Daohui Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7019185/publications.pdf Version: 2024-02-01

<u> Плониція</u>

#	Article	IF	CITATIONS
1	Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environmental Pollution, 2007, 150, 243-250.	3.7	1,481
2	Root Uptake and Phytotoxicity of ZnO Nanoparticles. Environmental Science & Technology, 2008, 42, 5580-5585.	4.6	981
3	Toxicity of ZnO Nanoparticles to <i>Escherichia coli</i> : Mechanism and the Influence of Medium Components. Environmental Science & amp; Technology, 2011, 45, 1977-1983.	4.6	683
4	Adsorption of Phenolic Compounds by Carbon Nanotubes: Role of Aromaticity and Substitution of Hydroxyl Groups. Environmental Science & Technology, 2008, 42, 7254-7259.	4.6	532
5	Adsorption and Hysteresis of Bisphenol A and 17α-Ethinyl Estradiol on Carbon Nanomaterials. Environmental Science & Technology, 2008, 42, 5480-5485.	4.6	405
6	Multifunctional iron-biochar composites for the removal of potentially toxic elements, inherent cations, and hetero-chloride from hydraulic fracturing wastewater. Environment International, 2019, 124, 521-532.	4.8	384
7	Interactions of Humic Acid with Nanosized Inorganic Oxides. Langmuir, 2009, 25, 3571-3576.	1.6	363
8	Fate and Transport of Engineered Nanomaterials in the Environment. Journal of Environmental Quality, 2010, 39, 1896-1908.	1.0	314
9	Toxicity of oxide nanoparticles to the green algae Chlorella sp Chemical Engineering Journal, 2011, 170, 525-530.	6.6	296
10	Tannic Acid Adsorption and Its Role for Stabilizing Carbon Nanotube Suspensions. Environmental Science & Technology, 2008, 42, 5917-5923.	4.6	283
11	Environmental transformations and ecological effects of iron-based nanoparticles. Environmental Pollution, 2018, 232, 10-30.	3.7	249
12	Nanoparticle interactions with co-existing contaminants: joint toxicity, bioaccumulation and risk. Nanotoxicology, 2017, 11, 591-612.	1.6	244
13	The influence of dissolved and surface-bound humic acid on the toxicity of TiO2 nanoparticles to Chlorella sp Water Research, 2012, 46, 4477-4487.	5.3	194
14	Effects of water chemistry on the dissolution of ZnO nanoparticles and their toxicity to Escherichia coli. Environmental Pollution, 2013, 173, 97-102.	3.7	193
15	Systematic and Quantitative Investigation of the Mechanism of Carbon Nanotubes' Toxicity toward Algae. Environmental Science & Technology, 2012, 46, 8458-8466.	4.6	192
16	Toxicity of iron-based nanoparticles to green algae: Effects of particle size, crystal phase, oxidation state and environmental aging. Environmental Pollution, 2016, 218, 505-512.	3.7	159
17	The effect of ionic strength and pH on the stability of tannic acid-facilitated carbon nanotube suspensions. Carbon, 2009, 47, 2875-2882.	5.4	157
18	Toxicity of TiO2 Nanoparticles to Escherichia coli: Effects of Particle Size, Crystal Phase and Water Chemistry. PLoS ONE, 2014, 9, e110247.	1.1	156

#	Article	lF	CITATIONS
19	A new strategy using nanoscale zero-valent iron to simultaneously promote remediation and safe crop production in contaminated soil. Nature Nanotechnology, 2021, 16, 197-205.	15.6	133
20	Heteroagglomeration of Oxide Nanoparticles with Algal Cells: Effects of Particle Type, Ionic Strength and pH. Environmental Science & Technology, 2015, 49, 932-939.	4.6	127
21	Toxicity of perfluorooctane sulfonate and perfluorooctanoic acid to Escherichia coli: Membrane disruption, oxidative stress, and DNA damage induced cell inactivation and/or death. Environmental Pollution, 2016, 214, 806-815.	3.7	126
22	Clay Minerals Affect the Stability of Surfactant-Facilitated Carbon Nanotube Suspensions. Environmental Science & Technology, 2008, 42, 6869-6875.	4.6	120
23	Adsorption of Triton X-series surfactants and its role in stabilizing multi-walled carbon nanotube suspensions. Chemosphere, 2010, 79, 362-367.	4.2	112
