
Rakesh Sharma

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7020175/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Relevance of Leukocytospermia and Semen Culture and Its True Place in Diagnosing and Treating Male Infertility. World Journal of Men?s Health, 2022, 40, 191.	3.3	17
2	A Comprehensive Guide to Sperm Recovery in Infertile Men with Retrograde Ejaculation. World Journal of Men?s Health, 2022, 40, 208.	3.3	6
3	Sperm Morphology Assessment in the Era of Intracytoplasmic Sperm Injection: Reliable Results Require Focus on Standardization, Quality Control, and Training. World Journal of Men?s Health, 2022, 40, 347.	3.3	11
4	Standardized Laboratory Procedures, Quality Control and Quality Assurance Are Key Requirements for Accurate Semen Analysis in the Evaluation of Infertile Male. World Journal of Men?s Health, 2022, 40, 52.	3.3	12
5	Sperm Vitality and Necrozoospermia: Diagnosis, Management, and Results of a Global Survey of Clinical Practice. World Journal of Men?s Health, 2022, 40, 228.	3.3	18
6	Role of Cytocentrifugation Combined with Nuclear Fast Picroindigocarmine Staining in Detecting Cryptozoospermia in Men Diagnosed with Azoospermia. World Journal of Men?s Health, 2022, 40, .	3.3	2
7	Post-Vasectomy Semen Analysis: Optimizing Laboratory Procedures and Test Interpretation through a Clinical Audit and Global Survey of Practices. World Journal of Men?s Health, 2022, 40, 425.	3.3	2
8	Antisperm Antibody Testing: A Comprehensive Review of Its Role in the Management of Immunological Male Infertility and Results of a Global Survey of Clinical Practices. World Journal of Men?s Health, 2022, 40, 380.	3.3	11
9	TUNEL assay—Standardized method for testing sperm DNA fragmentation. Andrologia, 2021, 53, e13738.	2.1	34
10	Sperm DNA fragmentation testing: Summary evidence and clinical practice recommendations. Andrologia, 2021, 53, e13874.	2.1	121
11	An update on the techniques used to measure oxidative stress in seminal plasma. Andrologia, 2021, 53, e13726.	2.1	13
12	Protein Fingerprinting of Seminal Plasma Reveals Dysregulation of Exosome-Associated Proteins in Infertile Men with Unilateral Varicocele. World Journal of Men?s Health, 2021, 39, 324.	3.3	25
13	Best Practice Guidelines for Andrology Laboratory Services during COVID-19 Crisis: Cleveland Clinic's Experience. World Journal of Men?s Health, 2021, 39, 169.	3.3	0
14	An online educational model in andrology for student training in the art of scientific writing in the COVIDâ€19 pandemic. Andrologia, 2021, 53, e13961.	2.1	6
15	A Web-Based Global Educational Model for Training in Semen Analysis during the COVID-19 Pandemic. World Journal of Men?s Health, 2021, 39, 804.	3.3	4
16	New Insights on the Mechanisms Affecting Fertility in Men with Non-Seminoma Testicular Cancer before Cancer Therapy. World Journal of Men?s Health, 2020, 38, 198.	3.3	11
17	The efficacy of antioxidants in sperm parameters and production of reactive oxygen species levels during the freezeâ€thaw process: A systematic review and metaâ€analysis. Andrologia, 2020, 52, e13514.	2.1	39
18	Proteomic analysis of sperm proteins in infertile men with high levels of reactive oxygen species. Andrologia, 2018, 50, e13015.	2.1	21

RAKESH SHARMA

#	Article	IF	CITATIONS
19	Reactive oxygen species impact on sperm DNA and its role in male infertility. Andrologia, 2018, 50, e13012.	2.1	180
20	Treatment of semen samples with αâ€chymotrypsin alters the expression pattern of sperm functional proteins—a pilot study. Andrology, 2018, 6, 345-350.	3.5	14
21	Human sperm handling in intracytoplasmic sperm injection processes: In vitro studies on mouse oocyte activation, embryo development competence and sperm oxidation-reduction potential. Andrologia, 2018, 50, e12943.	2.1	6
22	Calibration of redox potential in sperm wash media and evaluation of oxidation–reduction potential values in various assisted reproductive technology culture media using MiOXSYS system. Andrology, 2018, 6, 293-300.	3.5	13
23	Evaluation of seminal plasma proteomics and relevance of FSH in identification of nonobstructive azoospermia: A preliminary study. Andrologia, 2018, 50, e12999.	2.1	10
24	Cumene hydroperoxide induced changes in oxidation-reduction potential in fresh and frozen seminal ejaculates. Andrologia, 2018, 50, e12796.	2.1	7
25	Association between promoter methylation of <i>MLH1</i> and <i>MSH2</i> and reactive oxygen species in oligozoospermic men-A pilot study. Andrologia, 2018, 50, e12903.	2.1	24
26	Determination of seminal oxidation-reduction potential (ORP) as an easy and cost-effective clinical marker of male infertility. Andrologia, 2018, 50, e12914.	2.1	29
27	Towards the identification of reliable sperm biomarkers for male infertility: A sperm proteomic approach. Andrologia, 2018, 50, e12919.	2.1	46
28	Inter―and intraâ€laboratory standardization of <scp>TUNEL</scp> assay for assessment of sperm <scp>DNA</scp> fragmentation. Andrology, 2017, 5, 477-485.	3.5	67
29	A translational medicine appraisal of specialized andrology testing in unexplained male infertility. International Urology and Nephrology, 2014, 46, 1037-1052.	1.4	86
30	Effect of pentoxifylline in reducing oxidative stress-induced embryotoxicity. Journal of Assisted Reproduction and Genetics, 2005, 22, 415-417.	2.5	50