Evgeny A Serov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7019048/publications.pdf

Version: 2024-02-01

623734 677142 45 543 14 22 citations g-index h-index papers 45 45 45 395 all docs docs citations times ranked citing authors

#	ARTICLE I:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"> <mml:msub><mml:mrow< th=""><th>IF</th><th>CITATIONS</th></mml:mrow<></mml:msub>	IF	CITATIONS
1	/> <mml:mn>2â€"CO<mml:math altimg="si1.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math>Âand CO<mml:math altimg="si1.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow< td=""><td>2.3</td><td>7</td></mml:mrow<></mml:msub></mml:math></mml:mn>	2.3	7
2	Reduction of Ohmic Losses in the Cavities of Low-Power Terahertz Gyrotrons. Izvestiya Vysshikh Uchebnykh Zavedenij Radiofizika, 2021, 64, 265-275.	0.1	0
3	Long-Term Observations of Microwave Brightness Temperatures over a Metropolitan Area: Comparison of Radiometric Data and Spectra Simulated with the Use of Radiosonde Measurements. Remote Sensing, 2021, 13, 2061.	4.0	4
4	Method to Measure the Dielectric Parameters of Powders in Subterahertz and Terahertz Ranges. IEEE Transactions on Terahertz Science and Technology, 2021, 11, 375-380.	3.1	0
5	CO-Ar collisions: ab initio model matches experimental spectra at a sub percent level over a wide pressure range. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 272, 107807.	2.3	8
6	Method to decrease ohmic losses in cavities of low-power terahertz gyrotrons. , 2021, , .		0
7	Reduction of Ohmic Losses in the Cavities of Low-Power Terahertz Gyrotrons. Radiophysics and Quantum Electronics, 2021, 64, 240-250.	0.5	6
8	Continuum absorption of millimeter waves in nitrogen. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 242, 106774.	2.3	7
9	Modern Dielectric Materials for Output Windows of High-Power Microwave and Terahertz Sources. Journal of Infrared, Millimeter, and Terahertz Waves, 2020, 41, 1450-1459.	2.2	7
10	Investigation into Microwave Absorption in Semiconductors for Frequency-Multiplication Devices and Radiation-Output Control of Continuous and Pulsed Gyrotrons. Semiconductors, 2020, 54, 1069-1074.	0.5	4
11	Wideband Windows for Millimeter- and Submillimeter-Wave Vacuum Devices. Radiophysics and Quantum Electronics, 2020, 63, 106-113.	0.5	8
12	Terahertz Reflectivity of YBa ₂ Cu ₃ O _{7-δ} at Cryogenic Temperatures. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-5.	1.7	6
13	Detectors Based on Low-Barrier Mott Diodes and Their Characteristics in the 150–250 GHz Range. Technical Physics Letters, 2019, 45, 239-241.	0.7	4
14	Terahertz Dielectric Properties of Polycrystalline MgAl2O4 Spinel Obtained by Microwave Sintering and Hot Pressing. Journal of Infrared, Millimeter, and Terahertz Waves, 2019, 40, 447-455.	2.2	9
15	Accurate broadband THz molecular spectroscopy. EPJ Web of Conferences, 2018, 195, 06005.	0.3	O
16	Dielectrics for output windows of medium power gyrotrons. EPJ Web of Conferences, 2018, 195, 06014.	0.3	0
17	Dielectric Losses in MPCVD Diamonds in the 25–30 and 250–350 GHz Bands Depending on Growth Parameters. Technical Physics Letters, 2018, 44, 956-958.	0.7	O
18	New Frontiers in Modern Resonator Spectroscopy. IEEE Transactions on Terahertz Science and Technology, 2018, 8, 773-783.	3.1	21