24	Influence of Surface Oxidation of Multiwalled Carbon Nanotubes on the Adsorption Affinity and Capacity of Polar and Nonpolar Organic Compounds in Aqueous Phase. Environmental Science & Technology, 2012, 46, 5446-5454.	4.6	112
25	Correlations and adsorption mechanisms of aromatic compounds on a high heat temperature treated bamboo biochar. Environmental Pollution, 2016, 210, 57-64.	3.7	108
26	Effect and mechanism of TiO2 nanoparticles on the photosynthesis of Chlorella pyrenoidosa. Ecotoxicology and Environmental Safety, 2018, 161, 497-506.	2.9	99
27	The biophysicochemical interactions at the interfaces between nanoparticles and aquatic organisms: adsorption and internalization. Environmental Sciences: Processes and Impacts, 2013, 15, 145-160.	1.7	93
28	Nanoscale zero-valent iron for metal/metalloid removal from model hydraulic fracturing wastewater. Chemosphere, 2017, 176, 315-323.	4.2	93
29	Surface-bound humic acid increased Pb2+ sorption on carbon nanotubes. Environmental Pollution, 2012, 167, 138-147.	3.7	88
30	Correlations and adsorption mechanisms of aromatic compounds on biochars produced from various biomass at 700°C. Environmental Pollution, 2018, 233, 64-70.	3.7	87
31	Sonication-assisted dispersion of carbon nanotubes in aqueous solutions of the anionic surfactant SDBS: The role of sonication energy. Science Bulletin, 2013, 58, 2082-2090.	1.7	85
32	Influence of Ti3C2Tx (MXene) intercalation pseudocapacitance on electrochemical performance of Co-MOF binder-free electrode. Ceramics International, 2018, 44, 14425-14431.	2.3	81
33	Adsorption and correlations of selected aromatic compounds on a KOH-activated carbon with large surface area. Science of the Total Environment, 2018, 618, 1677-1684.	3.9	75
34	Different stabilities of multiwalled carbon nanotubes in fresh surface water samples. Environmental Pollution, 2010, 158, 1270-1274.	3.7	73
35	The role of exopolymeric substances in the bioaccumulation and toxicity of Ag nanoparticles to algae. Scientific Reports, 2016, 6, 32998.	1.6	71
36	Effect of natural and synthetic surface coatings on the toxicity of multiwalled carbon nanotubes toward green algae. Carbon, 2015, 83, 198-207.	5.4	70

DAOHUI LIN

#	Article	IF	CITATIONS
37	Hemocyte responses of the thick shell mussel Mytilus coruscus exposed to nano-TiO 2 and seawater acidification. Aquatic Toxicology, 2016, 180, 1-10.	1.9	68
38	Condition optimization for exfoliation of two dimensional titanium carbide (Ti ₃ C ₂ T <i> _x </i>). Nanotechnology, 2018, 29, 095605.	1.3	64
39	Characterization and Phenanthrene Sorption of Tea Leaf Powders. Journal of Agricultural and Food Chemistry, 2007, 55, 5718-5724.	2.4	63
40	Oxidative stress induced by titanium dioxide nanoparticles increases under seawater acidification in the thick shell mussel Mytilus coruscus. Marine Environmental Research, 2018, 137, 49-59.	1.1	63
41	Immune toxicity of TiO2 under hypoxia in the green-lipped mussel Perna viridis based on flow cytometric analysis of hemocyte parameters. Science of the Total Environment, 2014, 470-471, 791-799.	3.9	62
42	In situ growth of TiO2 nanoparticles on nitrogen-doped Ti3C2 with isopropyl amine toward enhanced photocatalytic activity. Journal of Hazardous Materials, 2021, 402, 124066.	6.5	62
43	Metal Impurities Dominate the Sorption of a Commercially Available Carbon Nanotube for Pb(II) from Water. Environmental Science & Technology, 2010, 44, 8144-8149.	4.6	61
44	Potential environmental risks of nanopesticides: Application of Cu(OH)2 nanopesticides to soil mitigates the degradation of neonicotinoid thiacloprid. Environment International, 2019, 129, 42-50.	4.8	59
45	Integration of transcriptomics and metabolomics reveals the responses of earthworms to the long-term exposure of TiO2 nanoparticles in soil. Science of the Total Environment, 2020, 719, 137492.	3.9	58
46	Dispersibility and Photochemical Stability of Delaminated MXene Flakes in Water. Small, 2020, 16, e2002433.	5.2	55
