Ultrathin Ni–Co LDH nanosheets grown on carbon fiber cloth via electrodeposition for high-performance supercapacitors. Journal of Materials Science: Materials in Electronics, 2019, 30, 13360-13371.	1.1	45
46	Hierarchical NiCo2S4@Ni3S2 core/shell nanorod arrays supported on carbon cloth for all-solid-state flexible asymmetric supercapacitors. Journal of Materials Science: Materials in Electronics, 2019, 30, 13462-13473.	1.1	7
47	Facile synthesis of CoNi2S4 nanoparticles grown on carbon fiber cloth for supercapacitor application. Journal of Materials Science: Materials in Electronics, 2019, 30, 19077-19086.	1.1	23
48	Role of Ni impurities in solid-state diffusion of intermetallic compounds in the Sn-0.7Cu-10Bi-xNi/Ni interface reaction. Materials Research Express, 2019, 6, 116559.	0.8	1
49	Fabrication of nanoporous NiO@CoO composites by dealloying method as ultra-high capacitance electrodes. Journal of Materials Science: Materials in Electronics, 2019, 30, 20311-20319.	1.1	2
50	One-Step Hydrothermal Synthesis of CoNi ₂ S ₄ for Hybrid Supercapacitor Electrodes. Nano, 2019, 14, 1950088.	0.5	7
51	Controllable synthesis of polyhedral Au@Co3O4 electrode for high performance supercapacitors. Materials Letters, 2019, 255, 126534.	1.3	15
52	Self-supported 3D layered zinc/nickel metal-organic-framework with enhanced performance for supercapacitors. Journal of Materials Science: Materials in Electronics, 2019, 30, 18101-18110.	1.1	45
53	Polyhedral NiCoSe2 synthesized via selenization of metal-organic framework for supercapacitors. Materials Letters, 2019, 242, 42-46.	1.3	49
54	Growth behavior of intermetallic compounds on Sn-10Bi-0.7Cu-0.15Co/Co interface under multiple reflows. Materials Letters, 2019, 252, 92-95.	1.3	9

#	Article	IF	CITATIONS
55	Growth behaviors of intermetallic compounds on the Sn-0.7Cu-10Bi-xCo/Co interface during multiple reflow. Materials and Design, 2019, 174, 107794.	3.3	16
56	A novel core-shell polyhedron Co3O4/MnCo2O4.5 as electrode materials for supercapacitors. Ceramics International, 2019, 45, 12558-12562.	2.3	30
57	Facile synthesis of N-doped activated carbon derived from cotton and CuCo2O4 nanoneedle arrays electrodes for all-solid-state asymmetric supercapacitor. Journal of Materials Science: Materials in Electronics, 2019, 30, 9877-9887.	1.1	17
58	Facile synthesis of mesoporous CuCo2O4 nanorods@MnO2 with core-shell structure grown on RGO for high-performance supercapacitor. Materials Letters, 2019, 249, 151-154.	1.3	20
59	Synthesis of Ultrathin MnO2 Nanosheets/Bagasse Derived Porous Carbon Composite for Supercapacitor with High Performance. Journal of Electronic Materials, 2019, 48, 3026-3035.	1.0	14
60	Controllable Zn0.76Co0.24S Nanoflower Arrays Grown on Carbon Fiber Papers for High-Performance Supercapacitors. Nano, 2019, 14, 1950030.	0.5	10
61	Hydrothermal Synthesis of Ni-MOF Vulcanized Derivatives for High-Performance Supercapacitors. Nano, 2019, 14, 1950032.	0.5	22
62	Construction of NiCo2O4@Ni0.85Se core-shell nanorod arrays on Ni foam as advanced materials for an asymmetric supercapacitor. Journal of Alloys and Compounds, 2019, 778, 234-238.	2.8	33
63	High performance fiber-shaped all-solid-state symmetric supercapacitor based on mesoporous CuCo2S4 nanosheets. Journal of Materials Science: Materials in Electronics, 2019, 30, 667-676.	1.1	11
64	Effect of nickel (Ni) on the growth rate of Cu6Sn5 intermetallic compounds between Sn–Cu–Bi solder and Cu substrate. Journal of Materials Science: Materials in Electronics, 2019, 30, 2186-2191.	1.1	20
65	One-step hydrothermal synthesis of a CoS2@MoS2 nanocomposite for high-performance supercapacitors. Journal of Alloys and Compounds, 2018, 742, 844-851.	2.8	84
66	Facile synthesis of cuboid Ni-MOF for high-performance supercapacitors. Journal of Materials Science, 2018, 53, 6807-6818.	1.7	193
