Manuel Ibáñez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7018952/publications.pdf Version: 2024-02-01

MANUEL IRÃ:Ã+EZ

#	Article	IF	CITATIONS
1	Video-worked examples to support the development of elementary students' science process skills: a case study in an inquiry activity on electrical circuits. Research in Science and Technological Education, 2022, 40, 251-271.	2.5	13
2	Design and test of shape memory alloy fins for self-adaptive liquid cooling device. Applied Thermal Engineering, 2022, 206, 118010.	6.0	10
3	The Effect of an Instructional Intervention Based on the Use of Video-Worked Examples to Promote Elementary Students' Science Process Skills. International Journal of Education in Mathematics, Science and Technology, 2022, 10, 753-772.	0.9	0
4	Video worked examples to promote elementary students' science process skills: a fruit decomposition inquiry activity. Journal of Biological Education, 2021, 55, 368-379.	1.5	8
5	Thermal Analysis of a MEMS-Based Self-Adaptive Microfluidic Cooling Device. Micromachines, 2021, 12, 505.	2.9	1
6	Fabrication and Demonstration of a Self-Adaptive Microvalve Array for Distributed Liquid Cooling in Microelectronic Interposers. Journal of Microelectromechanical Systems, 2020, 29, 769-775.	2.5	4
7	Experimental Validation of a Smart Microfluidic Cell Cooling Solution. , 2020, , .		2
8	El rol del maestro en indagaciones escolares mediante simulaciones. Edutec, 2020, , 221-223.	0.4	0
9	Thermostatic Fins for Spatially and Temporally Adaptive Microfluidic Cooling. , 2018, , .		4
10	Análisis de la comunicación de experiencias indagadoras presentadas en congresos de ciencias dirigidos a alumnos de Educación Infantil y Primaria. Revista Eureka Sobre Enseñanza Y Divulgación De Las Ciencias, 2018, 15, 1-13.	0.4	6
11	Dense array CPV receivers: Impact of the cooling device on the net PV output for different illumination profiles. AIP Conference Proceedings, 2018, , .	0.4	5
12	Experimental and numerical study of micro-pin-fin heat sinks with variable density for increased temperature uniformity. International Journal of Thermal Sciences, 2018, 132, 424-434.	4.9	50
13	Assessment of the impact of non-uniform illumination and temperature profiles on a dense array CPV receiver performance. Solar Energy, 2018, 171, 863-870.	6.1	14
14	Numerical parametric study of a hotspot-targeted microfluidic cooling array for microelectronics. Applied Thermal Engineering, 2018, 144, 71-80.	6.0	32
15	Smoothing effect of the thermal interface material on the temperature distribution in a stepwise varying width microchannel cooling device. Heat and Mass Transfer, 2017, 53, 2987-2997.	2.1	5
16	Distributed and self-adaptive microfluidic cell cooling for CPV dense array receivers. AIP Conference Proceedings, 2017, , .	0.4	3
17	Microfluidic cell cooling system for electronics. , 2017, , .		10
18	Herramientas virtuales de simulación en la enseñanza de la astronomÃa diurna en futuros maestros de Primaria Edutec, 2017, , .	0.4	0

Manuel IbÃiñez

#	Article	IF	CITATIONS
19	Impact of the optimization criteria on the determination of the insulation thickness. Energy and Buildings, 2014, 76, 459-469.	6.7	32
20	Impact of the insulation materials' features on the determination of optimum insulation thickness. International Journal of Energy and Environmental Engineering, 2014, 5, 1.	2.5	9
21	Numerical study of a hybrid jet impingement/micro-channel cooling scheme. Applied Thermal Engineering, 2012, 33-34, 237-245.	6.0	46
22	Effect of a hybrid jet impingement/micro-channel cooling device on the performance of densely packed PV cells under high concentration. Solar Energy, 2011, 85, 2655-2665.	6.1	73
23	Characterization of a photovoltaic-thermal module for Fresnel linear concentrator. Energy Conversion and Management, 2011, 52, 3234-3240.	9.2	58
24	Design Of A Hybrid Jet Impingement â^• Microchannel Cooling Device For Densely Packed PV Cells Under High Concentration. , 2010, , .		2
25	Linear Fresnel concentrators for building integrated applications. Energy Conversion and Management, 2010, 51, 1476-1480.	9.2	36
26	An experimental study of a new hybrid jet impingement/micro-channel cooling scheme. Applied Thermal Engineering, 2010, 30, 2058-2066.	6.0	81
27	Comparison of Fresnel concentrators for building integrated photovoltaics. Energy Conversion and Management, 2009, 50, 1079-1084.	9.2	43
28	Modelization of a water tank including a PCM module. Applied Thermal Engineering, 2006, 26, 1328-1333.	6.0	103
29	Experimentation with a water tank including a PCM module. Solar Energy Materials and Solar Cells, 2006, 90, 1273-1282.	6.2	213
30	Modelling power output in photovoltaic modules for outdoor operating conditions. Energy Conversion and Management, 2006, 47, 2424-2430.	9.2	110
31	Design and simulation of a low concentrating photovoltaic/thermal system. Energy Conversion and Management, 2005, 46, 3034-3046.	9.2	182
32	An approach to the simulation of PCMs in building applications using TRNSYS. Applied Thermal Engineering, 2005, 25, 1796-1807.	6.0	118
33	Physics Textbooks Presentation of the Energy-Conservation Principle in Hydrodynamics. Journal of Science Education and Technology, 2004, 13, 267-276.	3.9	8
34	A bi-variable probability density function for the daily clearness index. Solar Energy, 2003, 75, 73-80.	6.1	24
35	Estimation of sensible heat flux using the Surface Energy Balance System (SEBS) and ATSR measurements. Physics and Chemistry of the Earth, 2003, 28, 75-88.	2.9	137
36	Frequency Distributions for Hourly and Daily Clearness Indices. Journal of Solar Energy Engineering, Transactions of the ASME, 2002, 124, 28-33.	1.8	12

Manuel IbÃiñez

#	Article	IF	CITATIONS
37	A method based on high-frequency temperature measurements to estimate the sensible heat flux avoiding the height dependence. Water Resources Research, 2002, 38, 20-1-20-9.	4.2	23
38	COMPARING A LOCALLY CALIBRATED VERSUS A GENERALIZED TEMPERATURE GENERATION PROCESS. Transactions of the American Society of Agricultural Engineers, 2001, 44, .	0.9	6
39	Comparison of methods for applying the Priestley-Taylor equation at a regional scale. Hydrological Processes, 2001, 15, 1609-1620.	2.6	39
40	Assessment of reliability of Bowen ratio method for partitioning fluxes. Agricultural and Forest Meteorology, 1999, 97, 141-150.	4.8	223
41	Estimation of the Latent Heat Flux over Full Canopy Covers from the Radiative Temperature. Journal of Applied Meteorology and Climatology, 1999, 38, 423-431.	1.7	6
42	A Simple Method for Estimating the Latent Heat Flux over Grass from Radiative Bowen Ratio. Journal of Applied Meteorology and Climatology, 1998, 37, 387-392.	1.7	6
43	Methods for estimating vapor pressure deficit at a regional scale depending on data availability. Agricultural and Forest Meteorology, 1997, 87, 243-252.	4.8	11