47	The relationship between humic acid (HA) adsorption on and stabilizing multiwalled carbon nanotubes (MWNTs) in water: Effects of HA, MWNT and solution properties. Journal of Hazardous Materials, 2012, 241-242, 404-410.	6.5	54
48	Sorption of Cu2+ on humic acids sequentially extracted from a sediment. Chemosphere, 2015, 138, 657-663.	4.2	54
49	Effect of humic acids on physicochemical property and Cd(II) sorption of multiwalled carbon nanotubes. Chemosphere, 2012, 89, 1316-1322.	4.2	53
50	Transport of TiO2 nanoparticles in soil in the presence of surfactants. Science of the Total Environment, 2015, 527-528, 420-428.	3.9	53
51	Transport of surfactant-facilitated multiwalled carbon nanotube suspensions in columns packed with sized soil particles. Environmental Pollution, 2014, 192, 36-43.	3.7	51
52	Nanopesticides: A Comprehensive Assessment of Environmental Risk Is Needed before Widespread Agricultural Application. Environmental Science & Technology, 2019, 53, 7923-7924.	4.6	51
53	Correlation and prediction of adsorption capacity and affinity of aromatic compounds on carbon nanotubes. Water Research, 2016, 88, 492-501.	5.3	50
54	Achieving high bactericidal and antibiofouling activities of 2D titanium carbide (Ti ₃ C) Tj ETQq0 () 0 rgBT /Ov	verlock 10 Tf 5

DΑΟΗUΙ LIN

#	Article	IF	CITATIONS
55	Physicochemical transformation and algal toxicity of engineered nanoparticles in surface water samples. Environmental Pollution, 2016, 211, 132-140.	3.7	47
56	Nanoparticle TiO2 size and rutile content impact bioconcentration and biomagnification from algae to daphnia. Environmental Pollution, 2019, 247, 421-430.	3.7	47
57	Co-transport of Pb2+ and TiO2 nanoparticles in repacked homogeneous soil columns under saturation condition: Effect of ionic strength and fulvic acid. Science of the Total Environment, 2016, 571, 471-478.	3.9	46
58	The effects of surfactants and solution chemistry on the transport of multiwalled carbon nanotubes in quartz sand-packed columns. Environmental Pollution, 2013, 182, 269-277.	3.7	45
59	Removal of chlorinated organic solvents from hydraulic fracturing wastewater by bare and entrapped nanoscale zero-valent iron. Chemosphere, 2018, 196, 9-17.	4.2	45
60	Photocatalytic and bactericidal properties of MXene-derived graphitic carbon-supported TiO2 nanoparticles. Applied Surface Science, 2021, 538, 148083.	3.1	43
61	Cotransport of multi-walled carbon nanotubes and titanium dioxide nanoparticles in saturated porous media. Environmental Pollution, 2014, 195, 31-38.	3.7	42
62	Distinguishable co-transport mechanisms of phenanthrene and oxytetracycline with oxidized-multiwalled carbon nanotubes through saturated soil and sediment columns: vehicle and competition effects. Water Research, 2017, 108, 271-279.	5.3	41
63	Cellular response of <i>Chlorella pyrenoidosa</i> to oxidized multi-walled carbon nanotubes. Environmental Science: Nano, 2018, 5, 2415-2425.	2.2	41
64	Environmentally Relevant Concentrations of the Flame Retardant Tris(1,3-dichloro-2-propyl) Phosphate Inhibit the Growth and Reproduction of Earthworms in Soil. Environmental Science and Technology Letters, 2019, 6, 277-282.	3.9	41
65	A durable superhydrophobic porous polymer coated sponge for efficient separation of immiscible oil/water mixtures and oil-in-water emulsions. Journal of Hazardous Materials, 2022, 425, 127980.	6.5	41
66	Biochar effectively inhibits the horizontal transfer of antibiotic resistance genes via transformation. Journal of Hazardous Materials, 2022, 423, 127150.	6.5	40
67	The effect of natural organic matter on bioaccumulation and toxicity of chlorobenzenes to green algae. Journal of Hazardous Materials, 2016, 311, 186-193.	6.5	39
68	Distinct effects of soluble and bound exopolymeric substances on algal bioaccumulation and toxicity of anatase and rutile TiO ₂ nanoparticles. Environmental Science: Nano, 2018, 5, 720-729.	2.2	39
69	Distinct toxicity of silver nanoparticles and silver nitrate to Daphnia magna in M4 medium and surface water. Science of the Total Environment, 2018, 618, 838-846.	3.9	39
