Song Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7018465/publications.pdf

Version: 2024-02-01

109 papers	7,566 citations	94269 37 h-index	83 g-index
120	120	120	5593
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Elucidating severe urban haze formation in China. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17373-17378.	3.3	1,328
2	Persistent sulfate formation from London Fog to Chinese haze. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13630-13635.	3.3	1,044
3	Formation of Urban Fine Particulate Matter. Chemical Reviews, 2015, 115, 3803-3855.	23.0	988
4	Markedly enhanced absorption and direct radiative forcing of black carbon under polluted urban environments. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4266-4271.	3.3	453
5	Primary Sources and Secondary Formation of Organic Aerosols in Beijing, China. Environmental Science &	4.6	170
6	High N ₂ O ₅ Concentrations Observed in Urban Beijing: Implications of a Large Nitrate Formation Pathway. Environmental Science and Technology Letters, 2017, 4, 416-420.	3.9	167
7	Aerosol Liquid Water Driven by Anthropogenic Inorganic Salts: Implying Its Key Role in Haze Formation over the North China Plain. Environmental Science and Technology Letters, 2018, 5, 160-166.	3.9	165
8	Characteristics of aerosol size distributions and new particle formation in the summer in Beijing. Journal of Geophysical Research, 2009, 114, .	3.3	128
9	Seasonal variations in high time-resolved chemical compositions, sources, and evolution of atmospheric submicron aerosols in the megacity Beijing. Atmospheric Chemistry and Physics, 2017, 17, 9979-10000.	1.9	127
10	The formation of nitro-aromatic compounds under high NO _{and anthropogenic VOC conditions in urban Beijing, China. Atmospheric Chemistry and Physics, 2019, 19, 7649-7665.}	1.9	127
11	Estimation of Size-Resolved Ambient Particle Density Based on the Measurement of Aerosol Number, Mass, and Chemical Size Distributions in the Winter in Beijing. Environmental Science & Eamp; Technology, 2012, 46, 9941-9947.	4.6	124
12	Exploring atmospheric free-radical chemistry in China: the self-cleansing capacity and the formation of secondary air pollution. National Science Review, 2019, 6, 579-594.	4.6	123
13	Remarkable nucleation and growth of ultrafine particles from vehicular exhaust. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3427-3432.	3.3	122
14	New particle formation in China: Current knowledge and further directions. Science of the Total Environment, 2017, 577, 258-266.	3.9	106
15	Molecular Characterization of Nitrogen-Containing Organic Compounds in Humic-like Substances Emitted from Straw Residue Burning. Environmental Science & Emp; Technology, 2017, 51, 5951-5961.	4.6	90
16	Research on the hygroscopic properties of aerosols by measurement and modeling during CAREBeijingâ€2006. Journal of Geophysical Research, 2009, 114, .	3.3	88
17	The secondary formation of organosulfates under interactions between biogenic emissions and anthropogenic pollutants in summer in Beijing. Atmospheric Chemistry and Physics, 2018, 18, 10693-10713.	1.9	84
18	Role of OH-Initiated Oxidation of Isoprene in Aging of Combustion Soot. Environmental Science & Emp; Technology, 2013, 47, 2254-2263.	4.6	75