#	Article	IF	CITATIONS
19	Dielectric parameters of the modern low-loss ceramics in the microwave, millimeter, and submillimeter ranges Journal of Radio Electronics, 2018, 2018, .	0.1	3
20	Millimeter-Wavelength Radiation Used to Sinter Radiotransparent MgAl2O4 Ceramics. Radiophysics and Quantum Electronics, 2017, 59, 690-697.	0.5	8
21	On the origin of the water vapor continuum absorption within rotational and fundamental vibrational bands. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 193, 1-12.	2.3	33
22	Accurate modeling of the diagnostic 118-GHz oxygen line for remote sensing of the atmosphere. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 196, 78-86.	2.3	14
23	Silicon carbide for high-power applications at MM and THz ranges. Diamond and Related Materials, 2017, 80, 1-4.	3.9	12
24	Precise resonator methods investigation of dielectrics and metals at 40 GHz–500 GHz frequency range and in 4 K–900 K temperature interval. , 2016, , .		5
25	Reflectivity of Metals in the Millimeter Wavelength Range at Cryogenic Temperatures. IEEE Transactions on Microwave Theory and Techniques, 2016, 64, 3828-3838.	4.6	12
26	Water dimer and the atmospheric continuum. Physics-Uspekhi, 2014, 57, 1083-1098.	2.2	38
27	Rotationally resolved water dimer spectra in atmospheric air and pure water vapour in the 188–258 GHz range. Physical Chemistry Chemical Physics, 2014, 16, 26221-26233.	2.8	31
28	Cryogenic Resonator Complex. Radiophysics and Quantum Electronics, 2014, 56, 554-560.	0.5	17
29	Resonator spectroscopy of the atmosphere in the 350–500GHz range. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 114, 109-121.	2.3	17
30	Water Dimer Rotationally Resolved Millimeter-Wave Spectrum Observation at Room Temperature. Physical Review Letters, 2013, 110, 093001.	7.8	83
31	Dielectric Properties and Applications of CVD Diamonds in the Millimeter and Terahertz Ranges. NATO Science for Peace and Security Series B: Physics and Biophysics, 2013, , 79-87.	0.3	4
32	Modern Resonator Spectroscopy at Submillimeter Wavelengths. IEEE Sensors Journal, 2013, 13, 18-23.	4.7	28
33	Dielectric Loss at MM Range and Deep Level Transient Spectroscopy of the Diamond Grown by DC Arc Plasma Jet Technique. ECS Transactions, 2012, 45, 251-261.	0.5	2
34	"Precise measurements of materials and media in the mm/sub-mm ranges"., 2012,,.		4
35	New measurements of atmospheric continuum for refinement of millimeter wave propagation models. , 2012, , .		0
36	Accurate broadband rotational BWO-based spectroscopy. Journal of Molecular Spectroscopy, 2012, 280, 110-118.	1.2	16

#	Article	IF	Citations
37	Resonance method for studying dielectric liquids in the millimeter and submillimeter wave ranges. Radiophysics and Quantum Electronics, 2012, 54, 632-637.	0.5	4
38	Equilibrium thermodynamic state of water vapor and the collisional interaction of molecules. Radiophysics and Quantum Electronics, 2012, 54, 700-716.	0.5	21
39	Millimeter wave continuum absorption in moist nitrogen at temperatures 261–328K. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112, 2704-2712.	2.3	39
40	Methods for investigating thin dielectric films in the millimeter range. Technical Physics, 2010, 55, 1781-1787.	0.7	5
41	Cavity methods of investigation of gas and condensed medium in MM AND SubMM ranges. , 2010, , .		2
42	Atmosphere continuum absorption investigation at MM waves. , 2010, , .		0
43	Resonator spectrometer for precise broadband investigations of atmospheric absorption in discrete lines and water vapor related continuum in millimeter wave range. Review of Scientific Instruments, 2009, 80, 093106.	1.3	34
44	Instrumental complex and the results of precise measurements of millimeter- and submillimeter-wave propagation in condensed media and the atmosphere. Radiophysics and Quantum Electronics, 2009, 52, 525-535.	0.5	20
45	The method of measurements and dielectric parameters of the film materials at MM-wave range. , 2008,		O