70	Transformation and implication of nanoparticulate zero valent iron in soils. Journal of Hazardous Materials, 2021, 412, 125207.	6.5	35
71	Coagulation removal of humic acid-stabilized carbon nanotubes from water by PACI: Influences of hydraulic condition and water chemistry. Science of the Total Environment, 2012, 439, 123-128.	3.9	34
72	Enhanced sorption of naphthalene and p-nitrophenol by Nano-SiO2 modified with a cationic surfactant. Water Research, 2013, 47, 4006-4012.	5.3	34

#	Article	IF	CITATIONS
73	The pH and concentration dependent interfacial interaction and heteroaggregation between nanoparticulate zero-valent iron and clay mineral particles. Environmental Science: Nano, 2019, 6, 2129-2140.	2.2	33
74	Octanol-water partition coefficient (logKow) dependent movement and time lagging of polycyclic aromatic hydrocarbons (PAHs) from emission sources to lake sediments: A case study of Taihu Lake, China. Environmental Pollution, 2021, 288, 117709.	3.7	33
75	The kinetic and thermodynamic sorption and stabilization of multiwalled carbon nanotubes in natural organic matter surrogate solutions: The effect of surrogate molecular weight. Environmental Pollution, 2014, 186, 43-49.	3.7	32
76	Distinct toxic interactions of TiO ₂ nanoparticles with four coexisting organochlorine contaminants on algae. Nanotoxicology, 2017, 11, 1115-1126.	1.6	31
77	Removal of trichloroethene by iron-based biochar from anaerobic water: Key roles of Fe/C ratio and iron carbides. Chemical Engineering Journal, 2021, 413, 127391.	6.6	30
78	CO2-induced pH reduction increases physiological toxicity of nano-TiO2 in the mussel Mytilus coruscus. Scientific Reports, 2017, 7, 40015.	1.6	29
79	Assessing the Impacts of Cu(OH) ₂ Nanopesticide and Ionic Copper on the Soil Enzyme Activity and Bacterial Community. Journal of Agricultural and Food Chemistry, 2020, 68, 3372-3381.	2.4	29
80	Multigenerational exposure to TiO2 nanoparticles in soil stimulates stress resistance and longevity of survived C.Âelegans via activating insulin/IGF-like signaling. Environmental Pollution, 2020, 263, 114376.	3.7	28
81	Release and stability of water dispersible biochar colloids in aquatic environments: Effects of pyrolysis temperature, particle size, and solution chemistry. Environmental Pollution, 2020, 260, 114037.	3.7	28
82	Combined toxic effects of dioxin-like PCB77 with Fe-based nanoparticles in earthworm Eisenia fetida. Science of the Total Environment, 2021, 766, 144347.	3.9	28
83	Adsorption of extracellular polymeric substances from two microbes by TiO2 nanoparticles. Science of the Total Environment, 2019, 694, 133778.	3.9	27
84	Adsorption of organic contaminants on biochar colloids: effects of pyrolysis temperature and particle size. Environmental Science and Pollution Research, 2020, 27, 18412-18422.	2.7	27
85	Multi-omics analyses reveal molecular mechanisms for the antagonistic toxicity of carbon nanotubes and ciprofloxacin to Escherichia coli. Science of the Total Environment, 2020, 726, 138288.	3.9	27
86	A superhydrophobic and porous polymer adsorbent with large surface area. Journal of Materials Chemistry A, 2021, 9, 254-258.	5.2	27
87	The effect of water chemistry on homoaggregations of various nanoparticles: Specific role of Cl â^' ions. Journal of Colloid and Interface Science, 2015, 450, 272-278.	5.0	26
88	Interactions of extracellular DNA with aromatized biochar and protection against degradation by DNase I. Journal of Environmental Sciences, 2021, 101, 205-216.	3.2	26
89	Even Incorporation of Nitrogen into Fe ⁰ Nanoparticles as Crystalline Fe ₄ N for Efficient and Selective Trichloroethylene Degradation. Environmental Science & Technology, 2022, 56, 4489-4497.	4.6	26
90	Removal of dispersant-stabilized carbon nanotubes by regular coagulants. Journal of Environmental Sciences, 2012, 24, 1364-1370.	3.2	25

