Sergei PÄulme

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7016939/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global diversity and geography of soil fungi. Science, 2014, 346, 1256688.	12.6	2,513
2	Structure and function of the global topsoil microbiome. Nature, 2018, 560, 233-237.	27.8	1,370
3	Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. MycoKeys, 0, 10, 1-43.	1.9	409
4	FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Diversity, 2020, 105, 1-16.	12.3	387
5	Towards global patterns in the diversity and community structure of ectomycorrhizal fungi. Molecular Ecology, 2012, 21, 4160-4170.	3.9	365
6	Tree diversity and species identity effects on soil fungi, protists and animals are context dependent. ISME Journal, 2016, 10, 346-362.	9.8	307
7	Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi. Mycorrhiza, 2013, 23, 411-430.	2.8	280
8	Regional and local patterns of ectomycorrhizal fungal diversity and community structure along an altitudinal gradient in the Hyrcanian forests of northern Iran. New Phytologist, 2012, 193, 465-473.	7.3	256
9	Biogeography of ectomycorrhizal fungi associated with alders (<i><scp>A</scp>lnus</i> spp.) in relation to biotic and abiotic variables at the global scale. New Phytologist, 2013, 198, 1239-1249.	7.3	191
10	Regional-Scale In-Depth Analysis of Soil Fungal Diversity Reveals Strong pH and Plant Species Effects in Northern Europe. Frontiers in Microbiology, 2020, 11, 1953.	3.5	126
11	Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi. New Phytologist, 2021, 231, 763-776.	7.3	126
12	The distance decay of similarity in communities of ectomycorrhizal fungi in different ecosystems and scales. Journal of Ecology, 2013, 101, 1335-1344.	4.0	124
13	A single European aspen (Populus tremula) tree individual may potentially harbour dozens of Cenococcum geophilum ITS genotypes and hundreds of species of ectomycorrhizal fungi. FEMS Microbiology Ecology, 2011, 75, 313-320.	2.7	115
14	Revisiting ectomycorrhizal fungi of the genus <i>Alnus</i> : differential host specificity, diversity and determinants of the fungal community. New Phytologist, 2009, 182, 727-735.	7.3	109
15	Host preference and network properties in biotrophic plant–fungal associations. New Phytologist, 2018, 217, 1230-1239.	7.3	107
16	Diversity and community composition of ectomycorrhizal fungi in a dry deciduous dipterocarp forest in Thailand. Biodiversity and Conservation, 2012, 21, 2287-2298.	2.6	53
17	Response to Comment on "Global diversity and geography of soil fungi― Science, 2015, 349, 936-936.	12.6	43
18	The Global Soil Mycobiome consortium dataset for boosting fungal diversity research. Fungal Diversity, 2021, 111, 573-588.	12.3	42

Sergei Põlme

#	Article	IF	CITATIONS
19	Global biogeography of <i>Alnus</i> â€associated <i>Frankia</i> actinobacteria. New Phytologist, 2014, 204, 979-988.	7.3	41
20	Description and identification of Alnus acuminata ectomycorrhizae from Argentinean alder stands. Mycologia, 2010, 102, 1263-1273.	1.9	21
21	Infrageneric variation in partner specificity: multiple ectomycorrhizal symbionts associate with Gnetum gnemon (Gnetophyta) in Papua New Guinea. Mycorrhiza, 2012, 22, 663-668.	2.8	19
22	Analysis of culturable airborne fungi in outdoor environments in Tianjin, China. BMC Microbiology, 2021, 21, 134.	3.3	19
23	Arbuscular mycorrhizal fungi associating with roots of Alnus and Rubus in Europe and the Middle East. Fungal Ecology, 2016, 24, 27-34.	1.6	12
24	Biogeography and Specificity of Ectomycorrhizal Fungi of Coccoloba uvifera. Ecological Studies, 2017, , 345-359.	1.2	11
25	The curse of the uncultured fungus. MycoKeys, 2022, 86, 177-194.	1.9	9
26	Vertical stratification of microbial communities in woody plants. Phytobiomes Journal, 0, , .	2.7	6
27	Elevation, space and host plant species structure Ericaceae root-associated fungal communities in Papua New Guinea. Fungal Ecology, 2017, 30, 112-121.	1.6	5
28	Global patterns and determinants of bacterial communities associated with ectomycorrhizal root tips of Alnus species. Soil Biology and Biochemistry, 2020, 148, 107923.	8.8	5