Yanlong Tai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7016723/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Anomalous thermally expanded polymer networks for flexible perceptual devices. Matter, 2021, 4, 1832-1862.	5.0	10
2	3-Dimensional Logic Motion Sensing of Polyvinylidene Fluoride for Self-Powered Flexible Interactive Electronics. , 2021, , .		0
3	Humanâ€Finger Electronics Based on Opposing Humidityâ€Resistance Responses in Carbon Nanofilms. Small, 2017, 13, 1603486.	5.2	40
4	"Selfâ€Peelâ€Off―Transfer Produces Ultrathin Polyvinylideneâ€Fluorideâ€Based Flexible Nanodevices. Advanced Science, 2017, 4, 1600370.	5.6	11
5	Combining the converse humidity/resistance response behaviors of rGO films for flexible logic devices. Journal of Materials Chemistry C, 2017, 5, 3848-3854.	2.7	13
6	Leveraging a temperature-tunable, scale-like microstructure to produce multimodal, supersensitive sensors. Nanoscale, 2017, 9, 7888-7894.	2.8	18
7	A Sandwiched/Cracked Flexible Film for Multithermal Monitoring and Switching Devices. ACS Applied Materials & Interfaces, 2017, 9, 32184-32191.	4.0	15
8	Toward Flexible Wireless Pressure‧ensing Device via Ionic Hydrogel Microsphere for Continuously Mapping Human‧kin Signals. Advanced Materials Interfaces, 2017, 4, 1700496.	1.9	32
9	Core/Shell Microstructure Induced Synergistic Effect for Efficient Water-Droplet Formation and Cloud-Seeding Application. ACS Nano, 2017, 11, 12318-12325.	7.3	28
10	Doubleâ€Twisted Conductive Smart Threads Comprising a Homogeneously and a Gradientâ€Coated Thread for Multidimensional Flexible Pressureâ€Sensing Devices. Advanced Functional Materials, 2016, 26, 4078-4084.	7.8	65
11	Lightâ€Activated Rapidâ€Response Polyvinylideneâ€Fluorideâ€Based Flexible Films. Advanced Materials, 2016, 28 4665-4670.	^{9,} 11.1	66
12	Facile Preparation of Carbon-Nanotube-based 3-Dimensional Transparent Conducting Networks for Flexible Noncontact Sensing Device. MRS Advances, 2016, 1, 3533-3538.	0.5	0
13	Heating-Rate-Triggered Carbon-Nanotube-based 3-Dimensional Conducting Networks for a Highly Sensitive Noncontact Sensing Device. Scientific Reports, 2016, 6, 19632.	1.6	23
14	Flexible pressure sensing film based on ultra-sensitive SWCNT/PDMS spheres for monitoring human pulse signals. Journal of Materials Chemistry B, 2015, 3, 5436-5441.	2.9	48
15	A highly sensitive, low-cost, wearable pressure sensor based on conductive hydrogel spheres. Nanoscale, 2015, 7, 14766-14773.	2.8	126
16	Facile and Scalable Preparation of Solid Silver Nanoparticles (<10 nm) for Flexible Electronics. ACS Applied Materials & Interfaces, 2015, 7, 17104-17111.	4.0	24
17	Flexible, Transparent, Thickness-Controllable SWCNT/PEDOT:PSS Hybrid Films Based on Coffee-Ring Lithography for Functional Noncontact Sensing Device. Langmuir, 2015, 31, 13257-13264.	1.6	39
18	Preparation and investigation of nano-AlN lubricant with high performance. Materials Chemistry and Physics, 2014, 147, 28-34.	2.0	6

YANLONG TAI

#	Article	IF	CITATIONS
19	A facile approach to a silver conductive ink with high performance for macroelectronics. Nanoscale Research Letters, 2013, 8, 296.	3.1	25
20	High-reproducibility, flexible conductive patterns fabricated with silver nanowire by drop or fit-to-flow method. Nanoscale Research Letters, 2013, 8, 147.	3.1	23
21	Preparation, characterization and reaction mechanism of a novel silver-organic conductive ink. Journal of Materials Chemistry, 2012, 22, 25296.	6.7	67
22	Preparation of stable aqueous conductive ink with silver nanoflakes and its application on paperâ€based flexible electronics. Surface and Interface Analysis, 2012, 44, 529-534.	0.8	17
23	Fabrication of paper-based conductive patterns for flexible electronics by direct-writing. Journal of Materials Chemistry, 2011, 21, 5938.	6.7	118
24	Green approach to prepare silver nanoink with potentially high conductivity for printed electronics. Surface and Interface Analysis, 2011, 43, 1480-1485.	0.8	21
25	A promising approach to conductive patterns with high efficiency for flexible electronics. Applied Surface Science, 2011, 257, 7096-7100.	3.1	25
26	Study of surface modification of nano-SiO2 with macromolecular coupling agent (LMPB-g-MAH). Chemical Engineering Journal, 2008, 141, 354-361.	6.6	96
27	An effective way to stabilize silicon nitride nanoparticles dispersed in rubber matrix by a one-step process. Materials Chemistry and Physics, 2008, 112, 659-667.	2.0	17