David Quiñonero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7018837/publications.pdf

Version: 2024-02-01

147 papers	7,788 citations	46918 47 h-index	83 g-index
157	157	157	5025
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Anion–π Interactions: Do They Exist?. Angewandte Chemie - International Edition, 2002, 41, 3389-3392.	7.2	690
2	Cooperativity in multiple unusual weak bonds. Theoretical Chemistry Accounts, 2010, 126, 1-14.	0.5	254
3	Halogen bonding versuschalcogen and pnicogen bonding: a combined Cambridge structural database and theoretical study. CrystEngComm, 2013, 15, 3137-3144.	1.3	206
4	A Topological Analysis of the Electron Density in Anion-Ï€ Interactions. ChemPhysChem, 2003, 4, 1344-1348.	1.0	190
5	A thorough anion–π interaction study in biomolecules: on the importance of cooperativity effects. Chemical Science, 2016, 7, 1038-1050.	3.7	188
6	Structure and Binding Energy of Anionâ^Ï€ and Cationâ^Ï€ Complexes:Â A Comparison of MP2, RI-MP2, DFT, and DF-DFT Methods. Journal of Physical Chemistry A, 2005, 109, 4632-4637.	1.1	186
7	Counterintuitive interaction of anions with benzene derivatives. Chemical Physics Letters, 2002, 359, 486-492.	1,2	178
8	Anion–π Interactions: Do They Exist?. Angewandte Chemie, 2002, 114, 3539-3542.	1.6	176
9	Cationâ^'Ï€ versus Anionâ^'Ï€ Interactions:Â Energetic, Charge Transfer, and Aromatic Aspects. Journal of Physical Chemistry A, 2004, 108, 9423-9427.	1.1	171
10	Anion-Ï€ Interactions in Cyanuric Acids: A Combined Crystallographic and Computational Study. Chemistry - A European Journal, 2005, 11, 6560-6567.	1.7	167
11	Relevant Anion–π Interactions in Biological Systems: The Case of Urate Oxidase. Angewandte Chemie - International Edition, 2011, 50, 415-418.	7.2	164
12	Structural, Physicochemical, and Reactivity Properties of an All-Inorganic, Highly Active Tetraruthenium Homogeneous Catalyst for Water Oxidation. Journal of the American Chemical Society, 2009, 131, 17360-17370.	6.6	162
13	Cation–π and anion–π interactions. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2011, 1, 440-459.	6.2	156
14	MP2 study of cooperative effects between cationâ€"Í€, anionâ€"Í€ and Ï€â€"Í€ interactions. New Journal of Chemistry, 2007, 31, 556-560.	1.4	151
15	Interplay Between Cation-π, Anion-π and π-π Interactions. ChemPhysChem, 2006, 7, 2487-2491.	1.0	145
16	Anion–π interactions: must the aromatic ring be electron deficient?. New Journal of Chemistry, 2003, 27, 211-214.	1.4	116
17	Pnicogen–π complexes: theoretical study and biological implications. Physical Chemistry Chemical Physics, 2012, 14, 14061.	1.3	113
18	Anionâ^Ï€ Interactions in Bisadenine Derivatives:  A Combined Crystallographic and Theoretical Study. Inorganic Chemistry, 2007, 46, 10724-10735.	1.9	104

#	Article	IF	CITATIONS
19	Synthetic Prodiginine Obatoclax (GX15â€070) and Related Analogues: Anion Binding, Transmembrane Transport, and Cytotoxicity Properties. Chemistry - A European Journal, 2011, 17, 14074-14083.	1.7	102
20	Approximate Additivity of Anionâ^'Ï€ Interactions:  An Ab Initio Study on Anionâ^'Ï€, Anionâ^'Ï€2 and Anionâ^'Ï€ Complexes. Journal of Physical Chemistry A, 2005, 109, 9341-9345.	€3 _{.1}	101
21	Thermodynamic Characterization of Halideâ^'Ï€ Interactions in Solution Using "Two-Wall―Aryl Extended Calix[4]pyrroles as Model System. Journal of the American Chemical Society, 2014, 136, 3208-3218.	6.6	96