67	Facile synthesis of Cu1.96S nanoparticles for enhanced energy density in flexible all-solid-state asymmetric supercapacitors. Journal of Materials Science: Materials in Electronics, 2018, 29, 11187-11198.	1.1	9
68	CuCo2S4 nanotubes on carbon fiber papers for high-performance all-solid-state asymmetric supercapacitors. Journal of Materials Science: Materials in Electronics, 2018, 29, 8636-8648.	1.1	23
69	Ni3S4 supported on carbon cloth for high-performance flexible all-solid-state asymmetric supercapacitors. Journal of Materials Science: Materials in Electronics, 2018, 29, 2525-2536.	1.1	39
70	Polyhedral ternary oxide FeCo2O4: A new electrode material for supercapacitors. Journal of Alloys and Compounds, 2018, 735, 1339-1343.	2.8	89
71	Facile Synthesis of Agâ€Decorated Ni ₃ S ₂ Nanosheets with 3D Bush Structure Grown on rGO and Its Application as Positive Electrode Material in Asymmetric Supercapacitor. Advanced Materials Interfaces, 2018, 5, 1700985.	1.9	96
72	Facile synthesis of nickel metal–organic framework derived hexagonal flaky NiO for supercapacitors. Journal of Materials Science: Materials in Electronics, 2018, 29, 2477-2483.	1.1	24

#	Article	IF	CITATIONS
73	All-solid-state asymmetric supercapacitor based on N-doped activated carbon derived from polyvinylidene fluoride and ZnCo2O4 nanosheet arrays. Journal of Materials Science: Materials in Electronics, 2018, 29, 2120-2130.	1.1	10
74	Synthesis of Cu2O by oxidation-assisted dealloying method for flexible all-solid-state asymmetric supercapacitors. Journal of Materials Science: Materials in Electronics, 2018, 29, 2080-2090.	1.1	19
75	ZnO@Ni–Co–S Core–Shell Nanorods-Decorated Carbon Fibers as Advanced Electrodes for High-Performance Supercapacitors. Nano, 2018, 13, 1850148.	0.5	6
76	Self-Supported Ni0.85Se Nanosheets Array on Carbon Fiber Cloth for a High-Performance Asymmetric Supercapacitor. Journal of Electronic Materials, 2018, 47, 7002-7010.	1.0	21
77	Activation properties of reticulate Ni3S2 electrode materials grown on nickel foam for high performance supercapacitors. Journal of Materials Science: Materials in Electronics, 2018, 29, 20775-20782.	1.1	1
78	Effects of Carbonization Temperature on Nature of Nanostructured Electrode Materials Derived from Fe-MOF for Supercapacitors. Electronic Materials Letters, 2018, 14, 548-555.	1.0	13
79	Dependence of Macro- and Micro-Properties on α Plates in Ti-6Al-2Zr-1Mo-1V Alloy with Tri-Modal Microstructure. Metals, 2018, 8, 299.	1.0	8
80	Dandelion-like nickel/cobalt metal-organic framework based electrode materials for high performance supercapacitors. Journal of Colloid and Interface Science, 2018, 531, 83-90.	5.0	277
81	Facile synthesis of mesoporous ZnCo2O4 nanosheet arrays grown on rGO as binder-free electrode for high-performance asymmetric supercapacitor. Journal of Materials Science, 2018, 53, 16074-16085.	1.7	23
82	The effect of temperature on morphology and electrochemical properties of NiCo ₂ S ₄ by hydrothermal synthesis. Functional Materials Letters, 2018, 11, 1850063.	0.7	1
83	An Asymmetric Supercapacitor Based on Activated Porous Carbon Derived from Walnut Shells and NiCo ₂ O ₄ Nanoneedle Arrays Electrodes. Journal of Nanoscience and Nanotechnology, 2018, 18, 5600-5608.	0.9	24
84	Influence of SnO2 Nanoparticles Addition on Microstructure, Thermal Analysis, and Interfacial IMC Growth of Sn1.0Ag0.7Cu Solder. Journal of Electronic Materials, 2017, 46, 4197-4205.	1.0	21
85	Microstructure of Al _{1.3} CrFeNi eutectic high entropy alloy and oxidation behavior at 1000 °C. Journal of Materials Research, 2017, 32, 2109-2116.	1.2	33
86	Facile synthesis of copper sulfides with different shapes for high-performance supercapacitors. Journal of Materials Science: Materials in Electronics, 2017, 28, 10720-10729.	1.1	10
