
Myron Christodoulides

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7019561/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A SARS-CoV-2 nucleocapsid ELISA represents a low-cost alternative to lateral flow testing for community screening in LMI countries. Journal of Infection, 2022, 84, 48-55.	1.7	7
2	Sensitive and specific serodiagnosis of tegumentary leishmaniasis using a new chimeric protein based on specific B-cell epitopes of Leishmania antigenic proteins. Microbial Pathogenesis, 2022, 162, 105341.	1.3	3
3	Update on the Neisseria Macrophage Infectivity Potentiator-Like PPIase Protein. Frontiers in Cellular and Infection Microbiology, 2022, 12, 861489.	1.8	4
4	Recombinant guanosine-5′-triphosphate (GTP)-binding protein associated with Poloxamer 407-based polymeric micelles protects against Leishmania infantum infection. Cytokine, 2022, 153, 155865.	1.4	2
5	A recombinant Leishmania amastigote-specific protein, rLiHyG, with adjuvants, protects against infection with Leishmania infantum. Acta Tropica, 2022, 230, 106412.	0.9	6
6	In Silico Design of Recombinant Chimera T Cell Peptide Epitope Vaccines for Visceral Leishmaniasis. Methods in Molecular Biology, 2022, 2410, 463-480.	0.4	2
7	Preclinical Assessment of the Immunogenicity of Experimental Leishmania Vaccines. Methods in Molecular Biology, 2022, 2410, 481-502.	0.4	2
8	<i>Leishmania</i> Â <scp>LiHyC</scp> protein is immunogenic and induces protection against visceral leishmaniasis. Parasite Immunology, 2022, 44, e12921.	0.7	3
9	Detecting anti–SARS-CoV-2 antibodies in urine samples: A noninvasive and sensitive way to assay COVID-19 immune conversion. Science Advances, 2022, 8, eabn7424.	4.7	14
10	Establishing an invertebrate <i>Galleria mellonella</i> greater wax moth larval model of <i>Neisseria gonorrhoeae</i> infection. Virulence, 2021, 12, 1900-1920.	1.8	16
11	Dual RNASeq Reveals NTHi-Macrophage Transcriptomic Changes During Intracellular Persistence. Frontiers in Cellular and Infection Microbiology, 2021, 11, 723481.	1.8	7
12	The potential utility of liposomes for Neisseria vaccines. Expert Review of Vaccines, 2021, 20, 1-22.	2.0	2
13	Potential of recombinant LiHyQ, a novel Leishmania infantum protein, for the diagnosis of canine visceral leishmaniasis and as a diagnostic and prognostic marker for human leishmaniasis and human immunodeficiency virus co-infection: A preliminary study. Acta Tropica, 2021, 224, 106126.	0.9	4
14	Toll-Like Receptor 4 Interactions with Neisseria. Agents and Actions Supplements, 2021, , 79-91.	0.2	1
15	ChimLeish, a new recombinant chimeric protein evaluated as a diagnostic and prognostic marker for visceral leishmaniasis and human immunodeficiency virus coinfection. Parasitology Research, 2021, 120, 4037-4047.	0.6	2
16	Atypical, Yet Not Infrequent, Infections with Neisseria Species. Pathogens, 2020, 9, 10.	1.2	46
17	Morphological and cytokine profiles as key parameters to distinguish between Gram-negative and Gram-positive bacterial keratitis. Scientific Reports, 2020, 10, 20092.	1.6	6
18	A candidate vaccine for human visceral leishmaniasis based on a specific T cell epitope-containing chimeric protein protects mice against Leishmania infantum infection. Npj Vaccines, 2020, 5, 75.	2.9	26

#	Article	IF	CITATIONS
19	Bactericidal Effect of 5-Mercapto-2-nitrobenzoic Acid-Coated Silver Nanoclusters against Multidrug-Resistant <i>Neisseria gonorrhoeae</i> . ACS Applied Materials & Interfaces, 2020, 12, 27994-28003.	4.0	14