22	s-Tetrazine as a new binding unit in molecular recognition of anions. Chemical Physics Letters, 2003, 370, 7-13.	1.2	95
23	Metalâ^Peroxo versus Metalâ^Oxo Oxidants in Non-Heme Iron-Catalyzed Olefin Oxidations:Â Computational and Experimental Studies on the Effect of Water. Journal of the American Chemical Society, 2005, 127, 6548-6549.	6.6	94
24	Substituent effects in halogen bonding complexes between aromatic donors and acceptors: a comprehensive ab initio study. Physical Chemistry Chemical Physics, 2011, 13, 20371.	1.3	92
25	Interplay between cation-Ï€ and hydrogen bonding interactions. Chemical Physics Letters, 2008, 456, 257-261.	1.2	82
26	Quantification of Aromaticity in Oxocarbons: The Problem of the Fictitious "Nonaromatic―Reference System. Chemistry - A European Journal, 2002, 8, 433-438.	1.7	80
27	Very Longâ€Range Effects: Cooperativity between Anion–π and Hydrogenâ€Bonding Interactions. ChemPhysChem, 2009, 10, 2256-2264.	1.0	80
28	Interplay between anion†and hydrogen bonding interactions. Journal of Computational Chemistry, 2009, 30, 75-82.	1.5	79
29	Theoretical Study on Cooperativity Effects between Anion–π and Halogenâ€Bonding Interactions. ChemPhysChem, 2011, 12, 2742-2750.	1.0	79
30	On the directionality of anion–π interactions. Physical Chemistry Chemical Physics, 2011, 13, 5696.	1.3	78
31	A theoretical study of aromaticity in squaramide and oxocarbons. Tetrahedron Letters, 2000, 41, 2001-2005.	0.7	74
32	Dual Binding Mode ofs-Triazine to Anions and Cations. Organic Letters, 2003, 5, 2227-2229.	2.4	74
33	Cation-Ï€ versus anion-Ï€ interactions: a comparative ab initio study based on energetic, electron charge density and aromatic features. Chemical Physics Letters, 2004, 392, 85-89.	1.2	74
34	A Theoretical ab initio Study of the Capacity of Several Binding Units for the Molecular Recognition of Anions. European Journal of Organic Chemistry, 2005, 2005, 179-183.	1.2	74
35	Coordination Complexes Exhibiting Anion··Â-Ï€ Interactions: Synthesis, Structure, and Theoretical Studies. Inorganic Chemistry, 2008, 47, 5873-5881.	1.9	72
36	Ab Initio Study of [n.n]Paracyclophane (n= 2, 3) Complexes with Cations:Â Unprecedented Through-Space Substituent Effects. Journal of Physical Chemistry A, 2006, 110, 5144-5148.	1.1	71

#	Article	IF	CITATIONS
37	Rational Design, Synthesis, and Application of a New Receptor for the Molecular Recognition of Tricarboxylate Salts in Aqueous Media. Journal of Organic Chemistry, 2006, 71, 7185-7195.	1.7	66
38	Squaramide as a binding unit in molecular recognition. Chemical Physics Letters, 2000, 326, 247-254.	1.2	62
39	MP2 Study of synergistic effects between X–H/π (X = C,N,O) and π–π interactions. Theoretical Chemistry Accounts, 2008, 120, 385-393.	0.5	62
40	Experimental and theoretical study of uracil derivatives: the crucial role of weak fluorine–fluorine noncovalent interactions. CrystEngComm, 2010, 12, 3758.	1.3	60
41	A theoretical study of aromaticity in squaramide complexes with anions. Chemical Physics Letters, 2002, 351, 115-120.	1.2	57
42	Experimental and computational study of the interplay between C–H/π and anion–π interactions. Dalton Transactions, 2010, 39, 794-806.	1.6	57
43	Lithium diffusion in single-walled carbon nanotubes: a theoretical study. Chemical Physics Letters, 2003, 374, 548-555.	1.2	55
44	High‣evel Ab Initio Study of Anion–π Interactions in Pyridine and Pyrazine Rings Coordinated to Ag ^I . ChemPhysChem, 2008, 9, 397-399.	1.0	53
