
Valentin M Svetlichnyi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7016441/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermal properties of bulk polyimides: insights from computer modeling versus experiment. Soft Matter, 2014, 10, 1224.	1.2	68
2	Semicrystalline polyimide matrices for composites: Crystallization and properties. Journal of Applied Polymer Science, 2002, 83, 2873-2882.	1.3	52
3	Synthesis and rheological properties of oligoimide/montmorillonite nanocomposites. Polymer, 2005, 46, 10866-10872.	1.8	52
4	Morphology and mechanical properties of carbon fiber reinforced composites based on semicrystalline polyimides modified by carbon nanofibers. Composites Part A: Applied Science and Manufacturing, 2008, 39, 85-90.	3.8	50
5	Crystallization of R-BAPB type polyimide modified by carbon nano-particles. Composites Science and Technology, 2007, 67, 789-794.	3.8	43
6	Effects of nanofiller morphology and aspect ratio on the rheo-mechanical properties of polyimide nanocomposites. EXPRESS Polymer Letters, 2008, 2, 485-493.	1.1	40
7	Effect of the SO2 group in the diamine fragment of polyimides on their structural, thermophysical, and mechanical properties. Polymer Science - Series A, 2012, 54, 631-643.	0.4	37
8	Parameterization of electrostatic interactions for molecular dynamics simulations of heterocyclic polymers. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 912-923.	2.4	36
9	Effect of single-walled carbon nanotubes and carbon nanofibers on the structure and mechanical properties of thermoplastic polyimide matrix films. Polymer Science - Series A, 2013, 55, 268-278.	0.4	31
10	Compatibilized polyimide (R-BAPS)/BAPS-modified clay nanocomposites with improved dispersion and properties. Polymer, 2007, 48, 7130-7138.	1.8	28
11	Corrosion protection of galvanized steel by polyimide coatings: EIS and SEM investigations. Progress in Organic Coatings, 2011, 72, 269-278.	1.9	28
12	Effect of the structure and shape of filler nanoparticles on the physical properties of polyimide composites. Russian Journal of General Chemistry, 2010, 80, 2157-2169.	0.3	25
13	Photophysical properties of indolo[3,2-b]carbazoles as a promising class of optoelectronic materials. Semiconductors, 2010, 44, 1581-1587.	0.2	23
14	Tribological properties investigation of the thermoplastic elastomers surface with the AFM lateral forces mode. IOP Conference Series: Materials Science and Engineering, 2017, 256, 012022.	0.3	21
15	Modification of films of heat-resistant polyimides by adding hydrosilicate and carbon nanoparticles of various geometries. Russian Journal of General Chemistry, 2007, 77, 1158-1163.	0.3	20
16	Photophysical and electrical properties of polyphenylquinolines containing carbazole or indolo[3,2-b]carbazole fragments as new optoelectronic materials. Semiconductors, 2011, 45, 1339-1345.	0.2	20
17	Composites of multiblock (segmented) aliphatic poly(ester imide) with zirconia nanoparticles: Synthesis, mechanical properties, and pervaporation behavior. Polymer Science - Series B, 2014, 56, 919-926.	0.3	17
18	Co-poly(urethane-imide)s based on poly[di(ethylene glycol) adipate] and their compositions with thermoplastic polyimide: synthesis and properties. Russian Chemical Bulletin, 2020, 69, 369-377.	0.4	16

