
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7017270/publications.pdf Version: 2024-02-01

LIAEANC LL

#	Article	IF	CITATIONS
1	Thermally actuated micro-/nanoscale deformations for optical reconfigurations. Journal of Optics (United Kingdom), 2022, 24, 054007.	1.0	2
2	Plasmonic diastereoisomer arrays with reversed circular dichroism simply controlled by deformation height. APL Photonics, 2022, 7, .	3.0	5
3	A magnetic actuation scheme for nano-kirigami metasurfaces with reconfigurable circular dichroism. Journal of Applied Physics, 2022, 131, .	1.1	6
4	Electromechanically reconfigurable optical nano-kirigami. Nature Communications, 2021, 12, 1299.	5.8	61
5	Artificial Propeller Chirality and Counterintuitive Reversal of Circular Dichroism in Twisted Meta-molecules. Nano Letters, 2021, 21, 6828-6834.	4.5	29
6	Ultra-sensitive amplitude engineering and sign reversal of circular dichroism in quasi-3D chiral nanostructures. Optics Express, 2021, 29, 33572.	1.7	6
7	Reprogrammable optical metasurfaces by electromechanical reconfiguration. Optics Express, 2021, 29, 30751.	1.7	8
8	Phase Enabled Circular Dichroism Reversal in Twisted Bi hiral Propeller Metamolecule Arrays. Advanced Optical Materials, 2021, 9, 2101191.	3.6	9
9	Reconfigurable plasmonic nanoslits and tuneable Pancharatnam-Berry geometric phase based on electromechanical nano-kirigami [Invited]. Optical Materials Express, 2021, 11, 3381.	1.6	3
10	Adaptable Invisibility Management Using Kirigami-Inspired Transformable Metamaterials. Research, 2021, 2021, 9806789.	2.8	21
11	Plasmonic Nanosensors with Extraordinary Sensitivity to Molecularly Enantioselective Recognition at Nanoscale Interfaces. ACS Nano, 2021, 15, 19535-19545.	7.3	8
12	Dirac-vortex topological cavities. Nature Nanotechnology, 2020, 15, 1012-1018.	15.6	95
13	Deuterogenic Plasmonic Vortices. Nano Letters, 2020, 20, 6774-6779.	4.5	38
14	Nanoâ€Kirigami Metasurface with Giant Nonlinear Optical Circular Dichroism. Laser and Photonics Reviews, 2020, 14, 2000085.	4.4	37
15	Vector Exceptional Points with Strong Superchiral Fields. Physical Review Letters, 2020, 124, 083901.	2.9	32
16	Fanoâ€Enhanced Circular Dichroism in Deformable Stereo Metasurfaces. Advanced Materials, 2020, 32, e1907077.	11.1	83
17	Kirigami/origami: unfolding the new regime of advanced 3D microfabrication/nanofabrication with "folding― Light: Science and Applications, 2020, 9, 75.	7.7	112
18	Reconfigurable nano-kirigami metasurfaces by pneumatic pressure. Photonics Research, 2020, 8, 1177.	3.4	21