87	One-step hydrothermal synthesis of Ni3S4@MoS2 nanosheet on carbon fiber paper as a binder-free anode for supercapacitor. Journal of Materials Science: Materials in Electronics, 2017, 28, 12747-12754.	1.1	43
88	Cobalt oxide composites derived from zeolitic imidazolate framework for high-performance supercapacitor electrode. Journal of Materials Science: Materials in Electronics, 2017, 28, 14019-14025.	1.1	24
89	Embedding Cobalt Into ZIF-67 to Obtain Cobalt-Nanoporous Carbon Composites as Electrode Materials for Supercapacitor. Journal of Nanoscience and Nanotechnology, 2017, 17, 3504-3508.	0.9	9
90	Facile Construction of 3D Reduced Graphene Oxide Wrapped Ni ₃ S ₂ Nanoparticles on Ni Foam for Highâ€Performance Asymmetric Supercapacitor Electrodes. Particle and Particle Systems Characterization, 2017, 34, 1700196.	1.2	30

#	Article	IF	CITATIONS
91	Oneâ€pot synthesis of flake Cu 1.81 S/C composite for highâ€performance supercapactiors electrodes. Micro and Nano Letters, 2017, 12, 87-89.	0.6	2
92	Wear behavior of in-situ TiC particles reinforced aluminum matrix composite. Journal Wuhan University of Technology, Materials Science Edition, 2017, 32, 552-556.	0.4	1
93	Preparation and capacitance properties of Al-doped hierarchical TiO2 nanostructure by oxidation of Ti–8Al alloy. Journal of Materials Science: Materials in Electronics, 2017, 28, 13770-13779.	1.1	1
94	Structure Dependence of Fe o Hydroxides on Fe/Co Ratio and Their Application for Supercapacitors. Particle and Particle Systems Characterization, 2017, 34, 1600239.	1.2	37
95	Au&Co core-shell nanoparticles capped with porous carbon: High performance materials for supercapacitor applications. Materials Letters, 2016, 183, 408-412.	1.3	4
96	Influence of Brazing Technology on the Microstructure and Properties of YG20C cemented carbide and 16Mn steel joints. Welding in the World, Le Soudage Dans Le Monde, 2016, 60, 1269-1275.	1.3	20
97	Effects of pouring temperature on interfacial reaction between Ti-47.5Al-2.5V-1Cr alloy and mold during centrifugal casting. Journal Wuhan University of Technology, Materials Science Edition, 2016, 31, 1105-1108.	0.4	5
98	Electrodeposition of Ni–Co double hydroxide composite nanosheets on Fe substrate for highâ€performance supercapacitor electrode. Micro and Nano Letters, 2016, 11, 837-839.	0.6	5
99	Co ₃ O ₄ nanocrystals derived from a zeolitic imidazolate framework on Ni foam as high-performance supercapacitor electrode material. RSC Advances, 2016, 6, 61803-61808.	1.7	18
100	Co _{3} O _{4} Electrode Prepared by Using Metal-Organic Framework as a Host for Supercapacitors. Journal of Nanomaterials, 2015, 2015, 1-6.	1.5	8
101	A novel cobalt–carbon composite for the electrochemical supercapacitor electrode material. Materials Letters, 2015, 146, 20-22.	1.3	28
102	Cobalt–carbon derived from zeolitic imidazolate framework on Ni foam as high-performance supercapacitor electrode material. Materials and Design, 2015, 83, 552-556.	3.3	37
103	Synthesis, characterization, crystal structures, and photophysical properties of a series of room-temperature phosphorescent copper(I) complexes with oxadiazole-derived diimine ligand. Inorganica Chimica Acta, 2010, 363, 2600-2605.	1.2	14
104	Low-voltage and high-efficiency white organic light emitting devices with carrier balance. Physica B: Condensed Matter, 2010, 405, 4434-4438.	1.3	2
105	Pure-blue tandem OLEDs based on terfluorenes compounds. Journal of Materials Science: Materials in Electronics, 2008, 19, 1202-1205.	1.1	7
106	Highly efficient organic electroluminescent diodes realized by efficient charge balance with optimized electron and hole transport layers. Solid State Communications, 2007, 144, 343-346.	0.9	10
107	Highly efficient styrylamine-doped blue and white organic electroluminescent devices. Displays, 2007, 28, 186-190.	2.0	10
108	Enhancement of red organic light-emitting diodes via cascade energy transfer. Microelectronics Journal, 2006, 37, 1325-1328.	1.1	7