20	Liposomal Formulation of ChimeraT, a Multiple T-Cell Epitope-Containing Recombinant Protein, Is a Candidate Vaccine for Human Visceral Leishmaniasis. Vaccines, 2020, 8, 289.	2.1	18
21	Pseudomonas aeruginosa host-pathogen interactions in human corneal infection models. Journal of EuCornea, 2020, 7, 8-16.	0.5	2
22	Discovery of Cephalosporin-3′-Diazeniumdiolates That Show Dual Antibacterial and Antibiofilm Effects against <i>Pseudomonas aeruginosa</i> Clinical Cystic Fibrosis Isolates and Efficacy in a Murine Respiratory Infection Model. ACS Infectious Diseases, 2020, 6, 1460-1479.	1.8	18
23	Evidence of homologous recombination as a driver of diversity in Brachyspira pilosicoli. Microbial Genomics, 2020, 6, .	1.0	2
24	A rapid diagnostic test for human Visceral Leishmaniasis using novel <i>Leishmania</i> antigens in a Laser Direct-Write Lateral Flow Device. Emerging Microbes and Infections, 2019, 8, 1178-1185.	3.0	13
25	Characterization of two putative Dichelobacter nodosus footrot vaccine antigens identifies the first lysozyme inhibitor in the genus. Scientific Reports, 2019, 9, 10055.	1.6	3
26	Basic Methods for Examining Neisseria gonorrhoeae Interactions with Host Cells In Vitro. Methods in Molecular Biology, 2019, 1997, 281-299.	0.4	1
27	Use of Human Fallopian Tube Organ in Culture (FTOC) and Primary Fallopian Tube Epithelial Cells (FTEC) to Study the Biology of Neisseria gonorrhoeae Infection. Methods in Molecular Biology, 2019, 1997, 377-402.	0.4	3
28	Preparation of Lipooligosaccharide (LOS) from Neisseria gonorrhoeae. Methods in Molecular Biology, 2019, 1997, 87-96.	0.4	2
29	Feasibility of Using a Luminescence-Based Method to Determine Serum Bactericidal Activity against Neisseria gonorrhoeae. Vaccines, 2019, 7, 191.	2.1	5
30	The meninges as barriers and facilitators for the movement of fluid, cells and pathogens related to the rodent and human CNS. Acta Neuropathologica, 2018, 135, 363-385.	3.9	154
31	Structure of the Recombinant <i>Neisseria gonorrhoeae</i> Adhesin Complex Protein (rNg-ACP) and Generation of Murine Antibodies with Bactericidal Activity against Gonococci. MSphere, 2018, 3, .	1.3	17
32	Immunization with recombinant truncated Neisseria meningitidis -Macrophage Infectivity Potentiator (rT-Nm-MIP) protein induces murine antibodies that are cross-reactive and bactericidal for Neisseria gonorrhoeae. Vaccine, 2018, 36, 3926-3936.	1.7	12
33	The Growing Threat of Gonococcal Blindness. Antibiotics, 2018, 7, 59.	1.5	27
34	Neisseria gonorrhoeae employs two protein inhibitors to evade killing by human lysozyme. PLoS Pathogens, 2018, 14, e1007080.	2.1	22
35	Novel approaches to Neisseria meningitidis vaccine design. Pathogens and Disease, 2017, 75, .	0.8	32
36	Vaccines for piscirickettsiosis (salmonid rickettsial septicaemia, SRS): the Chile perspective. Expert Review of Vaccines, 2017, 16, 215-228.	2.0	61

#	Article	IF	CITATIONS
37	Signaling Mediated by Toll-Like Receptor 5 Sensing of Pseudomonas aeruginosa Flagellin Influences IL-1Î ² and IL-18 Production by Primary Fibroblasts Derived from the Human Cornea. Frontiers in Cellular and Infection Microbiology, 2017, 7, 130.	1.8	23
38	Neisseria gonorrhoeae Challenge Increases Matrix Metalloproteinase-8 Expression in Fallopian Tube Explants. Frontiers in Cellular and Infection Microbiology, 2017, 7, 399.	1.8	6
39	Effect of Different Antibiotic Chemotherapies on Pseudomonas aeruginosa Infection In Vitro of Primary Human Corneal Fibroblast Cells. Frontiers in Microbiology, 2017, 8, 1614.	1.5	3
40	Structure of the Neisseria Adhesin Complex Protein (ACP) and its role as a novel lysozyme inhibitor. PLoS Pathogens, 2017, 13, e1006448.	2.1	23