45	Simultaneous Interaction of Tetrafluoroethene with Anions and Hydrogen-Bond Donors: A Cooperativity Study. Journal of Chemical Theory and Computation, 2009, 5, 1186-1194.	2.3	52
46	Energetic vs Synergetic Stability: A Theoretical Study. Journal of Physical Chemistry A, 2009, 113, 3266-3273.	1.1	52
47	Anionπ Interactions in Flavoproteins. Chemistry - an Asian Journal, 2011, 6, 2316-2318.	1.7	52
48	MP2 Study of Cationâ^'(Ï€)nâ^'Ï€ Interactions (n= 1â^'4). Journal of Physical Chemistry A, 2006, 110, 9307-9309.	1.1	49
49	Crystallographic and Theoretical Evidence of Anion–π and Hydrogenâ€Bonding Interactions in a Squaramide–Nitrate Salt. European Journal of Organic Chemistry, 2008, 2008, 1864-1868.	1.2	49
50	A Theoretical Study of Anion–π Interactions in Seven-Membered Rings. ChemPhysChem, 2007, 8, 1182-1187.	1.0	47
51	Cation–cation and anion–anion complexes stabilized by halogen bonds. Physical Chemistry Chemical Physics, 2016, 18, 27939-27950.	1.3	45
52	Counterintuitive Substituent Effect of the Ethynyl Group in Ionâ [^] ï€ Interactions. Journal of Physical Chemistry A, 2009, 113, 10367-10375.	1.1	43
53	Cation-π vs anion-π interactions: a complete π-orbital analysis. Chemical Physics Letters, 2004, 399, 220-225.	1.2	42
54	The Role of the Central Atom in Structure and Reactivity of Polyoxometalates with Adjacent d-Electron Metal Sites. Computational and Experimental Studies of \hat{I}^3 -[(Xn+O4)RullI2(OH)2(MFM)10O32](8-n)-for MFM= Mo and W, and X = AlIII, SiIV, PV, and SVI. Journal of Physical Chemistry B, 2006, 110, 170-173.	1.2	42

#	Article	IF	Citations
55	Interplay between cation–π and hydrogen bonding interactions: Are non-additivity effects additive?. Chemical Physics Letters, 2009, 479, 316-320.	1.2	42
56	Anion-ï€ interactions in five-membered rings: a combined crystallographic and ab initio study. Chemical Physics Letters, 2003, 382, 534-540.	1.2	41
57	Unexpected chalcogen bonds in tetravalent sulfur compounds. Physical Chemistry Chemical Physics, 2019, 21, 11313-11319.	1.3	41
58	2-Aminopyrimidine Derivatives Exhibiting Anion-Ï€ Interactions: A Combined Crystallographic and Theoretical Study. Crystal Growth and Design, 2009, 9, 2363-2376.	1.4	39
59	Computational Studies of the Geometry and Electronic Structure of an All-Inorganic and Homogeneous Tetra-Ru-Polyoxotungstate Catalyst for Water Oxidation and Its Four Subsequent One-Electron Oxidized Forms. Journal of Physical Chemistry A, 2010, 114, 535-542.	1.1	39
60	Lone pairâ€"Ï€ vs Ï€â€"Ï€ interactions in 5-fluoro-1-hexyluracil and 1-hexyluracil: a combined crystallographic and computational study. CrystEngComm, 2010, 12, 362-365.	1.3	39
61	Anionâ^Ï€ Interactions in Four-Membered Rings. Organic Letters, 2009, 11, 1987-1990.	2.4	38
62	Is the Use of Diffuse Functions Essential for the Properly Description of Noncovalent Interactions Involving Anions?. Journal of Physical Chemistry A, 2013, 117, 2651-2655.	1.1	38
63	Weak Câ^'H/Ï€ Interaction Participates in the Diastereoselectivity of a Hostâ^'Guest Complex in the Presence of Six Strong Hydrogen Bonds. Organic Letters, 2003, 5, 1135-1138.	2.4	37
64	Interaction of positively and negatively charged aromatic hydrocarbons with benzene and triphenylene: Towards a model of pure organic insulators. Chemical Physics Letters, 2008, 460, 406-410.	1.2	36
65	Preparation, Solid-State Characterization, and Computational Study of a Crown Ether Attached to a Squaramide. Organic Letters, 2005, 7, 1437-1440.	2.4	35