#	Article	IF	CITATIONS
19	Cascaded multilayer nano-kirigami for extensible 3D nanofabrication and visible light manipulation. Photonics Research, 2020, 8, 1506.	3.4	11
20	Vector beams in planar photonic crystal cavities with rotating air holes. Optics Letters, 2020, 45, 1587.	1.7	2
21	Nonvolatile Memory: New Floating Gate Memory with Excellent Retention Characteristics (Adv.) Tj ETQq1 1 0.7	784314 rgE 2.6	3T /Qverlock 1
22	New Floating Gate Memory with Excellent Retention Characteristics. Advanced Electronic Materials, 2019, 5, 1800726.	2.6	48
23	Focused-ion-beam-based nano-kirigami: from art to photonics. Nanophotonics, 2018, 7, 1637-1650.	2.9	48
24	Invited Article: Nano-kirigami metasurfaces by focused-ion-beam induced close-loop transformation. APL Photonics, 2018, 3, .	3.0	31
25	Nano-kirigami with giant optical chirality. Science Advances, 2018, 4, eaat4436.	4.7	203
26	Five-fold plasmonic Fano resonances with giant bisignate circular dichroism. Nanoscale, 2018, 10, 16630-16637.	2.8	20
27	Plasmonic Particles with Unique Optical Interaction and Mechanical Motion Properties. Particle and Particle Systems Characterization, 2017, 34, 1600380.	1.2	7
28	Vertical microgoblet resonator with high sensitivity fabricated by direct laser writing on a Si substrate. Journal of Applied Physics, 2017, 121, .	1.1	4
29	Fano resonance Rabi splitting of surface plasmons. Scientific Reports, 2017, 7, 8010.	1.6	57
30	Tunable coupling of a hybrid plasmonic waveguide consisting of two identical dielectric cylinders and a silver film. Chinese Physics B, 2017, 26, 114103.	0.7	1
31	Directionally enhanced probe for side-illumination Tip enhanced spectroscopy. Journal of Raman Spectroscopy, 2016, 47, 1194-1199.	1.2	6
32	Optical forces exerted on a graphene-coated dielectric particle by a focused Gaussian beam. Photonics Research, 2016, 4, 65.	3.4	28
33	On the critical role of Rayleigh scattering in single-molecule surface-enhanced Raman scattering via a plasmonic nanogap. Nanoscale, 2016, 8, 15730-15736.	2.8	20
34	Enhanced and unusual angle-dependent optical forces exerted on Mie particles by Airy surface plasmon wave. Journal of Optics (United Kingdom), 2016, 18, 085401.	1.0	1
35	3D conductive coupling for efficient generation of prominent Fano resonances in metamaterials. Scientific Reports, 2016, 6, 27817.	1.6	43
36	Directly patterned substrate-free plasmonic "nanograter―structures with unusual Fano resonances. Light: Science and Applications, 2015, 4, e308-e308.	7.7	105

#	Article	IF	CITATIONS
37	Excitation of multipolar surface plasmon resonance in plasmonic nanoparticles by complex accelerating beams. Journal of Optics (United Kingdom), 2015, 17, 075005.	1.0	0
38	Fano resonance of the ultrasensitve optical force excited by Gaussian evanescent field. Journal of Optics (United Kingdom), 2015, 17, 075004.	1.0	5
39	Direct laser writing of pyramidal plasmonic structures with apertures and asymmetric gratings towards efficient subwavelength light focusing. Optics Express, 2015, 23, 22564.	1.7	12
40	Giant enhancement of second harmonic generation by engineering double plasmonic resonances at nanoscale. Optics Express, 2014, 22, 28653.	1.7	27
41	Direct laser writing of symmetryâ€broken spiral tapers for polarizationâ€insensitive threeâ€dimensional plasmonic focusing. Laser and Photonics Reviews, 2014, 8, 602-609.	4.4	32
42	Direct laser writing of symmetry-broken nanocorrals and their applications in SERS spectroscopy. Applied Physics B: Lasers and Optics, 2014, 117, 121-125.	1.1	2
43	Tunable Electroluminescence in Planar Graphene/SiO ₂ Memristors. Advanced Materials, 2013, 25, 5593-5598.	11.1	67
44	Hollow metallic pyramid plasmonic structures fabricated by direct laser writing and electron beam evaporation. Microelectronic Engineering, 2013, 110, 307-310.	1.1	9
45	Macroscopic Polarized Emission from Aligned Hybrid Gold Nanorods Embedded in a Polyvinyl Alcohol Film. Advanced Optical Materials, 2013, 1, 227-231.	3.6	14
46	Simultaneous Excitation and Emission Enhancement of Fluorescence Assisted by Double Plasmon Modes of Gold Nanorods. Journal of Physical Chemistry C, 2013, 117, 10636-10642.	1.5	122
47	The properties of gold nanospheres studied with dark field optical trapping. Optics Express, 2013, 21, 6618.	1.7	8
48	Microscopic and macroscopic manipulation of gold nanorod and its hybrid nanostructures [Invited]. Photonics Research, 2013, 1, 28.	3.4	42
49	Macroscopic Engineering of Polarized Emission from Aligned Hybrid Gold Nanorods. , 2013, , .		0
50	Optical trapping of gold nanoparticles by cylindrical vector beam. Optics Letters, 2012, 37, 1694.	1.7	119
51	Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control. Nanotechnology, 2012, 23, 215302.	1.3	30
52	Amplified Spontaneous Emission of Surface Plasmon Polaritons with Unusual Angleâ€Đependent Response. Small, 2012, 8, 1355-1359.	5.2	9
53	Direct observation of amplified spontaneous emission of surface plasmon polaritons at metal/dielectric interfaces. Applied Physics Letters, 2011, 98, .	1.5	23
54	Efficient surface plasmon amplification from gain-assisted gold nanorods. Optics Letters, 2011, 36, 1296.	1.7	85