#	Article	IF	CITATIONS
19	Efficient N ₂ O ₅ uptake and NO ₃ oxidation in the outflow of urban Beijing. Atmospheric Chemistry and Physics, 2018, 18, 9705-9721.	1.9	64
20	Online gas- and particle-phase measurements of organosulfates, organosulfonates and nitrooxy organosulfates in Beijing utilizing a FIGAERO ToF-CIMS. Atmospheric Chemistry and Physics, 2018, 18, 10355-10371.	1.9	62
21	Formation and Optical Properties of Brown Carbon from Small α-Dicarbonyls and Amines. Environmental Science & Decknology, 2019, 53, 117-126.	4.6	62
22	Photochemical smog in China: scientific challenges and implications for air-quality policies. National Science Review, 2016, 3, 401-403.	4.6	58
23	Gasoline aromatics: aÂcritical determinant of urban secondary organic aerosol formation. Atmospheric Chemistry and Physics, 2017, 17, 10743-10752.	1.9	58
24	Primary and secondary organic aerosols in summer 2016 in Beijing. Atmospheric Chemistry and Physics, 2018, 18, 4055-4068.	1.9	57
25	Spatial distributions and chemical properties of PM2.5 based on 21 field campaigns at 17 sites in China. Chemosphere, 2016, 159, 480-487.	4.2	55
26	Exploring wintertime regional haze in northeast China: role of coal and biomass burning. Atmospheric Chemistry and Physics, 2020, 20, 5355-5372.	1.9	55
27	Secondary aerosol formation in winter haze over the Beijing-Tianjin-Hebei Region, China. Frontiers of Environmental Science and Engineering, 2021, 15, 1.	3.3	55
28	Chlorine oxidation of VOCs at a semi-rural site in Beijing: significant chlorine liberation from ClNO ₂ and subsequent gas- and particle-phase Cl–VOC production. Atmospheric Chemistry and Physics, 2018, 18, 13013-13030.	1.9	54
29	Daytime HONO formation in the suburban area of the megacity Beijing, China. Science China Chemistry, 2014, 57, 1032-1042.	4.2	53
30	Influence of biomass burning from South Asia at a high-altitude mountain receptor site in China. Atmospheric Chemistry and Physics, 2017, 17, 6853-6864.	1.9	53
31	Enhancement in Particulate Organic Nitrogen and Light Absorption of Humic-Like Substances over Tibetan Plateau Due to Long-Range Transported Biomass Burning Emissions. Environmental Science & Technology, 2019, 53, 14222-14232.	4.6	52
32	Insight into characteristics and sources of PM2.5 in the Beijing–Tianjin–Hebei region, China. National Science Review, 2015, 2, 257-258.	4.6	49
33	Quantifying the impacts of inter-city transport on air quality in the Yangtze River Delta urban agglomeration, China: Implications for regional cooperative controls of PM2.5 and O3. Science of the Total Environment, 2021, 779, 146619.	3.9	48
34	OH-Initiated Oxidation of <i>m</i> -Xylene on Black Carbon Aging. Environmental Science & Environmental	4.6	47
35	Ageing and hygroscopicity variation of black carbon particles in Beijing measured by a quasi-atmospheric aerosol evolution study (QUALITY) chamber. Atmospheric Chemistry and Physics, 2017, 17, 10333-10348.	1.9	47
36	Ambient nitro-aromatic compounds \hat{a} biomass burning versus secondary formation in rural China. Atmospheric Chemistry and Physics, 2021, 21, 1389-1406.	1.9	46

