William F Jackson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7016406/publications.pdf Version: 2024-02-01

		172386	182361
113	3,133	29	51
papers	citations	h-index	g-index
113	113	112	2691
115	115	113	2091
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Ion Channels and Vascular Tone. Hypertension, 2000, 35, 173-178.	1.3	431
2	Potassium Channels in the Peripheral Microcirculation. Microcirculation, 2005, 12, 113-127.	1.0	292
3	Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. , 2017, 7, 485-581.		250
4	<scp>K_V</scp> channels and the regulation of vascular smooth muscle tone. Microcirculation, 2018, 25, e12421.	1.0	98
5	Characterization and function of Ca2+-activated K+ channels in arteriolar muscle cells. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 274, H27-H34.	1.5	90
6	K+-Induced Dilation of Hamster Cremasteric Arterioles Involves Both the Na+/K+-ATPase and Inward-Rectifier K+Channels. Microcirculation, 2004, 11, 279-293.	1.0	90
7	The oxygen sensitivity of hamster cheek pouch arterioles. In vitro and in situ studies Circulation Research, 1983, 53, 515-525.	2.0	87
8	Inward rectifying potassium channels facilitate cell-to-cell communication in hamster retractor muscle feed arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H1319-H1328.	1.5	86
9	Potassium Channels in Regulation of Vascular Smooth Muscle Contraction and Growth. Advances in Pharmacology, 2017, 78, 89-144.	1.2	84
10	Enzymatic Isolation and Characterization of Single Vascular Smooth Muscle Cells from Cremasteric Arterioles. Microcirculation, 1997, 4, 35-50.	1.0	80
11	CB 1 Receptor Antagonist SR141716A Inhibits Ca 2+ -Induced Relaxation in CB 1 Receptor-Deficient Mice. Hypertension, 2002, 39, 251-257.	1.3	59
12	Smooth muscle α _{1D} â€adrenoceptors mediate phenylephrineâ€induced vasoconstriction and increases in endothelial cell Ca ²⁺ in hamster cremaster arterioles. British Journal of Pharmacology, 2008, 155, 514-524.	2.7	57
13	Regulation of myogenic tone and structure of parenchymal arterioles by hypertension and the mineralocorticoid receptor. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H127-H136.	1.5	57
14	Enzymatic Isolation and Characterization of Single Vascular Smooth Muscle Cells from Cremasteric Arterioles. Microcirculation, 1996, 3, 313-328.	1.0	55
15	Oxygen induces electromechanical coupling in arteriolar smooth muscle cells: a role for L-type Ca2+ channels. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 274, H2018-H2024.	1.5	55
16	Function and expression of ryanodine receptors and inositol 1,4,5â€ŧrisphosphate receptors in smooth muscle cells of murine feed arteries and arterioles. Journal of Physiology, 2012, 590, 1849-1869.	1.3	55
17	Perivascular adipose tissue contains functional catecholamines. Pharmacology Research and Perspectives, 2014, 2, e00041.	1.1	55
18	Aging is associated with changes to the biomechanical properties of the posterior cerebral artery and parenchymal arterioles. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H365-H375.	1.5	54

#	Article	IF	CITATIONS
19	Connexin Isoform Expression in Smooth Muscle Cells and Endothelial Cells of Hamster Cheek Pouch Arterioles and Retractor Feed Arteries. Microcirculation, 2008, 15, 503-514.	1.0	48
20	Heterogeneous function of ryanodine receptors, but not IP ₃ receptors, in hamster cremaster muscle feed arteries and arterioles. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H1616-H1630.	1.5	45
21	Intracellular acidosis differentially regulates KV channels in coronary and pulmonary vascular muscle. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 275, H1351-H1359.	1.5	41
22	Organic cation transporter 3 contributes to norepinephrine uptake into perivascular adipose tissue. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H1904-H1914.	1.5	40