#	Article	IF	CITATIONS
91	Endogenous release of metals with dissolved organic carbon from biochar: Effects of pyrolysis temperature, particle size, and solution chemistry. Environmental Pollution, 2019, 255, 113253.	3.7	25
92	Insights into the regulation mechanisms of algal extracellular polymeric substances secretion upon the exposures to anatase and rutile TiO2 nanoparticles. Environmental Pollution, 2020, 263, 114608.	3.7	25
93	Construction and visible-light-photocatalysis of a novel ternary heterostructure BiOl/(001)TiO ₂ /Ti ₃ C ₂ . Nanotechnology, 2020, 31, 345603.	1.3	24
94	Binding Force and Site-Determined Desorption and Fragmentation of Antibiotic Resistance Genes from Metallic Nanomaterials. Environmental Science & Technology, 2021, 55, 9305-9316.	4.6	24
95	Antagonistic toxicity of carbon nanotubes and pentachlorophenol to Escherichia coli: Physiological and transcriptional responses. Carbon, 2019, 145, 658-667.	5.4	23
96	Dispersion and stability of multi-walled carbon nanotubes in water as affected by humic acids. Journal of Molecular Liquids, 2019, 279, 361-369.	2.3	23
97	Synergistic remediation of PCB-contaminated soil with nanoparticulate zero-valent iron and alfalfa: targeted changes in the root metabolite-dependent microbial community. Environmental Science: Nano, 2021, 8, 986-999.	2.2	23
98	Nanoparticulate zero valent iron interaction with dissolved organic matter impacts iron transformation and organic carbon stability. Environmental Science: Nano, 2020, 7, 1818-1830.	2.2	22
99	Fe-based nanomaterial transformation to amorphous Fe: Enhanced alfalfa rhizoremediation of PCBs-contaminated soil. Journal of Hazardous Materials, 2022, 425, 127973.	6.5	22
100	Influence of Functional Groups on Desorption of Organic Compounds from Carbon Nanotubes into Water: Insight into Desorption Hysteresis. Environmental Science & Technology, 2013, 47, 130726083137003.	4.6	21
101	Iron-crosslinked alginate derived Fe/C composites for atrazine removal from water. Science of the Total Environment, 2021, 756, 143866.	3.9	21
102	Co-transport of biochar colloids with organic contaminants in soil column. Environmental Science and Pollution Research, 2021, 28, 1574-1586.	2.7	21
103	In situ fabrication of Bi2O3/C3N4/TiO2@C photocatalysts for visible-light photodegradation of sulfamethoxazole in water. Applied Surface Science, 2022, 580, 152302.	3.1	21
104	Oxytetracycline increases the mobility of carbon nanotubes in porous media. Science of the Total Environment, 2018, 628-629, 1130-1138.	3.9	20
105	Synergistic growth inhibition effect of TiO2 nanoparticles and tris(1,3-dichloro-2-propyl) phosphate on earthworms in soil. Ecotoxicology and Environmental Safety, 2021, 208, 111462.	2.9	20
106	Aqueous stabilization of carbon nanotubes: effects of surface oxidization and solution chemistry. Environmental Science and Pollution Research, 2014, 21, 4358-4365.	2.7	19
107	Prediction of the sorption capacities and affinities of organic chemicals by XAD-7. Environmental Science and Pollution Research, 2016, 23, 1060-1070.	2.7	19
108	Identification and Speciation of Nanoscale Silver in Complex Solid Matrices by Sequential Extraction Coupled with Inductively Coupled Plasma Optical Emission Spectrometry. Analytical Chemistry, 2021, 93, 1962-1968.	3.2	19

#	Article	IF	CITATIONS
109	Nano–Zoo Interfacial Interaction as a Design Principle for Hybrid Soil Remediation Technology. ACS Nano, 2021, 15, 14954-14964.	7.3	18
110	Joint Nanotoxicology Assessment Provides a New Strategy for Developing Nanoenabled Bioremediation Technologies. Environmental Science & Technology, 2019, 53, 7927-7929.	4.6	16
111	Toxic effects of nano-TiO2 in bivalves—A synthesis of meta-analysis and bibliometric analysis. Journal of Environmental Sciences, 2021, 104, 188-203.	3.2	16
112	Time-dependent desorption of anilines, phenols, and nitrobenzenes from biochar produced at 700°C: Insight into desorption hysteresis. Chemical Engineering Journal, 2021, 422, 130584.	6.6	16