66	Does Dinitrogen Hydrogenation Follow Different Mechanisms for [(η5-C5Me4H)2Zr]2(ι/42,η2,η2-N2) and {[PhP(CH2SiMe2NSiMe2CH2)PPh]Zr}2(ι/42,η2,η2-N2) Complexes? A Computational Study. Journal of the American Chemical Society, 2006, 128, 11391-11403.	6.6	35
67	Longâ€Range Effects in Anion–π Interactions: Their Crucial Role in the Inhibition Mechanism of <i>Mycobacterium Tuberculosis</i> Malate Synthase. Chemistry - A European Journal, 2014, 20, 6985-6990.	1.7	35
68	Ab initio investigations of lithium diffusion in single-walled carbon nanotubes. Chemical Physics, 2004, 297, 85-91.	0.9	34
69	Hydrogen Bond versus Halogen Bond in Cation–Cation Complexes: Effect of the Solvent. ChemPhysChem, 2017, 18, 3462-3468.	1.0	34
70	A novel fluoride selective optical chemosensor based on internal charge transfer signaling. Tetrahedron Letters, 2010, 51, 596-599.	0.7	33
71	Cations brought together by hydrogen bonds: the protonated pyridine–boronic acid dimer explained. Physical Chemistry Chemical Physics, 2019, 21, 5796-5802.	1.3	33
72	Feasibility of Single-Walled Carbon Nanotubes as Materials for CO ₂ Adsorption: A DFT Study. Journal of Physical Chemistry C, 2012, 116, 21083-21092.	1.5	32

#	Article	IF	CITATIONS
73	Theoretical ab initio study of the interplay between hydrogen bonding, cation–π and π–π interactions. Theoretical Chemistry Accounts, 2009, 122, 325-332.	0.5	31
74	On the Importance of Anion–π Interactions in the Mechanism of Sulfide:Quinone Oxidoreductase. Chemistry - an Asian Journal, 2013, 8, 2708-2713.	1.7	31
7 5	Predicting Experimental Complexation-Induced Changes in 1H NMR Chemical Shift for Complexes between Zinc-Porphyrins and Amines Using the ab Initio/GIAO-HF Methodology. Organic Letters, 2002, 4, 399-401.	2.4	30
76	Theoretical Studies of the Complex [(BPMEN)Fe(II)(NCCH3)2]2+, Precursor of Non-Heme Iron Catalysts for Olefin Epoxidation and Cis-Dihydroxylation. Inorganic Chemistry, 2003, 42, 8449-8455.	1.9	30
77	Dual Cation and Anion Acceptor Molecules. The Case of the (Î-6-C6H6)(Î-6C6F6)Cr(0) Complex. Journal of Physical Chemistry A, 2007, 111, 3137-3142.	1.1	29
78	A Combined Experimental and Theoretical Study of Anion–π Interactions in Bis(pyrÂɨmidine) Salts. European Journal of Organic Chemistry, 2007, 2007, 5821-5825.	1.2	29
79	MP2 study of anion–π complexes of trifluoro-s-triazine with tetrahedral and octahedral anions. Chemical Physics Letters, 2007, 438, 104-108.	1.2	29
80	New $[2\ \tilde{A}-2]$ Copper(I) Grids as Anion Receptors. Effect of Ligand Functionalization on the Ability to Host Counteranions by Hydrogen Bonds. Inorganic Chemistry, 2010, 49, 8828-8847.	1.9	28
81	Substituent effects in cation–π interactions revisited: a general approach based on intrinsic properties of the arenes. Physical Chemistry Chemical Physics, 2014, 16, 1322-1326.	1.3	28
82	Sigma-hole carbon-bonding interactions in carbon–carbon double bonds: an unnoticed contact. Physical Chemistry Chemical Physics, 2017, 19, 15530-15540.	1.3	28
83	Estimating ring strain energies in small carbocycles by means of the Bader's theory of â€~atoms-in-molecules'. Chemical Physics Letters, 2012, 536, 165-169.	1.2	27
84	Investigating Polyoxometalate–Protein Interactions at Chemically Distinct Binding Sites. Journal of Physical Chemistry B, 2018, 122, 7219-7232.	1.2	27