VALENTIN M SVETLICHNYI

#	Article	IF	CITATIONS
19	Aromatic polyetherimides as promising fusible film binders. Polymer Engineering and Science, 1995, 35, 1321-1324.	1.5	15
20	Nanocomposite based on polyamidoimide with hydrosilicate nanoparticles of varied morphology. Russian Journal of Applied Chemistry, 2007, 80, 2142-2148.	0.1	15
21	Influence of the Degree of Crystallinity on the Mechanical and Tribological Properties of High-Performance Thermoplastics Over a Wide Range of Temperatures: From Room Temperature up to 250°C. Journal of Macromolecular Science - Physics, 2013, 52, 1848-1860.	0.4	14
22	Carbon plastics based on thermoplastic polyimide binders modified with nanoparticles. Polymer Science - Series C, 2016, 58, 16-25.	0.8	13
23	Dynamic mechanical properties, thermal and heat resistance of multiblock co-poly(urethane-imide) films with graphene and tungsten disulfide. Russian Chemical Bulletin, 2019, 68, 1603-1612.	0.4	13
24	High conductivity of defect doped polymers in metal–polymer–metal systems. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 156-159.	0.8	12
25	Effect of Domain Structure of Segmented Poly(urethane-imide) Membranes with Polycaprolactone Soft Blocks on Dehydration of n-Propanol via Pervaporation. Polymers, 2018, 10, 1222.	2.0	11
26	Multiblock Copoly(urethane–imide)s with the Properties of Thermoplastic Elastomers. Polymer Science - Series C, 2020, 62, 90-110.	0.8	11
27	Heat Resistance and Dynamic Mechanical and Rheological Properties of a Blend of Crystallizing Polymers, Polyimide and Copoly(urethane—imide), at Identical Chemical Structure of the Imide Blocks in the Initial Polymers. Russian Journal of Applied Chemistry, 2020, 93, 45-56.	0.1	11
28	Thermally stable polyimide binders from aromatic dianhydrides and acetyl derivatives of aromatic diamines: Formation mechanism. Polymer Engineering and Science, 1997, 37, 1381-1386.	1.5	10
29	Preparation, structure, and pervaporation performance of poly(amide–imide)â€sulfonated polyimide composites. Journal of Applied Polymer Science, 2019, 136, 48197.	1.3	10
30	Structure, morphology, and thermal properties of nanocomposites based on polyamido imide and hydrosilicate nanotubes. Russian Journal of Applied Chemistry, 2010, 83, 2175-2181.	0.1	9
31	Distribution of zirconia nanoparticles in the matrix of poly(4,4′-oxydiphenylenepyromellitimide). Polymer Science - Series B, 2012, 54, 486-495.	0.3	9
32	Structural control over conductivity and conduction type in thin films of polyphenylquinones. Semiconductors, 2012, 46, 491-495.	0.2	9
33	Structure of Composite Based on Polyheteroarylene Matrix and ZrO2 Nanostars Investigated by Quantitative Nanomechanical Mapping. Polymers, 2017, 9, 268.	2.0	9
34	Polyimide bonded magnets: Processing and properties. Journal of Applied Polymer Science, 2003, 88, 3151-3158.	1.3	8
35	Aromatic polysulfone imides and membranes based on them. Russian Journal of Applied Chemistry, 2009, 82, 1033-1040.	0.1	8
36	Conducting film-forming composites based on polyaniline-polyimide blends. Polymer Science - Series A, 2009, 51, 311-316.	0.4	8

#	Article	IF	CITATIONS
37	Carbazole-containing polyphenylquinolines as a basis for optoelectronic materials with white luminescence. Semiconductors, 2012, 46, 496-503.	0.2	8
38	Spectroscopic study of polyphenylquinolines—materials with efficient intramolecular charge transfer. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2013, 114, 737-750.	0.2	8
39	Structure and properties of polyimide-bonded magnets processed from prepolymers based on diacetyl derivatives of aromatic diamines and dianhydrides. Journal of Applied Polymer Science, 2006, 100, 478-485.	1.3	7
40	Photoelectric and electrical properties of soluble polyphenylquinolines containing an oxygen or phenylamine bridge group between quinoline moieties. Semiconductors, 2009, 43, 359-364.	0.2	7
41	Effect of Hard Segment Structure on the Thermomechanical Properties of Polyurethaneimides. Polymer Science - Series A, 2019, 61, 142-148.	0.4	7
42	High conductivity and supercurrent in superconductor–polymer–superconductor systems. Physica B: Condensed Matter, 2005, 359-361, 506-508.	1.3	6
43	Molecular characteristics and solution behavior of prepolymers of several polyimides: Effect of synthesis conditions. Polymer Science - Series A, 2006, 48, 787-792.	0.4	6
44	Synthesis, Heat Resistance, and Mechanical Properties of Cross-Linked Urethane–Imide Copolymers Containing Blocks of Two Structurally Different Aliphatic Fragments (Polyether and Polyester) in the Backbone. Russian Journal of Applied Chemistry, 2021, 94, 1240-1258.	0.1	6
45	Field emission from metal/polymer construction. Surface and Interface Analysis, 2007, 39, 159-160.	0.8	5
46	Dynamic mechanical analysis of multiblock (segmental) polyesterimides. Russian Journal of Applied Chemistry, 2013, 86, 920-927.	0.1	5
47	Copolymers of carbazole- and indolocarbazole-containing phenylquinolines as new materials for electroluminescent devices. Semiconductors, 2013, 47, 1058-1067.	0.2	5
48	Sensitization of the photoelectric effect in carbazole- and indolocarbazole-containing poly(phenylquinoline)s by benzothiadiazole acceptor molecules. Semiconductors, 2014, 48, 1481-1484.	0.2	5
49	Electrospinning of Aqueous Solutions of a Triethylammonium Salt of Polyamic Acid and Properties of the Nonwoven Polyimide Materials. Russian Journal of Applied Chemistry, 2020, 93, 35-44.	0.1	5
50	Synthesis and properties of films of a polyimide filled with ferromagnetic nanoparticles. Russian Journal of Applied Chemistry, 2006, 79, 1321-1324.	0.1	4
51	Nanocomposites based on polyimide thermoplastics and magnesium silicate nanoparticles with montmorillonite structure. Russian Journal of Applied Chemistry, 2007, 80, 106-109.	0.1	4
52	Effect of thermal aging on the mechanical characteristics of a composite of a polyimide with an organosilicon resin. Russian Journal of Applied Chemistry, 2011, 84, 1800-1804.	0.1	4
53	Nanocomposites based on polyamidoimide and octahedral silsesquioxanes. Russian Journal of Applied Chemistry, 2013, 86, 415-422.	0.1	4
54	Hydrodynamic, molecular, and conformational characteristics of poly[1,3-bis(3′,4-dicarboxyphenoxy)benzene 4,4′-bis(4″-N-phenoxy)-diphenylsulfone]imide in solutions. Polymer Science - Series A, 2016, 58, 12-17.	0.4	4