41	Vaccine Potential and Diversity of the Putative Cell Binding Factor (CBF, NMB0345/NEIS1825) Protein of Neisseria meningitidis. PLoS ONE, 2016, 11, e0160403.	1.1	5
42	Viral Inhibition of Bacterial Phagocytosis by Human Macrophages: Redundant Role of CD36. PLoS ONE, 2016, 11, e0163889.	1.1	15
43	Modified profile of matrix metalloproteinase-2 and -9 production by human Fallopian tube epithelial cells following infection in vitro with Neisseria gonorrhoeae. Journal of Infectious Diseases, 2016, 215, jiw568.	1.9	5
44	The NarE protein of <i>Neisseria gonorrhoeae</i> catalyzes ADP-ribosylation of several ADP-ribose acceptors despite an N-terminal deletion. FEMS Microbiology Letters, 2016, 363, fnw181.	0.7	5
45	Interactions of Streptococcus suis serotype 2 with human meningeal cells and astrocytes. BMC Research Notes, 2015, 8, 607.	0.6	15
46	Co-Transcriptomes of Initial Interactions In Vitro between Streptococcus Pneumoniae and Human Pleural Mesothelial Cells. PLoS ONE, 2015, 10, e0142773.	1.1	10
47	Recombinant Protein Truncation Strategy for Inducing Bactericidal Antibodies to the Macrophage Infectivity Potentiator Protein of Neisseria meningitidis and Circumventing Potential Cross-Reactivity with Human FK506-Binding Proteins. Infection and Immunity, 2015, 83, 730-742.	1.0	22
48	Current methods for capsular typing of Streptococcus pneumoniae. Journal of Microbiological Methods, 2015, 113, 41-49.	0.7	70
49	Draft Genome Sequence of Dichelobacter nodosus ATCC 25549, Strain VPI 2340 [11342], a Bacterium Causing Footrot in Sheep. Genome Announcements, 2015, 3, .	0.8	3
50	Vaccine potential of bacterial macrophage infectivity potentiator (MIP)-like peptidyl prolyl <i>cis/trans</i> isomerase (PPlase) proteins. Expert Review of Vaccines, 2015, 14, 1633-1649.	2.0	16
51	A putative amino acid ABC transporter substrate-binding protein, NMB1612, from Neisseria meningitidis, induces murine bactericidal antibodies against meningococci expressing heterologous NMB1612 proteins. Vaccine, 2015, 33, 4486-4494.	1.7	10
52	<i>Neisseria</i> proteomics for antigen discovery and vaccine development. Expert Review of Proteomics, 2014, 11, 573-591.	1.3	16
53	Immuno-proteomic analysis of human immune responses to experimental Neisseria meningitidis outer membrane vesicle vaccines identifies potential cross-reactive antigens. Vaccine, 2014, 32, 1280-1286.	1.7	23
54	Immunization with recombinant Chaperonin60 (Chp60) outer membrane protein induces a bactericidal antibody response against Neisseria meningitidis. Vaccine, 2013, 31, 2584-2590.	1.7	7

#	Article	IF	CITATIONS
55	Potential of the adhesin complex protein of <i>Neisseria meningitidis</i> for next-generation meningococcal vaccines. Expert Review of Vaccines, 2013, 12, 981-984.	2.0	3
56	Genome-Based Bacterial Vaccines: Current State and Future Outlook. BioDrugs, 2013, 27, 419-430.	2.2	11
57	The Adhesin Complex Protein (ACP) of Neisseria meningitidis Is a New Adhesin with Vaccine Potential. MBio, 2013, 4, .	1.8	43
58	The Biology of Neisseria Adhesins. Biology, 2013, 2, 1054-1109.	1.3	45
59	Neisseria gonorrhoeaePilus Attenuates Cytokine Response of Human Fallopian Tube Explants. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-7.	3.0	13
60	Coadministration of the cyanobacterial lipopolysaccharide antagonist CyP with antibiotic inhibits cytokine production by an in vitro meningitis model infected with Neisseria meningitidis. Journal of Antimicrobial Chemotherapy, 2012, 67, 1145-1154.	1.3	9