#	Article	IF	CITATIONS
37	Measurement report: Distinct emissions and volatility distribution of intermediate-volatility organic compounds from on-road Chinese gasoline vehicles: implication of high secondary organic aerosol formation potential. Atmospheric Chemistry and Physics, 2021, 21, 2569-2583.	1.9	45
38	Variations of fine particle physiochemical properties during a heavy haze episode in the winter of Beijing. Science of the Total Environment, 2016, 571, 103-109.	3.9	40
39	Heterogeneous Chemistry of Glyoxal on Acidic Solutions. An Oligomerization Pathway for Secondary Organic Aerosol Formation. Journal of Physical Chemistry A, 2015, 119, 4457-4463.	1.1	37
40	Subthalamic deep brain stimulation for Parkinson's disease: Correlation between locations of oscillatory activity and optimal site of stimulation. Parkinsonism and Related Disorders, 2013, 19, 109-114.	1.1	36
41	Secondary Organic Aerosol from Typical Chinese Domestic Cooking Emissions. Environmental Science and Technology Letters, 2021, 8, 24-31.	3.9	35
42	Temporal and spatial distribution of PM2.5 chemical composition in a coastal city of Southeast China. Science of the Total Environment, 2017, 605-606, 337-346.	3.9	33
43	Modelling air quality during the EXPLORE-YRD campaign – Part I. Model performance evaluation and impacts of meteorological inputs and grid resolutions. Atmospheric Environment, 2021, 246, 118131.	1.9	31
44	Modelling air quality during the EXPLORE-YRD campaign $\hat{a}\in$ Part II. Regional source apportionment of ozone and PM2.5. Atmospheric Environment, 2021, 247, 118063.	1.9	30
45	Observational Evidence for the Involvement of Dicarboxylic Acids in Particle Nucleation. Environmental Science and Technology Letters, 2020, 7, 388-394.	3.9	30
46	Comparative Study of Particulate Organosulfates in Contrasting Atmospheric Environments: Field Evidence for the Significant Influence of Anthropogenic Sulfate and NOx. Environmental Science and Technology Letters, 2020, 7, 787-794.	3.9	28
47	Size-resolved effective density of submicron particles during summertime in the rural atmosphere of Beijing, China. Journal of Environmental Sciences, 2018, 73, 69-77.	3.2	26
48	Effects of Regional Transport on Haze in the North China Plain: Transport of Precursors or Secondary Inorganic Aerosols. Geophysical Research Letters, 2020, 47, e2020GL087461.	1.5	26
49	Modeling particulate nitrate in China: Current findings and future directions. Environment International, 2022, 166, 107369.	4.8	26
50	Wintertime aerosol properties in Beijing. Atmospheric Chemistry and Physics, 2019, 19, 14329-14338.	1.9	23
51	Atmospheric Processing of Nitrophenols and Nitrocresols From Biomass Burning Emissions. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033401.	1.2	23
52	Particle number size distribution and new particle formation under the influence of biomass burning at a high altitude background site at Mt.ÂYulong (3410 m), China. Atmospheric Chemistry and Physics, 2018, 18, 15687-15703.	1.9	22
53	More Significant Impacts From New Particle Formation on Haze Formation During COVIDâ€19 Lockdown. Geophysical Research Letters, 2021, 48, e2020GL091591.	1.5	22
54	Measurement of aerosol optical properties and their potential source origin in urban Beijing from 2013-2017. Atmospheric Environment, 2019, 206, 293-302.	1.9	21

#	Article	IF	Citations
55	Insights into aqueous-phase and photochemical formation of secondary organic aerosol in the winter of Beijing. Atmospheric Environment, 2021, 259, 118535.	1.9	21
56	The identification of source regions of black carbon at a receptor site off the eastern coast of China. Atmospheric Environment, 2015, 100, 78-84.	1.9	20
57	Effects of continental anthropogenic sources on organic aerosols in the coastal atmosphere of East China. Environmental Pollution, 2017, 229, 350-361.	3.7	19
58	A new parameterization scheme for the real part of the ambient urban aerosol refractive index. Atmospheric Chemistry and Physics, 2019, 19, 12875-12885.	1.9	19
59	Evolution of secondary inorganic and organic aerosols during transport: A case study at a regional receptor site. Environmental Pollution, 2016, 218, 794-803.	3.7	18
60	The variability in the relationship between black carbon and carbon monoxide over the eastern coast of China: BC aging during transport. Atmospheric Chemistry and Physics, 2017, 17, 10395-10403.	1.9	18
61	Cloud forming potential of oligomers relevant to secondary organic aerosols. Geophysical Research Letters, 2014, 41, 6538-6545.	1.5	17
62	Elucidating the importance of semi-volatile organic compounds to secondary organic aerosol formation at a regional site during the EXPLORE-YRD campaign. Atmospheric Environment, 2021, 246, 118043.	1.9	17
63	Seasonal variation of aerosol compositions in Shanghai, China: Insights from particle aerosol mass spectrometer observations. Science of the Total Environment, 2021, 771, 144948.	3.9	17
64	Importance of Semivolatile/Intermediate-Volatility Organic Compounds to Secondary Organic Aerosol Formation from Chinese Domestic Cooking Emissions. Environmental Science and Technology Letters, 2022, 9, 507-512.	3.9	17
65	Measurement of gaseous and particulate formaldehyde in the Yangtze River Delta, China. Atmospheric Environment, 2020, 224, 117114.	1.9	16
66	Links between the optical properties and chemical compositions of brown carbon chromophores in different environments: Contributions and formation of functionalized aromatic compounds. Science of the Total Environment, 2021, 786, 147418.	3.9	16
67	Mass spectral characterization of secondary organic aerosol from urban cooking and vehicular sources. Atmospheric Chemistry and Physics, 2021, 21, 15065-15079.	1.9	16
68	Measurement report: Online measurement of gas-phase nitrated phenols utilizing a CI-LToF-MS: primary sources and secondary formation. Atmospheric Chemistry and Physics, 2021, 21, 7917-7932.	1.9	15
69	Investigation of partition coefficients and fingerprints of atmospheric gas- and particle-phase intermediate volatility and semi-volatile organic compounds using pixel-based approaches. Journal of Chromatography A, 2022, 1665, 462808.	1.8	15
70	Acid-Catalyzed Reactions of Epoxides for Atmospheric Nanoparticle Growth. Journal of the American Chemical Society, 2014, 136, 15477-15480.	6.6	14
71	Secondary aerosol formation from a Chinese gasoline vehicle: Impacts of fuel (E10, gasoline) and driving conditions (idling, cruising). Science of the Total Environment, 2021, 795, 148809.	3.9	14
72	Comparison of Secondary Organic Aerosol Estimation Methods. Acta Chimica Sinica, 2014, 72, 658.	0.5	14