113	Synergistic Effect of Soil Organic Matter and Nanoscale Zero-Valent Iron on Biodechlorination. Environmental Science & Technology, 2022, 56, 4915-4925.	4.6	16
114	Are engineered nanomaterials superior adsorbents for removal and pre-concentration of heavy metal cations from water?. RSC Advances, 2014, 4, 46122-46125.	1.7	15
115	Environmentally relevant concentrations of the flame retardant tris(1,3-dichloro-2-propyl) phosphate change morphology of female zebrafish. Chemosphere, 2018, 212, 358-364.	4.2	14
116	Separation and Analysis of Nanoscale Zero-Valent Iron from Soil. Analytical Chemistry, 2021, 93, 10187-10195.	3.2	14
117	Sorption kinetics of 1,3,5-trinitrobenzene to biochars produced at various temperatures. Biochar, 2022, 4, .	6.2	14
118	Nanoscale zero-valent iron changes microbial co-occurrence pattern in pentachlorophenol-contaminated soil. Journal of Hazardous Materials, 2022, 438, 129482.	6.5	14
119	The effect of oxidation on physicochemical properties and aqueous stabilization of multiwalled carbon nanotubes: comparison of multiple analysis methods. Science China Chemistry, 2016, 59, 1498-1507.	4.2	13
120	N and S co-doping of TiO2@C derived from in situ oxidation of Ti3C2 MXene for efficient persulfate activation and sulfamethoxazole degradation under visible light. Separation and Purification Technology, 2022, 297, 121460.	3.9	13
121	Correlations and nonlinear partition of nonionic organic compounds by humus-like substances humificated from rice straw. Scientific Reports, 2019, 9, 15131.	1.6	12
122	Selective removal of phenanthrene from SDBS or TX100 solution by sorption of resin SP850. Chemical Engineering Journal, 2020, 388, 124191.	6.6	12
123	Pentachlorophenol and ciprofloxacin present dissimilar joint toxicities with carbon nanotubes to Bacillus subtilis. Environmental Pollution, 2021, 270, 116071.	3.7	12
124	Iron-carbon material enhanced electrokinetic remediation of PCBs-contaminated soil. Environmental Pollution, 2021, 290, 118100.	3.7	12
125	Environmental behavior and toxicity of engineered nanomaterials. Chinese Science Bulletin, 2009, 54, 3590-3604.	0.4	12
126	Enhancement of E. coli inactivation by photosensitized erythrosine-based solar disinfection under weakly acidic conditions. Water Research, 2022, 212, 118125.	5.3	12

#	Article	IF	CITATIONS
127	Current and Future Trends of Low and High Molecular Weight Polycyclic Aromatic Hydrocarbons in Surface Water and Sediments of China: Insights from Their Long-Term Relationships between Concentrations and Emissions. Environmental Science & Technology, 2022, 56, 3397-3406.	4.6	12
128	New insight into the aggregation of graphene oxide in synthetic surface water: Carbonate nanoparticle formation on graphene oxide. Environmental Pollution, 2019, 250, 366-374.	3.7	11
129	Release and sedimentation behaviors of biochar colloids in soil solutions. Journal of Environmental Sciences, 2021, 100, 269-278.	3.2	11
130	Environmental Behaviors and Biological Effects of Engineered Nanomaterials: Important Roles of Interfacial Interactions and Dissolved Organic Matter. Chinese Journal of Chemistry, 2021, 39, 232-242.	2.6	11
131	Mesoporous silica size, charge, and hydrophobicity affect the loading and releasing performance of lambda-cyhalothrin. Science of the Total Environment, 2022, 831, 154914.	3.9	11
132	Sorption of Lead from Aqueous Solutions by Tea Wastes. Journal of Environmental Quality, 2009, 38, 2260-2266.	1.0	10
133	Reciprocal interference of clay minerals and nanoparticulate zero-valent iron on their interfacial interaction with dissolved organic matter. Science of the Total Environment, 2020, 739, 140372.	3.9	10
134	Influence of extracellular polymeric substance on the interaction between titanium dioxide nanoparticles and Chlorella pyrenoidosa cells. Science of the Total Environment, 2021, 778, 146446.	3.9	10
135	Biological responses of Eisenia fetida towards the exposure and metabolism of tris (2-butoxyethyl) phosphate. Science of the Total Environment, 2022, 811, 152285.	3.9	10