61	Differential expression of extracellular matrix components in the Fallopian tubes throughout the menstrual cycle. Reproductive Biology and Endocrinology, 2012, 10, 56.	1.4	16
62	Analysis of the Immune Response to Neisseria meningitidis Using a Proteomics Approach. Methods in Molecular Biology, 2012, 799, 343-360.	0.4	3
63	Group B Streptococcus Interactions with Human Meningeal Cells and Astrocytes In Vitro. PLoS ONE, 2012, 7, e42660.	1.1	27
64	A DNA Vaccine Strategy for Effective Antibody Induction to Pathogen-Derived Antigens. Methods in Molecular Biology, 2012, 799, 405-419.	0.4	0
65	Declining serotype coverage of new pneumococcal conjugate vaccines relating to the carriage of Streptococcus pneumoniae in young children. Vaccine, 2011, 29, 4400-4404.	1.7	69
66	The Neisseria meningitidis Macrophage Infectivity Potentiator Protein Induces Cross-Strain Serum Bactericidal Activity and Is a Potential Serogroup B Vaccine Candidate. Infection and Immunity, 2011, 79, 3784-3791.	1.0	34
67	Neuropeptide α-MSH exerts pro-inflammatory effects on Neisseria meningitidis infection in vitro. Inflammation Research, 2010, 59, 105-113.	1.6	0
68	Nitric oxide is not involved in Neisseria gonorrhoeae-induced cellular damage of human Fallopian tubes in vitro. Biological Research, 2010, 43, .	1.5	5
69	Increase in Serotype 6C Pneumococcal Carriage, United Kingdom. Emerging Infectious Diseases, 2010, 16, 154-155.	2.0	30
70	Immunoproteomic Analysis of the Development of Natural Immunity in Subjects Colonized by <i>Neisseria meningitidis</i> Reveals Potential Vaccine Candidates. Infection and Immunity, 2009, 77, 5080-5089.	1.0	38
71	A Cyanobacterial Lipopolysaccharide Antagonist Inhibits Cytokine Production Induced by <i>Neisseria meningitidis</i> in a Human Whole-Blood Model of Septicemia. Infection and Immunity, 2008, 76, 3156-3163.	1.0	24
72	A DNA Fusion Vaccine Induces Bactericidal Antibodies to a Peptide Epitope from the PorA Porin of <i>Neisseria meningitidis</i> . Infection and Immunity, 2008, 76, 334-338.	1.0	16

#	Article	IF	CITATIONS
73	Proteomic Analysis of Outer Membranes and Vesicles from Wild-Type Serogroup B Neisseria meningitidis and a Lipopolysaccharide-Deficient Mutant. Infection and Immunity, 2007, 75, 1364-1372.	1.0	78
74	Apoptosis related genes expressed in cultured Fallopian tube epithelial cells infected in vitro with Neisseria gonorrhoeae. Biological Research, 2007, 40, .	1.5	6
75	Apoptosis related genes expressed in cultured Fallopian tube epithelial cells infected in vitro with Neisseria gonorrhoeae. Biological Research, 2007, 40, 319-27.	1.5	3
76	Multivalent liposome-based vaccines containing different serosubtypes of PorA protein induce cross-protective bactericidal immune responses against Neisseria meningitidis. Vaccine, 2006, 24, 36-44.	1.7	31
77	Comparison of the Inflammatory Responses of Human Meningeal Cells following Challenge with Neisseria lactamica and with Neisseria meningitidis. Infection and Immunity, 2006, 74, 6467-6478.	1.0	24
78	Infection of Human Fallopian Tube Epithelial Cells with Neisseria gonorrhoeae Protects Cells from Tumor Necrosis Factor Alpha-Induced Apoptosis. Infection and Immunity, 2006, 74, 3643-3650.	1.0	49
79	Activation of human meningeal cells is modulated by lipopolysaccharide (LPS) and non-LPS components of Neisseria meningitidis and is independent of Toll-like receptor (TLR)4 and TLR2 signalling. Cellular Microbiology, 2005, 7, 415-430.	1.1	44
80	Development of Immunity to Serogroup B Meningococci during Carriage of Neisseria meningitidis in a Cohort of University Students. Infection and Immunity, 2004, 72, 6503-6510.	1.0	38