85	RI-MP2 and MPWB1K Study of π–Anionâ^π′ Complexes: MPWB1K Performance and Some Additivity Aspect Journal of Chemical Theory and Computation, 2011, 7, 3012-3018.	^{:S} 2.3	26
86	Ab initio investigations of lithium insertion in boron and nitrogen-doped single-walled carbon nanotubes. Chemical Physics Letters, 2005, 411, 256-261.	1.2	24
87	Synthesis, X-ray structure analysis and computational studies of novel bis(thiocarbamoyl) disulfides with non-covalent Sâc N and Sâc S interactions. Chemical Physics Letters, 2006, 422, 234-239.	1.2	24
88	Interplay between Edge-to-Face Aromatic and Hydrogen-Bonding Interactions. Journal of Physical Chemistry A, 2008, 112, 6017-6022.	1.1	24
89	Unexpected Nonadditivity Effects in Anionâ~Ï€ Complexes. Journal of Physical Chemistry A, 2011, 115, 7849-7857.	1.1	23
90	A methodological analysis for the assessment of non-covalent π interactions. Chemical Physics Letters, 2011, 508, 144-148.	1.2	23

#	Article	IF	Citations
91	Substituent Effects in Ionâ^Ï∈ Interactions: Fine-Tuning via the Ethynyl Group. Journal of Physical Chemistry A, 2010, 114, 1926-1930.	1.1	22
92	Theoretical and Crystallographic Study of the Dual $ f \in A$ nion Binding Affinity of Quinolizinylium Cation. Journal of Chemical Theory and Computation, 2008, 4, 1981-1989.	2.3	21
93	Theoretical and crystallographic study of edge-to-face aromatic interactions between pyridine moieties and benzene. Chemical Physics Letters, 2009, 468, 280-285.	1.2	21
94	Induced-Polarization Energy Map:  A Helpful Tool for Predicting Geometric Features of Anion-π Complexes. Journal of Chemical Theory and Computation, 2007, 3, 2098-2107.	2.3	20
95	Erroneous behaviour of the widely used MP2(full)/aug-cc-pVXZ (X=D,T) level of theory for evaluating the BSSE in ion–π complexes. Chemical Physics Letters, 2010, 489, 254-258.	1.2	20
96	Tuning of the anion–ໂ∈ interaction. Theoretical Chemistry Accounts, 2012, 131, 1.	0.5	20
97	Structural and energetic features of single-walled carbon nanotube junctions: a theoretical ab initio study. Chemical Physics, 2004, 303, 265-270.	0.9	19
98	A Combined Experimental and Theoretical Study of Anion‑π Interactions in <i>N</i> ⁶ ― and <i>N</i> ⁹ â€Decyladenine Salts. European Journal of Organic Chemistry, 2010, 2010, 5171-5180.	1.2	19
99	Synthetic Tripodal Squaramidoâ€Based Receptors for the Complexation of Antineoplastic Folates in Water. European Journal of Organic Chemistry, 2011, 2011, 6187-6194.	1.2	19
100	Self-assembly hexanuclear metallacontainer hosting halogenated guest species and sustaining structure of 3D coordination framework. Chemical Communications, 2011, 47, 1764-1766.	2.2	18
101	Highly efficient coordination of Hg ²⁺ and Pb ²⁺ metals in water with squaramide-coated Fe ₃ O ₄ nanoparticles. Journal of Materials Chemistry A, 2014, 2, 8796-8803.	5.2	18
102	Theoretical ab initio study of anion–π interactions in inorganic rings. Chemical Physics Letters, 2012, 530, 145-150.	1.2	17
103	Anion–π interactions in [S4N3]+ rings. New Journal of Chemistry, 2013, 37, 2636.	1.4	17
104	Hydrolysis of chemically distinct sites of human serum albumin by polyoxometalate: A hybrid QM/MM (ONIOM) study. Journal of Computational Chemistry, 2019, 40, 51-61.	1.5	17
105	Metastable Dianions and Dications. ChemPhysChem, 2020, 21, 1597-1607.	1.0	16
106	The resonance model in amides: a combined crystallographic and ab initio investigation. New Journal of Chemistry, 2001, 25, 259-261.	1.4	15