VALENTIN M SVETLICHNYI

#	Article	IF	CITATIONS
55	Molecular design of optoelectronic structures based on carbazole- and indolocarbazole-containing polyphenylquinolines. High Performance Polymers, 2017, 29, 730-749.	0.8	4
56	The Thermal Stability and Mechanical Properties of Non-Segregating Blends of Polyimides with Copoly(Urethane-Imide)s. Key Engineering Materials, 0, 869, 280-295.	0.4	4
57	Investigation of the Effect of Mono- and Diurethane Units on the Deformation and Strength Properties of Polyurethanimides. Russian Journal of Applied Chemistry, 2020, 93, 1491-1497.	0.1	4
58	Thermal aging of carbon- and glass-reinforced plastics based on heat-resistant polyimide binders. Russian Journal of Applied Chemistry, 2009, 82, 889-893.	0.1	3
59	Carbon-reinforced plastics based on hybrid polyimide-organosilicon binders. Russian Journal of Applied Chemistry, 2013, 86, 1873-1879.	0.1	3
60	Optically active polyamidoimides based on amino acids containing cyclohexane fragment. Russian Journal of Applied Chemistry, 2015, 88, 1661-1666.	0.1	3
61	Investigation of Polyetherimide Melt-Extruded Fibers Modified by Carbon Nanoparticles. Materials, 2021, 14, 7251.	1.3	3
62	Birefringence in solutions and films of poly[4,4'-bis(4''-N-phenoxy)diphenylsulfon]imide of 1,3 bis(3',4-dicarboxyphenoxy)benzene. Polymer Science - Series A, 2017, 59, 193-197.	0.4	2
63	Formation of crystalline heteroepitaxial SiC films on Si by carbonization of polyimide Langmuir–Blodgett films. Japanese Journal of Applied Physics, 2017, 56, 06GH08.	0.8	2
64	Conductivity and Density of States of New Polyphenylquinoline. Polymers, 2019, 11, 934.	2.0	2
65	Influence of zone stretching on the properties of semicrystalline thermoplastic polyimide. Russian Journal of Applied Chemistry, 2006, 79, 1884-1889.	0.1	1
66	Production, structure, and mechanical properties of carbon plastics based on a crystallizing polyimide matrix modified by carbon nanofibers. Fibre Chemistry, 2008, 40, 392-397.	0.0	1
67	Surface structure of semicrystalline polyimide films. Polymer Science - Series A, 2008, 50, 299-308.	0.4	1
68	Synthesis and Properties of New 2,6-Poly(phenylquinoline)s and Their Composites with 2,1,3-Benzothiadiazole. Polymer Science - Series B, 2017, 59, 718-729.	0.3	1
69	Obtainment of Aromatic Polyimide Nanofibers and Materials on Their Basis for Cell Technologies. Polymer Science - Series A, 2018, 60, 483-490.	0.4	1
70	Molecular characteristics and surface layer structure of poly(siloxane imides). Polymer Science - Series A, 2007, 49, 532-537.	0.4	0
71	Luminescence-kinetic spectroscopy of compound complexes of polyphenylquinolines. Semiconductors, 2015, 49, 959-961.	0.2	0
72	"Dimensional―effect due to the matrix isolation of luminescent composites of polyphenylquinolines. Semiconductors, 2016, 50, 487-493.	0.2	0

#	Article	IF	CITATIONS
73	Heteroepitaxial growth of SiC films by carbonization of polyimide Langmuir-Blodgett films on Si. MATEC Web of Conferences, 2017, 98, 04002.	0.1	0
74	Formation of Highly Conducting Optically Transparent Films with Multigraphene Structure via Carbonization of Polyimide Langmuir–Blodgett Films. Technical Physics Letters, 2019, 45, 471-474.	0.2	0
75	Formation of branched structure of polyimide macromolecules in the temperatures range below the onset of the thermal destruction. Advanced Material Science, 2019, 4, .	0.3	0