81	Different meningitis-causing bacteria induce distinct inflammatory responses on interaction with cells of the human meninges. Cellular Microbiology, 2004, 6, 555-567.	1.1	39
82	Activation of human dendritic cells by the PorA protein of Neisseria meningitidis. Cellular Microbiology, 2004, 6, 651-662.	1.1	33
83	Recombinant meningococcal PorA protein, expressed using a vector system with potential for human vaccination, induces a bactericidal immune response. Vaccine, 2004, 22, 1564-1569.	1.7	7
84	Activation of Human Dendritic Cells Is Modulated by Components of the Outer Membranes of Neisseria meningitidis. Infection and Immunity, 2003, 71, 5590-5597.	1.0	29
85	Serological Correlates of Protection against Meningococci in a Cohort of University Students, before and during an Outbreak of Serogroup C Infection. Journal of Infectious Diseases, 2003, 187, 1433-1441.	1.9	14
86	Expression of Proinflammatory Cytokines and Receptors by Human Fallopian Tubes in Organ Culture following Challenge with Neisseria gonorrhoeae. Infection and Immunity, 2003, 71, 527-532.	1.0	54
87	Immunization with the Recombinant PorB Outer Membrane Protein Induces a Bactericidal Immune Response against Neisseria meningitidis. Infection and Immunity, 2002, 70, 4028-4034.	1.0	72
88	Interaction of Neisseria meningitidis with Human Meningeal Cells Induces the Secretion of a Distinct Group of Chemotactic, Proinflammatory, and Growth-Factor Cytokines. Infection and Immunity, 2002, 70, 4035-4044.	1.0	55
89	Expression of the class 1 outer-membrane protein of Neisseria meningitidis in Escherichia coli and purification using a self-cleavable affinity tag. Protein Expression and Purification, 2002, 26, 243-248.	0.6	24
90	Immunization with Recombinant Opc Outer Membrane Protein from Neisseria meningitidis: Influence of Sequence Variation and Levels of Expression on the Bactericidal Immune Response against Meningococci. Infection and Immunity, 2001, 69, 3809-3816.	1.0	43

#	Article	IF	CITATIONS
91	Interactions of Neisseria gonorrhoeae with Mature Human Macrophage Opacity Proteins Influence Production of Proinflammatory Cytokines. Infection and Immunity, 2001, 69, 1909-1913.	1.0	32
92	Epitope Mapping. , 2001, 66, 361-370.		1
93	Recombinant Proteins in Vaccine Development. , 2001, 66, 167-180.		5
94	Interaction of primary human endometrial cells with Neisseria gonorrhoeae expressing green fluorescent protein. Molecular Microbiology, 2000, 35, 32-43.	1.2	61
95	Interactions of Neisseria meningitidis with cells of the human meninges. Molecular Microbiology, 2000, 36, 817-829.	1.2	77
96	Lack of Immunity in University Students before an Outbreak of Serogroup C Meningococcal Infection. Journal of Infectious Diseases, 2000, 181, 1172-1175.	1.9	34
97	Effect of adjuvant composition on immune response to a multiple antigen peptide (MAP) containing a protective epitope from Neisseria meningitidis class 1 porin. Vaccine, 1999, 18, 131-139.	1.7	16
98	Immunization with recombinant class I outermembrane protein from Neisseria meningitidis: influence of liposomes and adjuvants on antibody avidity, recognition of native protein and the induction of a bactericidal immune response against meningococci. Microbiology (United Kingdom), 1998, 144, 3027-3037.	0.7	60
99	Expression ofNeisseria meningitidisclass 1 porin as a fusion protein inEscherichia colli: the influence of liposomes and adjuvants on the production of a bactericidal immune reesponse. Microbial Pathogenesis, 1996, 21, 499-512.	1.3	30