#	Article	IF	CITATIONS
55	Enhancing the linear absorption and tuning the nonlinearity of TiO_2 nanowires through the incorporation of Ag nanoparticles. Optics Letters, 2011, 36, 3443.	1.7	8
56	Recent progress in engineering and application of surface plasmon resonance in metal nanostructures. Chinese Science Bulletin, 2011, 56, 2631-2661.	0.4	13
57	Highly Nonâ€Linear Quantum Dot Doped Nanocomposites for Functional Threeâ€Dimensional Structures Generated by Twoâ€Photon Polymerization. Advanced Materials, 2010, 22, 2463-2467.	11.1	32
58	Fabrication of threeâ€dimensional photonic crystals in quantumâ€dotâ€based materials. Laser and Photonics Reviews, 2010, 4, 414-431.	4.4	19
59	Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods. Applied Physics Letters, 2010, 96, .	1.5	60
60	Rectangular-cavity resonances enhanced absorption in metallic-nanoshelled 2D rod arrays and 3D photonic crystals. New Journal of Physics, 2010, 12, 043012.	1.2	2
61	Engineering the refractive index of three-dimensional photonic crystals through multilayer deposition of CdS films: erratum. Optics Express, 2010, 18, 3013.	1.7	1
62	Three-dimensional hybrid photonic crystals merged with localized plasmon resonances. Optics Express, 2010, 18, 4491.	1.7	23
63	Engineering the refractive index of three-dimensional photonic crystals through multilayer deposition of CdS films. Optics Express, 2010, 18, 1033.	1.7	9
64	Near-field visualization of focal depth modulation by step corrugated plasmonic slits. Applied Physics Letters, 2009, 94, 151912.	1.5	29
65	Use of radially polarized beams in three-dimensional photonic crystal fabrication with the two-photon polymerization method. Optics Letters, 2009, 34, 1918.	1.7	56
66	Active three-dimensional photonic crystals with high third-order nonlinearity in telecommunication. , 2009, , .		1
67	Direct visualization of focusing effect of step corrugated nanoplasmonic slits. , 2009, , .		0
68	Local observation of modes from three-dimensional woodpile photonic crystals with near-field microspectroscopy under supercontinuum illumination. Optics Letters, 2008, 33, 1093.	1.7	2
69	Engineering stop gaps of inorganic-organic polymeric 3D woodpile photonic crystals with post-thermal treatment. Optics Express, 2008, 16, 20073.	1.7	38
70	Near-field mapping of three-dimensional woodpile photonic crystals by using supercontinuum generation. , 2007, , .		0
71	Use of two-photon polymerization for continuous gray-level encoding of diffractive optical elements. Applied Physics Letters, 2007, 90, 073503.	1.5	23
72	Direction-dependent spontaneous emission from near-infrared quantum dots at the angular band edges of a three-dimensional photonic crystal. Applied Physics Letters, 2007, 91, 254101.	1.5	19

#	Article	IF	CITATIONS
73	Near-infrared high refractive-index three-dimensional inverse woodpile photonic crystals generated by a sol-gel process. Journal of Applied Physics, 2007, 102, .	1.1	15
74	Spectral redistribution in spontaneous emission from quantum dot infiltrated three-dimensional photonic crystals. , 2007, , .		0
75	Two-Photon Polymerization for Three-Dimensional Photonic Devices in Polymers and Nanocomposites. Australian Journal of Chemistry, 2007, 60, 484.	0.5	46
76	Spectral Redistribution in Spontaneous Emission from Quantumâ€Dotâ€Infiltrated 3D Woodpile Photonic Crystals for Telecommunications. Advanced Materials, 2007, 19, 3276-3280.	11.1	44
77	Fabrication of three-dimensional woodpile photonic crystals in a PbSe quantum dot composite material. Optics Express, 2006, 14, 10740.	1.7	56
78	Infiltration of quantum dots into 3D photonic crystals fabricated by the two-photon polymerisation technique. , 2006, , .		0
79	Incorporation of Quantum Dots into 3D Photonic Crystals for Emission Control. , 2006, , .		0