136	Effect of Clay Minerals on Transport of Surfactants Dispersed Multi-walled Carbon Nanotubes in Porous Media. Acta Geologica Sinica, 2017, 91, 135-144.	0.8	9
137	Linear and nonlinear partition of nonionic organic compounds into resin ADS-21 from water. Environmental Pollution, 2019, 247, 277-284.	3.7	9
138	Nonlinear sorption of phenols and anilines by organobentonites: Nonlinear partition and space limitation for partitioning. Science of the Total Environment, 2020, 736, 139609.	3.9	9
139	Adsorption of fulvic acid on mesopore-rich activated carbon with high surface area. Science of the Total Environment, 2022, 838, 155918.	3.9	9
140	A multi-method analysis of the interaction between humic acids and heavy metal ions. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2018, 53, 740-751.	0.9	8
141	The effect of water hardness on the toxicity of graphene oxide to bacteria in synthetic surface waters. Aquatic Toxicology, 2019, 216, 105323.	1.9	7
142	Sorption mechanism of naphthalene by diesel soot: Insight from displacement with phenanthrene/p-nitrophenol. Journal of Environmental Sciences, 2021, 106, 136-146.	3.2	5
143	Multidimensional bioresponses in nematodes contribute to the antagonistic toxic interaction between pentachlorophenol and TiO2 nanoparticles in soil. Journal of Hazardous Materials, 2022, 424, 127587.	6.5	5
144	Biotransformation of 2D Nanomaterials through Stimulated Bacterial Respiration-Produced Extracellular Reactive Oxygen Species: A Common but Overlooked Process. Environmental Science & Technology, 2022, 56, 5508-5519.	4.6	5

#	Article	IF	CITATIONS
145	Modification of Pd Nanoparticles with Lower Work Function Elements for Enhanced Formic Acid Dehydrogenation and Trichloroethylene Dechlorination. ACS Applied Materials & Interfaces, 2022, 14, 30735-30745.	4.0	5
146	Application of $\hat{l}\pm$ -Fe2O3 nanoparticles in controlling antibiotic resistance gene transport and interception in porous media. Science of the Total Environment, 2022, 834, 155271.	3.9	4
147	Reciprocal interferences of heavy metal and dissolved organic matter on their immobilizations by modulating the interfacial interactions with nanoscale zero-valent iron. Separation and Purification Technology, 2022, 298, 121671.	3.9	4
148	Nonlinear partition of nonionic organic compounds into humus-like substance humificated from lignin. Science of the Total Environment, 2021, 764, 142887.	3.9	3
149	A comparative study of methods for remediation of diesel-contaminated soil. Journal of Zhejiang University: Science A, 2021, 22, 792-804.	1.3	3
150	Nano-bio interfacial interactions determined the contact toxicity of nTiO2 to nematodes in various soils. Science of the Total Environment, 2022, 835, 155456.	3.9	3
151	Adsorption of soil organic matter by gel-like ferrihydrite and dense ferrihydrite. Science of the Total Environment, 2022, 835, 155507.	3.9	3
152	Selective sorption of PAHs from TX100 solution by resin SP850: effects of TX100 concentrations and PAHs solubility. RSC Advances, 2021, 11, 13530-13536.	1.7	2
153	An improved method to predict polycyclic aromatic hydrocarbons in surface freshwater by reducing the input parameters. Science of the Total Environment, 2022, 816, 151597.	3.9	2
154	Sonication-assisted dispersion of carbon nanotubes in aqueous solutions of the anionic surfactant SDBS: The role of sonication energy. , 2013, 58, 2082.		1
155	Isotherm nonlinearity and nonlinear partitioning of organic compounds into resin XAD-7: Insight from displacement experiments. Environmental Pollution, 2020, 267, 115563.	3.7	1
156	A review of the toxicity of nanoparticles to <italic>Daphnia magna</italic> . Chinese Science Bulletin, 2017, 62, 2734-2748.	0.4	1
157	Predicting the total PAHs concentrations in sediments from selected congeners using a multiple linear relationship. Scientific Reports, 2022, 12, 3334.	1.6	1