Meaghan C Creed

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7017018/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ventral arkypallidal neurons inhibit accumbal firing to promote reward consumption. Nature Neuroscience, 2021, 24, 379-390.	7.1	35
2	An open-source device for measuring food intake and operant behavior in rodent home-cages. ELife, 2021, 10, .	2.8	56
3	Pain, negative affective states and opioid-based analgesics: Safer pain therapies to dampen addiction. International Review of Neurobiology, 2021, 157, 31-68.	0.9	2
4	Optogenetically-inspired neuromodulation: Translating basic discoveries into therapeutic strategies. International Review of Neurobiology, 2021, 159, 187-219.	0.9	1
5	Pain induces adaptations in ventral tegmental area dopamine neurons to drive anhedonia-like behavior. Nature Neuroscience, 2021, 24, 1601-1613.	7.1	57
6	Deep Brain Stimulation of the Subthalamic Nucleus Modulates Reward-Related Behavior: A Systematic Review. Frontiers in Human Neuroscience, 2020, 14, 578564.	1.0	14
7	Orbitofrontal-striatal potentiation underlies cocaine-induced hyperactivity. Nature Communications, 2020, 11, 3996.	5.8	13
8	Projection-specific deficits in synaptic transmission in adult Sapap3-knockout mice. Neuropsychopharmacology, 2020, 45, 2020-2029.	2.8	27
9	Continuous Representations of Speed by Striatal Medium Spiny Neurons. Journal of Neuroscience, 2020, 40, 1679-1688.	1.7	44
10	An Open-Source, Automated Home-Cage Sipper Device for Monitoring Liquid Ingestive Behavior in Rodents. ENeuro, 2019, 6, ENEURO.0292-19.2019.	0.9	37
11	Glutamatergic Ventral Pallidal Neurons Modulate Activity of the Habenula–Tegmental Circuitry and Constrain Reward Seeking. Biological Psychiatry, 2018, 83, 1012-1023.	0.7	113
12	Current and emerging neuromodulation therapies for addiction: insight from pre-clinical studies. Current Opinion in Neurobiology, 2018, 49, 168-174.	2.0	19
13	Reward behaviour is regulated by the strength of hippocampus–nucleus accumbens synapses. Nature, 2018, 564, 258-262.	13.7	189
14	Targeting VGLUT2 in Mature Dopamine Neurons Decreases Mesoaccumbal Glutamatergic Transmission and Identifies a Role for Glutamate Co-release in Synaptic Plasticity by Increasing Baseline AMPA/NMDA Ratio. Frontiers in Neural Circuits, 2018, 12, 64.	1.4	32
15	Periaqueductal efferents to dopamine and GABA neurons of the VTA. PLoS ONE, 2018, 13, e0190297.	1.1	33
16	Temporally precise labeling and control of neuromodulatory circuits in the mammalian brain. Nature Methods, 2017, 14, 495-503.	9.0	123
17	Toward a targeted treatment for addiction. Science, 2017, 357, 464-465.	6.0	7
18	Drp1 Mitochondrial Fission in D1 Neurons Mediates Behavioral and Cellular Plasticity during Early Cocaine Abstinence, Neuron, 2017, 96, 1327-1341.e6,	3.8	78

MEAGHAN C CREED

#	Article	IF	CITATIONS
19	Modulating Morphine Context-Induced Drug Memory With Deep Brain Stimulation: More Research Questions by Lowering Stimulation Frequencies?. Biological Psychiatry, 2016, 80, 647-649.	0.7	2
20	Convergence of Reinforcing and Anhedonic Cocaine Effects in the Ventral Pallidum. Neuron, 2016, 92, 214-226.	3.8	151
21	Cocaine Exposure Enhances the Activity of Ventral Tegmental Area Dopamine Neurons via Calcium-Impermeable NMDARs. Journal of Neuroscience, 2016, 36, 10759-10768.	1.7	41
22	Effects of high-frequency stimulation of the nucleus accumbens on the development and expression of ethanol sensitization in mice. Behavioural Pharmacology, 2015, 26, 184-192.	0.8	10
23	Deep brain stimulation of the subthalamic nucleus preferentially alters the translational profile of striatopallidal neurons in an animal model of Parkinson's disease. Frontiers in Cellular Neuroscience, 2015, 9, 221.	1.8	16
24	Refining deep brain stimulation to emulate optogenetic treatment of synaptic pathology. Science, 2015, 347, 659-664.	6.0	240
25	Optogenetic dissection of neural circuitry: from synaptic causalities to blue prints for novel treatments of behavioral diseases. Current Opinion in Neurobiology, 2015, 35, 95-100.	2.0	40
26	VTA GABA neurons modulate specific learning behaviors through the control of dopamine and cholinergic systems. Frontiers in Behavioral Neuroscience, 2014, 8, 8.	1.0	113
27	Changes in brain functional connectivity after chronic haloperidol in rats: a network analysis. International Journal of Neuropsychopharmacology, 2014, 17, 1129-1138.	1.0	14
28	The role of serotonin in the antidyskinetic effects of deep brain stimulation: focus on antipsychotic-induced motor symptoms. Reviews in the Neurosciences, 2013, 24, 153-66.	1.4	3
29	Effects of Repeated Deep Brain Stimulation on Depressive- and Anxiety-Like Behavior in Rats: Comparing Entopeduncular and Subthalamic Nuclei. Brain Stimulation, 2013, 6, 506-514.	0.7	24
30	Deep brain stimulation of the subthalamic nucleus increases premature responding in a rat gambling task. Behavioural Brain Research, 2013, 245, 76-82.	1.2	25
31	Drug-evoked synaptic plasticity: beyond metaplasticity. Current Opinion in Neurobiology, 2013, 23, 553-558.	2.0	48
32	Neurobiological Basis of Dyskinetic Effects Induced by Antipsychotics: the Contribution of Animal Models. Current Medicinal Chemistry, 2013, 20, 389-396.	1.2	8
33	Neurobiological Basis of Dyskinetic Effects Induced by Antipsychotics: the Contribution of Animal Models. Current Medicinal Chemistry, 2013, 20, 389-396.	1.2	8
34	Contribution of Decreased Serotonin Release to the Antidyskinetic Effects of Deep Brain Stimulation in a Rodent Model of Tardive Dyskinesia: Comparison of the Subthalamic and Entopeduncular Nuclei. Journal of Neuroscience, 2012, 32, 9574-9581.	1.7	56
35	Early gene mapping after deep brain stimulation in a rat model of tardive dyskinesia: Comparison with transient local inactivation. European Neuropsychopharmacology, 2012, 22, 506-517.	0.3	16
36	Deep brain stimulation of the subthalamic or entopeduncular nucleus attenuates vacuous chewing movements in a rodent model of tardive dyskinesia. European Neuropsychopharmacology, 2011, 21, 393-400.	0.3	18

#	Article	IF	CITATIONS
37	Amyloid-modifying therapies for Alzheimer's disease: therapeutic progress and its implications. Age, 2010, 32, 365-384.	3.0	11