David Gueyrard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7016583/publications.pdf

Version: 2024-02-01

51	1,052	20	30
papers	citations	h-index	g-index
71	71	71	1015 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Preparation of 3â€Alkylidenephthalides: Recent Advances. European Journal of Organic Chemistry, 2022, 2022, .	2.4	1
2	Identification of non-ATP-competitive \hat{l}_{\pm} -carboline inhibitors of the anaplastic lymphoma kinase. European Journal of Medicinal Chemistry, 2022, 238, 114488.	5 . 5	3
3	Synthesis of Substituted Indolizidines and Quinolizidines by Regioselective Intramolecular Modified Julia Olefination of Imides. Journal of Organic Chemistry, 2020, 85, 864-875.	3.2	6
4	Extension of the Modified Julia Olefination on Carboxylic Acid Derivatives: Scope and Applications. Synlett, 2018, 29, 34-45.	1.8	10
5	Access to cyclic gem-difluoroacyl scaffolds via electrochemical and visible light photocatalytic radical tandem cyclization of heteroaryl chlorodifluoromethyl ketones. Chemical Communications, 2017, 53, 5653-5656.	4.1	19
6	Development of a Modified Julia Olefination of Imides for the Synthesis of Alkaloids. European Journal of Organic Chemistry, 2016, 2016, 2944-2953.	2.4	15
7	Modified Julia Olefination on Anhydrides: Extension and Limitations. Application to the Synthesis of Maculalactone B. Organic Letters, 2016, 18, 4790-4793.	4.6	26
8	Fluorinated hydroxypiperidines as selective \hat{l}^2 -glucosidase inhibitors. Organic and Biomolecular Chemistry, 2015, 13, 5983-5996.	2.8	7
9	Modified Julia Olefination on Sugarâ€Derived Lactones: Synthesis of Difluoroâ€ <i>exo</i> â€glycals. European Journal of Organic Chemistry, 2015, 2015, 871-875.	2.4	15
10	Synthesis of Fluorinated and Trifluoromethyl-Substituted Alkenes through the Modified Julia Olefination: An Update. Synthesis, 2015, 47, 1534-1546.	2.3	34
11	Synthesis and biological evaluation of benzo[4,5]imidazo[1,2-c]pyrimidine and benzo[4,5]imidazo[1,2-a]pyrazine derivatives as anaplastic lymphoma kinase inhibitors. Bioorganic and Medicinal Chemistry, 2014, 22, 1303-1312.	3.0	20
12	Synthesis of substituted exo-glucals via a modified Julia olefination and identification as selective \hat{l}^2 -glucosidase inhibitors. Organic and Biomolecular Chemistry, 2014, 12, 690-699.	2.8	14
13	Synthesis of <i>exo</i> â€Enamides from Protected Lactams Using a Modified Julia Olefination Reaction: Application to the Synthesis of Spiroaminal Fragments. European Journal of Organic Chemistry, 2014, 2014, 6501-6506.	2.4	9
14	GECO 53. Comptes Rendus Chimie, 2013, 16, .	0.5	O
15	Synthesis of Fluorinated <i>exo</i> exos/i >â€Glycals through Modified Julia Olefination. European Journal of Organic Chemistry, 2013, 2013, 1872-1875.	2.4	27
16	A Concise and Efficient Synthesis of Spiroketals – Application to the Synthesis of SPIKETâ€P and a Spiroketal from <i>Bactrocera </i> Species. European Journal of Organic Chemistry, 2013, 2013, 915-920.	2.4	9
17	Efficient Synthesis of the C1-C13 Fragment of Bistramide A. Synlett, 2012, 2012, 215-218.	1.8	0
18	Study of the Regio- and Stereoselectivity of [3+2] Cycloaddition of Nitrile Oxides to Various Racemic 3-acyloxy and 3-hydroxybut-1-enes. Letters in Organic Chemistry, 2012, 9, 96-100.	0.5	2

