Miguel GarcÃ-a-Tecedor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7020063/publications.pdf

Version: 2024-02-01

567281 501196 31 876 15 28 g-index citations h-index papers 32 32 32 1324 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Switchable All Inorganic Halide Perovskite Nanocrystalline Photoelectrodes for Solarâ€Driven Organic Transformations. Solar Rrl, 2022, 6, 2100723.	5.8	5
2	Direct Observation of the Chemical Transformations in BiVO ₄ Photoanodes upon Prolonged Lightâ€Aging Treatments. Solar Rrl, 2022, 6, .	5.8	5
3	Spectroelectrochemical Analysis of the Water Oxidation Mechanism on Doped Nickel Oxides. Journal of the American Chemical Society, 2022, 144, 7622-7633.	13.7	66
4	Unravelling nanostructured Nb-doped TiO ₂ dual band behaviour in smart windows by <i>in situ</i> spectroscopies. Journal of Materials Chemistry A, 2022, 10, 19994-20004.	10.3	6
5	Laser-Reduced BiVO ₄ for Enhanced Photoelectrochemical Water Splitting. ACS Applied Materials & Samp; Interfaces, 2022, 14, 33200-33210.	8.0	15
6	Self-supported ultra-active NiO-based electrocatalysts for the oxygen evolution reaction by solution combustion. Journal of Materials Chemistry A, 2021, 9, 12700-12710.	10.3	14
7	Pushâ€Pull Electronic Effects in Surfaceâ€Active Sites Enhance Electrocatalytic Oxygen Evolution on Transition Metal Oxides. ChemSusChem, 2021, 14, 1595-1601.	6.8	10
8	Synthesis of low dimensional oxide based complex materials by a vapor-solid method., 2021,,.		0
9	Solution-Processed Ni-Based Nanocomposite Electrocatalysts: An Approach to Highly Efficient Electrochemical Water Splitting. ACS Applied Energy Materials, 2021, 4, 5255-5264.	5.1	16
10	Intensity-Modulated Photocurrent Spectroscopy for Solar Energy Conversion Devices: What Does a Negative Value Mean?. ACS Energy Letters, 2020, 5, 187-191.	17.4	23
11	The role of oxygen vacancies in water splitting photoanodes. Sustainable Energy and Fuels, 2020, 4, 5916-5926.	4.9	52
12	Separating bulk and surface processes in NiO $<$ sub $>$ $x < /$ sub $>$ electrocatalysts for water oxidation. Sustainable Energy and Fuels, 2020, 4, 5024-5030.	4.9	26
13	An integrated photoanode based on non-critical raw materials for robust solar water splitting. Materials Advances, 2020, 1, 1202-1211.	5.4	4
14	Electrophoretic deposition of antimonene for photoelectrochemical applications. Applied Materials Today, 2020, 20, 100714.	4.3	11
15	Lead Sulfide Nanocubes for Solar Energy Storage. Energy Technology, 2020, 8, 2000301.	3.8	5
16	Low-Dimensional Structures of In2O3, SnO2 and TiO2 with Applications of Technological Interest., 2020,, 99-136.		1
17	Impact of Oxygen Vacancy Occupancy on Charge Carrier Dynamics in BiVO ₄ Photoanodes. Journal of the American Chemical Society, 2019, 141, 18791-18798.	13.7	147
18	TiO ₂ Nanotubes for Solar Water Splitting: Vacuum Annealing and Zr Doping Enhance Water Oxidation Kinetics. ACS Omega, 2019, 4, 16095-16102.	3.5	24

#	Article	IF	CITATIONS
19	WO ₃ /BiVO ₄ : impact of charge separation at the timescale of water oxidation. Chemical Science, 2019, 10, 2643-2652.	7.4	59
20	Photocatalytic and Photoelectrochemical Degradation of Organic Compounds with All-Inorganic Metal Halide Perovskite Quantum Dots. Journal of Physical Chemistry Letters, 2019, 10, 630-636.	4.6	124
21	The Role of Underlayers and Overlayers in Thin Film BiVO ₄ Photoanodes for Solar Water Splitting. Advanced Materials Interfaces, 2019, 6, 1900299.	3.7	28
22	A metal–organic framework converted catalyst that boosts photo-electrochemical water splitting. Journal of Materials Chemistry A, 2019, 7, 11143-11149.	10.3	59
23	Li2SnO3 branched nano- and microstructures with intense and broadband white-light emission. Nano Research, 2019, 12, 441-448.	10.4	7
24	Tuning the Luminescence of Tin Oxide Low Dimensional Structures in the Near Infrared Range by In‧itu Doping During a Vapor–Solid Growth Process. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800179.	1.8	0
25	Enhancing the Optical Absorption and Interfacial Properties of BiVO ₄ with Ag ₃ PO ₄ Nanoparticles for Efficient Water Splitting. Journal of Physical Chemistry C, 2018, 122, 11608-11615.	3.1	44
26	Silicon surface passivation by PEDOT: PSS functionalized by SnO ₂ and TiO ₂ nanoparticles. Nanotechnology, 2018, 29, 035401.	2.6	14
27	Tailoring optical resonant cavity modes in SnO2 microstructures through doping and shape engineering. Journal Physics D: Applied Physics, 2017, 50, 415104.	2.8	9
28	Photochromic mechanism in oxygen-containing yttrium hydride thin films: An optical perspective. Physical Review B, 2017, 95, .	3.2	44
29	Growth and characterization of Cr doped SnO ₂ microtubes with resonant cavity modes. Journal of Materials Chemistry C, 2016, 4, 5709-5716.	5.5	30
30	Influence of Cr Doping on the Morphology and Luminescence of SnO ₂ Nanostructures. Journal of Physical Chemistry C, 2016, 120, 22028-22034.	3.1	24
31	Tubular micro- and nanostructures of TCO materials grown by a vapor-solid method. AIMS Materials Science, 2016, 3, 434-447.	1.4	3