107	Conformational Analysis of a Model Synthetic Prodiginine. Journal of Organic Chemistry, 2012, 77, 6538-6544.	1.7	15
108	Ab initio calculations on zinc porphyrins complexed to amines: geometrical details and NMR chemical shifts. Computational and Theoretical Chemistry, 2000, 531, 381-386.	1.5	14

#	Article	IF	Citations
109	Counterintuitive affinity of [2.2]paracyclophane to cations. Chemical Physics Letters, 2005, 408, 59-64.	1.2	14
110	Can lone pair-Ï€ and cation-Ï€ interactions coexist? A theoretical study. Open Chemistry, 2011, 9, 25-34.	1.0	14
111	Adsorption and Quantification of Volatile Organic Compounds (VOCs) by using Hybrid Magnetic Nanoparticles. Chemistry - A European Journal, 2018, 24, 12820-12826.	1.7	14
112	On the importance of the inclusion of the basis set superposition error counterpoise correction during optimization of ion-Ï€ complexes. Chemical Physics Letters, 2008, 455, 325-330.	1.2	13
113	Computational insights to the mechanism of alkene epoxidation by manganese-based catalysts in the presence of bicarbonate. Computational and Theoretical Chemistry, 2009, 903, 115-122.	1.5	13
114	Cooperativity effects between non-covalent interactions: Are they important for Z-DNA stability?. Chemical Physics Letters, 2010, 485, 221-225.	1.2	13
115	Radical cation (CË™+–π) and radical anion (AË™â^'–π) interactions with aromatic rings: energetic, orbitalic and spin density considerations. Physical Chemistry Chemical Physics, 2011, 13, 16698.	1.3	13
116	OPLS all-atom force field for squaramides and squaric acid. Chemical Physics Letters, 2001, 350, 331-338.	1.2	12
117	A theoretical ab initio study of [n.n]paracyclophane complexes with cations. Chemical Physics Letters, 2006, 417, 371-377.	1.2	12
118	MP2 Study of the Dual σ/Ï€â^'Anion-Binding Affinity of Fluorinated Phthallic Acid Anhydrides. Journal of Physical Chemistry A, 2008, 112, 1622-1626.	1.1	12
119	Interplay between ion–̀ and Ar∫Í€ Van der Waals interactions. Computational and Theoretical Chemistry, 2012, 998, 51-56.	1.1	12
120	Hydrogen Bond versus Halogen Bond in HXOn ($X = F$, Cl, Br, and I) Complexes with Lewis Bases. Inorganics, 2019, 7, 9.	1.2	12
121	Anion–΀ Interactions Involving [MX _{<i>n</i>}] ^{<i>m</i>â^³} Anions: A Comprehensive Theoretical Study. ChemPhysChem, 2013, 14, 145-154.	1.0	11
122	Substituent Effects in Multivalent Halogen Bonding Complexes: A Combined Theoretical and Crystallographic Study. Molecules, 2018, 23, 18.	1.7	11
123	A density functional study of geometry and electronic structures of [(SiO4)(MIII)2(OH)2W10O32]4â°', M=Mo, Ru and Rh. Journal of Molecular Catalysis A, 2007, 262, 227-235.	4.8	10
124	New Chlorido (dimethyl sulfoxide) iridium (III) Complexes with N6-Substituted Adenines - Kinetic N(7) versus Thermodynamic N(9) Coordinated Adenine Isomers. European Journal of Inorganic Chemistry, 2010, 2010, 5617-5628.	1.0	10
125	Anion Recognition by Pyrylium Cations and Thio-, Seleno- and Telluro- Analogues: A Combined Theoretical and Cambridge Structural Database Study. Molecules, 2015, 20, 11632-11659.	1.7	10
126	Reconciling Experiment and Theory in the Use of Aryl-Extended Calix[4]pyrrole Receptors for the Experimental Quantification of Chloride–i€ Interactions in Solution. International Journal of Molecular Sciences, 2015, 16, 8934-8948.	1.8	10

#	Article	IF	CITATIONS
127	Influence of the aromatic surface on the capacity of adsorption of VOCs by magnetite supported organic–inorganic hybrids. RSC Advances, 2019, 9, 24184-24191.	1.7	10