#	Article	IF	CITATIONS
19	Total Synthesis of Bistramideâ€A and Its 36(<i>Z</i>)â€Isomers: Differential Effect on Cell Division, Differentiation, and Apoptosis. Chemistry - A European Journal, 2012, 18, 7452-7466.	3.3	38
20	Synthesis of N-aryl spiro-sulfamides as potential glycogen phosphorylase inhibitors. Tetrahedron Letters, 2012, 53, 959-961.	1.4	25
21	Glucosinolate Chemistry: Synthesis of <i>O</i> i>â€Glycosylated Derivatives of Glucosinalbin. European Journal of Organic Chemistry, 2010, 2010, 3657-3664.	2.4	16
22	Synthesis of 2â€; 3â€; and 4â€Substituted Pyrido[2,3â€ <i>b</i> jindoles by C–N, C–O, and C–C(sp) Bond Formation. European Journal of Organic Chemistry, 2010, 2010, 6665-6677.	2.4	16
23	Carbohydrate-based spiro bis(isoxazolines): synthesis and evaluation in asymmetric catalysis. Tetrahedron Letters, 2010, 51, 374-377.	1.4	20
24	Synthesis of the spiroketal fragment of bistramide A via an exocyclic enol ether. Tetrahedron Letters, 2010, 51, 4599-4601.	1.4	18
25	Synthesis of new derivatives of 11-thiolupinine. Journal of Sulfur Chemistry, 2010, 31, 493-498.	2.0	5
26	Thioimidate N-Oxides: From Nature to Synthetic Pathways. Synlett, 2010, 2010, 725-728.	1.8	2
27	Synthesis of C-linked immobilized analogs of aloisine A by â€~click' chemistry. Tetrahedron Letters, 2009, 50, 741-744.	1.4	6
28	Chemoselective functionalization of α-carbolines at the C-2, C-3, C-4, and C-6 positions using Suzuki–Miyaura reactions. Tetrahedron, 2009, 65, 5427-5437.	1.9	12
29	Regioselective synthesis and biological evaluation of spiro-sulfamidate glycosides from exo-glycals. Tetrahedron: Asymmetry, 2009, 20, 1817-1823.	1.8	16
30	Identification of potential cellular targets of aloisine A by affinity chromatography. Bioorganic and Medicinal Chemistry, 2009, 17, 5572-5582.	3.0	6
31	Glucose-based spiro-isoxazolines: A new family of potent glycogen phosphorylase inhibitors. Bioorganic and Medicinal Chemistry, 2009, 17, 7368-7380.	3.0	59
32	Synthesis of enol ethers from lactones using modified Julia olefination reagents: application to the preparation of tri- and tetrasubstituted exoglycals. Tetrahedron Letters, 2008, 49, 747-749.	1.4	45
33	A Julia olefination approach to the synthesis of functionalized enol ethers and their transformation into carbohydrate-derived spiroketals. Tetrahedron Letters, 2008, 49, 750-754.	1.4	23
34	Synthesis of 6-Substituted Pyrido [2,3-b] indoles by Electrophilic Substitution. Synlett, 2007, 2007, 2237-2241.	1.8	5
35	Synthesis of Semicyclic Dienes by Modified Julia Olefination of Vinyl Sulfones Derived from Carbohydrates. Synlett, 2007, 2007, 2590-2592.	1.8	О
36	1,3-Dipolar cycloaddition reactions on carbohydrate-based templates: synthesis of spiro-isoxazolines and 1,2,4-oxadiazoles as glycogen phosphorylase inhibitors. Tetrahedron Letters, 2006, 47, 6143-6147.	1.4	79

#	Article	IF	Citations
37	Synthesis of C-Glucoside endo-Glycals from C-Glucosyl Vinyl Sulfones. Synthesis, 2006, 2006, 1499-1503.	2.3	12
38	General synthesis and biological evaluation of \hat{l} ±-1-C-substituted derivatives of fagomine (2-deoxynojirimycin- \hat{l} ±-C-glycosides). Bioorganic and Medicinal Chemistry, 2005, 13, 2313-2324.	3.0	40
39	Synthesis of Methylene Exoglycals Using a Modified Julia Olefination. Synlett, 2005, 2005, 520-522.	1.8	51
40	The glucosinolate–myrosinase system. New insights into enzyme–substrate interactions by use of simplified inhibitors. Organic and Biomolecular Chemistry, 2005, 3, 1872.	2.8	25
41	Synthesis of 5,10,15,20-tetrakis(2-amino-5-methoxyphenyl)-porphyrin: a versatile building block for porphyrin face selection. Tetrahedron Letters, 2004, 45, 1713-1716.	1.4	6
42	Ring-opening reactions of iminosugar-derived aziridines: application to the general synthesis of $\hat{1}\pm -1$ -C-substituted derivatives of fagomine. Tetrahedron: Asymmetry, 2003, 14, 1969-1972.	1.8	21
43	Base-modified nucleosides from carbohydrate derived oxazolidinethiones: a five-step process. Tetrahedron Letters, 2001, 42, 2977-2980.	1.4	23
44	A new and rapid access to homochiral 2,3-dihydro-oxazolo[2,3-b]quinazolin-5-ones. Tetrahedron: Asymmetry, 2001, 12, 337-340.	1.8	23
45	Barbarea verna as a source of 2-phenylethyl glucosinolate, precursor of cancer chemopreventive phenylethyl isothiocyanate. Fìtoterapìâ, 2001, 72, 760-764.	2.2	44
46	Synthetic Approaches to C-Glucosinolates. Tetrahedron, 2000, 56, 2647-2654.	1.9	20
47	First synthesis of an O-glycosylated glucosinolate isolated from Moringa oleifera. Tetrahedron Letters, 2000, 41, 8307-8309.	1.4	20
48	Reactivity Range of a Chiral 1,3-Oxazolidine-2-thione Obtained from Vegetable Source through Chemo-enzymatic Processing. Heterocycles, 2000, 52, 827.	0.7	38
49	Chemo-enzymatic preparation from renewable resources of enantiopure 1,3-oxazolidine-2-thiones. Tetrahedron: Asymmetry, 1999, 10, 4775-4780.	1.8	25
50	Formation of glucoraphanin by chemoselective oxidation of natural glucoerucin: A chemoenzymatic route to sulforaphane. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 1047-1048.	2.2	74
51	A convenient synthesis of fluoroalkyl and fluoroaryl glycosides using Mitsunobu conditions. Carbohydrate Research, 1999, 318, 171-179.	2.3	18