Jitendriya Panigrahi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7016959/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Attributes of Aloe vera gel and chitosan treatments on the quality and biochemical traits of post-harvest tomatoes. Scientia Horticulturae, 2020, 259, 108837.	3.6	62
2	Starch glucose coating-induced postharvest shelf-life extension of cucumber. Food Chemistry, 2019, 288, 208-214.	8.2	47
3	Extension of postharvest shelf-life in green bell pepper (Capsicum annuum L.) using exogenous application of polyamines (spermidine and putrescine). Food Chemistry, 2019, 275, 681-687.	8.2	40
4	Gibberellic acid coating: A novel approach to expand the shelf-life in green chilli (Capsicum annuum) Tj ETQq0 0	0 rgBT /Ov	erlock 10 Tf

5	The retrospect and prospect of the applications of biotechnology in Phoenix dactylifera L Applied Microbiology and Biotechnology, 2018, 102, 8229-8259.	3.6	33
6	Silver nitrate-induced in vitro shoot multiplication and precocious flowering in Catharanthus roseus (L.) G. Don, a rich source of terpenoid indole alkaloids. Plant Cell, Tissue and Organ Culture, 2018, 132, 579-584.	2.3	24
7	Concurrent production and relative quantification of vasicinone from in vivo and in vitro plant parts of Malabar nut (Adhatoda vasica Nees). 3 Biotech, 2017, 7, 280.	2.2	13
8	Greener approach for copper nanoparticles synthesis from <i>Catharanthus roseus</i> and <i>Azadirachta indica</i> leaf extract and their antibacterial and antioxidant activities. Asian Journal of Research in Pharmaceutical Science, 2018, 8, 81.	1.2	13
9	In vitro biotechnological advancements in Malabar nut (Adhatoda vasica Nees): Achievements, status and prospects. Journal of Genetic Engineering and Biotechnology, 2018, 16, 545-552.	3.3	11
10	Changes in antioxidant and biochemical activities in castor oil-coated Capsicum annuum L. during postharvest storage. 3 Biotech, 2018, 8, 280.	2.2	11
11	Impact of silver nanoparticles as antibacterial agent derived from leaf and callus of Celastrus paniculatus Willd. Future Journal of Pharmaceutical Sciences, 2021, 7, .	2.8	10
12	An Efficient In Vitro Approach for Direct Regeneration and Callogenesis of Adhatoda vasica Nees, a Potential Source of Quinazoline Alkaloids. The National Academy of Sciences, India, 2017, 40, 319-324.	1.3	9
13	Biochemical Changes During In Vitro Organogenesis of Tylophora indica (Burm. F.) Merrill. Indian Journal of Applied Research, 2011, 4, 274-277.	0.0	5
14	Colchicine (a high-priced alkaloid) accumulation and HPTLC quantification in different stages of in vitro developed tuber of Gloriosa superba L Future Journal of Pharmaceutical Sciences, 2021, 7, .	2.8	3
15	An effective validated method for HPTLC-fingerprinting of alkaloids and glycosides from multiple plant parts of three Terminalia spp Israel Journal of Plant Sciences, 2018, 65, 109-117.	0.5	2
16	Transgenic Ornamentals for Phytoremediation of Metals and Metalloids. , 2019, , 477-497.		2
17	Justicia beddomei, a source of comprehensive vasicinone production. Israel Journal of Plant Sciences, 2019, 66, 213-219.	0.5	2
18	High Performance thin layer chromatographic quantification of key cholesterol reducing compound (â´´sitosterol) from leaf, bark, fruit and root of Terminalia arjuna, T. bellerica and T. chebula. Medicinal Plants - International Journal of Phytomedicines and Related Industries, 2017, 9, 272.	0.2	2

#	Article	IF	CITATIONS
19	Effect of calcium chloride and gallic acid combination on the extension of postharvest life of Lagenaria siceraria, a vegetable with medicinal importance. Medicinal Plants - International Journal of Phytomedicines and Related Industries, 2021, 13, 110-119.	0.2	1
20	Quantification of stigmasterol under in vivo and In vitroplant extracts of chlorophytumsps. International Journal of Pharma and Bio Sciences, 2016, 7, .	0.1	1
21	Direct shoot organogenesis from bulbs explants of Polianthes tuberosa cultivars (Prajwal and) Tj ETQq1 1 0.7843	14 rgBT /(0.0	Overlock 10
22	Peanut (Arachis hypogaea L.) Breeding. , 2019, , 253-299.		1
23	Impact of seasonal variation on â€~daidzein' accumulation in callus and <i>in vivo</i> parts of <i>Pueraria tuberosa</i> (Willd.) DC. Medicinal Plants - International Journal of Phytomedicines and Related Industries, 2020, 12, 236.	0.2	1
24	Food safety: Another Soldiery to Save life. Asian Journal of Research in Pharmaceutical Science, 2021, 11, 81-85.	1.2	0
25	<i>In vitro</i> regeneration of <i>Chlorophytum borivilianum</i> Santapau & R.R. Fern Medicinal Plants - International Journal of Phytomedicines and Related Industries, 2017, 9, 76.	0.2	0
26	Natural production and quantification of ellagic acid in multiple plant parts of three <i>Terminalia</i> spp Medicinal Plants - International Journal of Phytomedicines and Related Industries, 2019, 11, 321.	0.2	0
27	Salient Biotechnological Interventions in Saffron (Crocus sativus L.): A Major Source of Bio-active Apocarotenoids. , 2019, , 205-223.		0
28	In Vitro Approach and Quantification of "Puerarin and Genistein― Valuable Antidiabetic Compounds from Pueraria tuberosa 2021 1-24		0

from Pueraria tuberosa. , 2021, , 1-24.