#	Article	IF	Citations
73	Reply to Li et al.: Insufficient evidence for the contribution of regional transport to severe haze formation in Beijing. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2741-E2741.	3.3	13
74	Impacts of chlorine chemistry and anthropogenic emissions on secondary pollutants in the Yangtze river delta region. Environmental Pollution, 2021, 287, 117624.	3.7	13
75	Characteristics of Aerosol during a Severe Haze-Fog Episode in the Yangtze River Delta: Particle Size Distribution, Chemical Composition, and Optical Properties. Atmosphere, 2020, 11, 56.	1.0	12
76	Variations in physicochemical properties of airborne particles during a heavy haze-to-dust episode in Beijing. Science of the Total Environment, 2021, 762, 143081.	3.9	12
77	Effects of biomass burning and photochemical oxidation on the black carbon mixing state and light absorption in summer season. Atmospheric Environment, 2021, 248, 118230.	1.9	12
78	Estimation of secondary PM _{2.5} in China and the United States using a multi-tracer approach. Atmospheric Chemistry and Physics, 2022, 22, 5495-5514.	1.9	11
79	The particle phase state during the biomass burning events. Science of the Total Environment, 2021, 792, 148035.	3.9	10
80	Variations in source contributions of particle number concentration under long-term emission control in winter of urban Beijing. Environmental Pollution, 2022, 304, 119072.	3.7	10
81	Recent Progress in Impacts of Mixing State on Optical Properties of Black Carbon Aerosol. Current Pollution Reports, 2020, 6, 380-398.	3.1	9
82	Measurement report: Strong light absorption induced by aged biomass burning black carbon over the southeastern Tibetan Plateau in pre-monsoon season. Atmospheric Chemistry and Physics, 2021, 21, 8499-8510.	1.9	9
83	Formation and evolution of secondary organic aerosols derived from urban-lifestyle sources: vehicle exhaust and cooking emissions. Atmospheric Chemistry and Physics, 2021, 21, 15221-15237.	1.9	9
84	Neuronal firing patterns in the subthalamic nucleus in patients with akinetic-rigid-type Parkinson's disease. Journal of Clinical Neuroscience, 2012, 19, 1404-1407.	0.8	8
85	Secondary Formation of Aerosols Under Typical Highâ€Humidity Conditions in Wintertime Sichuan Basin, China: A Contrast to the North China Plain. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034560.	1.2	8
86	Particle hygroscopicity inhomogeneity and its impact on reactive uptake. Science of the Total Environment, 2022, 811, 151364.	3.9	8
87	A Four Carbon Organonitrate as a Significant Product of Secondary Isoprene Chemistry. Geophysical Research Letters, 2022, 49, .	1.5	8
88	Potential of secondary aerosol formation from Chinese gasoline engine exhaust. Journal of Environmental Sciences, 2018, 66, 348-357.	3.2	7
89	Larger than expected variation range in the real part of the refractive index for ambient aerosols in China. Science of the Total Environment, 2021, 779, 146443.	3.9	7
90	Research on Secondary Organic Aerosols Basing on Field Measurement. Acta Chimica Sinica, 2014, 72, 145.	0.5	7