23	Membrane Hyperpolarization Is Not Required for Sustained Muscarinic Agonistâ€Induced Increases in Intracellular Ca ²⁺ in Arteriolar Endothelial Cells. Microcirculation, 2005, 12, 169-182.	1.0	37
24	Altered Expression and Function of Ryanodine Receptors and FKBP12.6 after Subarachnoid Hemorrhage: More than Meets the Eye. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 1-2.	2.4	37
25	Potassium Channels and Regulation of the Microcirculation. Microcirculation, 1998, 5, 85-90.	1.0	36
26	Activation of Potassium Channels by Tempol in Arterial Smooth Muscle Cells From Normotensive and Deoxycorticosterone Acetate-Salt Hypertensive Rats. Hypertension, 2006, 48, 1080-1087.	1.3	36
27	Regional heterogeneity of α-adrenoreceptor subtypes in arteriolar networks of mouse skeletal muscle. Journal of Physiology, 2010, 588, 4261-4274.	1.3	36
28	Endothelial Mineralocorticoid Receptor Mediates Parenchymal Arteriole and Posterior Cerebral Artery Remodeling During Angiotensin Il–Induced Hypertension. Hypertension, 2017, 70, 1113-1121.	1.3	36
29	Cytochrome P-450 ω-hydroxylase senses O2 in hamster muscle, but not cheek pouch epithelium, microcirculation. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 276, H503-H508.	1.5	35
30	Myogenic Tone in Peripheral Resistance Arteries and Arterioles: The Pressure Is On!. Frontiers in Physiology, 2021, 12, 699517.	1.3	34
31	Temperature effects on morphological integrity and Ca ²⁺ signaling in freshly isolated murine feed artery endothelial cell tubes. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H773-H783.	1.5	31
32	Arteriolar oxygen reactivity: where is the sensor and what is the mechanism of action?. Journal of Physiology, 2016, 594, 5055-5077.	1.3	31
33	Mineralocorticoid receptor antagonism improves parenchymal arteriole dilation via a TRPV4-dependent mechanism and prevents cognitive dysfunction in hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H1304-H1315.	1.5	31
34	Boosting the signal: Endothelial inward rectifier K ⁺ channels. Microcirculation, 2017, 24, e12319.	1.0	30
35	Endothelial Ion Channels and Cell-Cell Communication in the Microcirculation. Frontiers in Physiology, 2022, 13, 805149.	1.3	29
36	Hypoxia Does Not Activate ATP-Sensitive K+ Channels in Arteriolar Muscle Cells. Microcirculation, 2000, 7, 137-145.	1.0	28

#	Article	IF	CITATIONS
37	Potassium Channels and Proliferation of Vascular Smooth Muscle Cells. Circulation Research, 2005, 97, 1211-1212.	2.0	28
38	Arteriolar smooth muscle Ca2+ dynamics during blood flow control in hamster cheek pouch. Journal of Applied Physiology, 2006, 101, 307-315.	1.2	28
39	Bilateral common carotid artery stenosis in normotensive rats impairs endothelium-dependent dilation of parenchymal arterioles. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H1321-H1329.	1.5	26
40	Hemodynamic Changes Annals of the New York Academy of Sciences, 1990, 588, 305-313.	1.8	21
41	Transient receptor potential vanilloid 4 channels are important regulators of parenchymal arteriole dilation and cognitive function. Microcirculation, 2019, 26, e12535.	1.0	18
42	Hypoxia Does Not Activate ATP-Sensitive K+Channels in Arteriolar Muscle Cells. Microcirculation, 2000, 7, 137-145.	1.0	17
43	Reverse-mode Na+/Ca2+ exchange is an important mediator of venous contraction. Pharmacological Research, 2012, 66, 544-554.	3.1	17
44	Lung region and racing affect mechanical properties of equine pulmonary microvasculature. Journal of Applied Physiology, 2014, 117, 370-376.	1.2	16
45	Soluble epoxide hydrolase inhibition improves cognitive function and parenchymal artery dilation in a hypertensive model of chronic cerebral hypoperfusion. Microcirculation, 2021, 28, e12653.	1.0	16