128	Squaramido-based receptors: applicability of molecular interaction potential to molecular recognition of polyalkylammonium compounds. Theoretical Chemistry Accounts, 2000, 104, 50-66.	0.5	9
129	A topological analysis of charge density in complexes between derivatives of squaric acid and ammonium cation. Chemical Physics Letters, 2001, 339, 369-374.	1.2	9
130	Applicability of the 1H NMR chemical shifts computed by the ab initio/GIAO-HF methodology to the study of geometrical features of Zn-porphyrin dimers. Tetrahedron Letters, 2004, 45, 9387-9391.	0.7	8
131	Weak interactions within nitryl halide heterodimers. New Journal of Chemistry, 2016, 40, 9060-9072.	1.4	8
132	Theoretical ab initio study of substituted benzene trimer: Interplay between hydrogen bonding and π–΀ interactions. Computational and Theoretical Chemistry, 2011, 975, 106-110.	1.1	7
133	Theoretical ab initio study of lone pair and anion–π interactions in fluorinated tropolones. Computational and Theoretical Chemistry, 2012, 998, 20-25.	1.1	7
134	Predicting experimental complexation-induced changes in NMR chemical shift for complexes between metalloporphyrins and ligands using the Ab initio/GIAO-HF methodology. Chemical Physics Letters, 2002, 360, 72-78.	1.2	6
135	Theoretical Study of the Structure and Properties of [(η5-C5Me4H)2Zr]2(Î ¹ / ₄ 2,η2,η2-N2). Journal of Chemical Theory and Computation, 2006, 2, 336-341.	2.3	6
136	Quadrupole moment versus Molecular Electrostatic Potential: Strange behavior of ethynyl-substituted benzenes. Chemical Physics Letters, 2013, 567, 60-65.	1.2	5
137	Affinity of ferrocene and $(1,1\hat{a}\in^2)(3,3\hat{a}\in^2)[3,3]$ ferrocenophane to cations. Chemical Physics Letters, 2006, 424, 204-208.	1.2	4
138	New 1,8-naphthyridine-based probes for the selective fluorescence signalling of toxic cadmium: synthesis, photophysical studies and molecular modelling. Supramolecular Chemistry, 2010, 22, 524-531.	1.5	4
139	Anion–π Interactions: Do They Exist?. Angewandte Chemie - International Edition, 2004, 43, 141-141.	7.2	3
140	The Role of the Ethynyl Substituent on the π–π Stacking Affinity of Benzene: A Theoretical Study. ChemPhysChem, 2011, 12, 283-288.	1.0	3
141	Internal rotation in squaramide and related compounds. A theoretical ab initio study. Theoretical Chemistry Accounts, 2002, 108, 157-167.	0.5	2
142	Kinetics and mechanism of the oxidation of hydroxylamine by a {Mn3O4}4+ core in aqueous acidic media. Dalton Transactions, 2011, 40, 9571.	1.6	2
143	Molecular Interaction Potential with Polarization (MIPp) Study of the Interplay Between Ion-Ï€ and Hydrogen Bonding Interactions. The Open Chemical Physics Journal, 2008, 1, 36-41.	0.7	2
144	Synthesis and structure of <i>cis</i> -[RuCl(bpzm)(lecsup>1- <i>P</i> -dpim)(lecsup>2- <i>P,N</i> -dpim)]Cl·(CHCl ₃ Stability of [Cl(HCCl ₃) _{<i>n</i>>(i>}] ^{â°Â} aggregates. Supramolecular Chemistry, 2012, 24, 787-798.	ub>) <sub:< td=""><td></td></sub:<>	

David Quiñonero

#	Article	IF	CITATIONS
145	A Squaramide-Based Citrate Receptor. Synfacts, 2006, 2006, 1225-1225.	0.0	0
146	Frontispiece: Adsorption and Quantification of Volatile Organic Compounds (VOCs) by using Hybrid Magnetic Nanoparticles. Chemistry - A European Journal, 2018, 24, .	1.7	0
147	Anion…Ï€, lone pair…Ï€, and F…F interactions in nucleobase derivatives. Acta Crystallographica Section A: Foundations and Advances, 2011, 67, C600-C601.	0.3	O