#	Article	IF	CITATIONS
91	Ionic Rigid Organic Dual-State Emission Compound With Rod-Shaped and Conjugated Structure for Sensitive Al3+ Detection. Frontiers in Chemistry, 2022, 10, 807088.	1.8	7
92	Airborne particle number concentrations in China: A critical review. Environmental Pollution, 2022, 307, 119470.	3.7	6
93	Current Challenges in Visibility Improvement in Sichuan Basin. Geophysical Research Letters, 2022, 49, .	1.5	6
94	New particle formation and its CCN enhancement in the Yangtze River Delta under the control of continental and marine air masses. Atmospheric Environment, 2021, 254, 118400.	1.9	5
95	Research on Formation and Aging of Secondary Organic Aerosol Based on Simulation Methods. Acta Chimica Sinica, 2020, 78, 516.	0.5	5
96	Formation, radiative forcing, and climatic effects of severe regional haze. Atmospheric Chemistry and Physics, 2022, 22, 4951-4967.	1.9	5
97	A novel algorithm to determine the scattering coefficient of ambient organic aerosols. Environmental Pollution, 2021, 270, 116209.	3.7	4
98	The temporal and spatial distribution of the correlation between PM _{2.5} and O ₃ contractions in the urban atmosphere of China. Chinese Science Bulletin, 2022, 67, 2008-2017.	0.4	4
99	Assessment of Sectoral NO _{<i>x</i>} Emission Reductions During COVIDâ€19 Lockdown Using Combined Satellite and Surface Observations and Sourceâ€Oriented Model Simulations. Geophysical Research Letters, 2022, 49, .	1.5	4
100	Secondary organic aerosol formation from straw burning using an oxidation flow reactor. Journal of Environmental Sciences, 2022, 114, 249-258.	3.2	4
101	Ice-nucleating particles from multiple aerosol sources in the urban environment of Beijing under mixed-phase cloud conditions. Atmospheric Chemistry and Physics, 2022, 22, 7539-7556.	1.9	4
102	Reply to Cao and Zhang: Tightening nonfossil emissions alone is inefficient for PM2.5 mitigation in China. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1403-E1403.	3.3	3
103	Optimal target localisation and eight-year outcome for subthalamic stimulation in patients with Parkinson's disease. British Journal of Neurosurgery, 2021, 35, 151-156.	0.4	3
104	Field observations and quantifications of atmospheric formaldehyde partitioning in gaseous and particulate phases. Science of the Total Environment, 2021, 808, 152122.	3.9	3
105	Humidity-Dependent Phase State of Gasoline Vehicle Emission-Related Aerosols. Environmental Science & Emp; Technology, 2021, 55, 832-841.	4.6	2
106	Historically understanding the spatial distributions of particle surface area concentrations over China estimated using a non-parametric machine learning method. Science of the Total Environment, 2022, 824, 153849.	3.9	2
107	Parameterization of the ambient aerosol refractive index with source appointed chemical compositions. Science of the Total Environment, 2022, 842, 156573.	3.9	1
108	Chemical characteristics of fine particles during spring dust storm dominant period in two Chinese cities, Baotou and Wuwei. Diqiu Huaxue, 2006, 25, 221-221.	0.5	0

ARTICLE IF CITATIONS

109 Spatial Distributions, Chemical Properties, and Sources of Ambient Particulate Matters in China., 2017, 265-284.