46	Calcium-Dependent Ion Channels and the Regulation of Arteriolar Myogenic Tone. Frontiers in Physiology, 2021, 12, 770450.	1.3	16
47	Oscillations in Active Tension in Hamster Aortas: Role of the Endothelium. Journal of Vascular Research, 1988, 25, 144-156.	0.6	15
48	Regional heterogeneity in the mechanisms of myogenic tone in hamster arterioles. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H667-H675.	1.5	15
49	Aging increases capacitance and spontaneous transient outward current amplitude of smooth muscle cells from murine superior epigastric arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H1512-H1524.	1.5	14
50	Voltage-gated Ca ²⁺ channel activity modulates smooth muscle cell calcium waves in hamster cremaster arterioles. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H871-H878.	1.5	14
51	Increased amplitude of inward rectifier K ⁺ currents with advanced age in smooth muscle cells of murine superior epigastric arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H1203-H1214.	1.5	13
52	Ion channels and the regulation of myogenic tone in peripheral arterioles. Current Topics in Membranes, 2020, 85, 19-58.	0.5	13
53	Modulation of vascular reactivity to serotonin in the dog lung. Journal of Applied Physiology, 1991, 71, 217-222.	1.2	11
54	Selective in vivo Antagonism of Pinacidil-Induced Hypotension by the Guanidine U37883A in Anesthetized Rats. Pharmacology, 1994, 49, 363-375.	0.9	11

#	Article	IF	CITATIONS
55	Carotid artery stenosis in hypertensive rats impairs dilatory pathways in parenchymal arterioles. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, H122-H130.	1.5	11
56	KV1.3. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1073-1074.	1.1	10
57	Endothelial Cell Ion Channel Expression and Function in Arterioles and Resistance Arteries. , 2016, , 3-36.		10
58	Potassium Channels and Regulation of the Microcirculation. Microcirculation, 0, 5, 85-90.	1.0	10
59	Rp Diastereomeric Analogs of cAMP Inhibit both cAMP- and cGMP-Induced Dilation of Hamster Mesenteric Small Arteries. Pharmacology, 1996, 52, 226-234.	0.9	9
60	Silent Inward Rectifier K+Channels in Hypercholesterolemia. Circulation Research, 2006, 98, 982-984.	2.0	8
61	Divergent signaling mechanisms for venous versus arterial contraction as revealed by endothelin-1. Journal of Vascular Surgery, 2015, 62, 721-733.	0.6	8
62	DOCAâ€salt hypertension impairs artery function in rat middle cerebral artery and parenchymal arterioles. Microcirculation, 2016, 23, 571-579.	1.0	8
63	Hypoxia inhibits contraction but not calcium channel currents or changes in intracellular calcium in arteriolar muscle cells. Microcirculation, 2003, 10, 133-41.	1.0	8
64	The Endothelium-Derived Relaxing Factor. Journal of Reconstructive Microsurgery, 1989, 5, 263-271.	1.0	7
65	Microcirculation. , 2012, , 1197-1206.		6
66	Loss-of-Function Mutations in Human Regulator of G Protein Signaling RGS2 Differentially Regulate Pharmacological Reactivity of Resistance Vasculature. Molecular Pharmacology, 2019, 96, 826-834.	1.0	6
67	Vascular smooth muscle store-operated Ca2+ channels: what a TRP!. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H2592-H2594.	1.5	5
68	Ryanodine receptors are uncoupled from contraction in rat vena cava. Cell Calcium, 2013, 53, 112-119.	1.1	5
69	Regional heterogeneity in the reactivity of equine small pulmonary blood vessels. Journal of Applied Physiology, 2016, 120, 599-607.	1.2	5
70	Genetic ablation of smooth muscle K _{IR} 2.1 is inconsequential to the function of mouse cerebral arteries. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 1693-1706.	2.4	5
71	Special Edition of Microcirculation Commemorating the 50th Anniversary of the Microcirculatory Society, Inc Microcirculation, 2005, 12, 1-4.	1.0	4
72	Exerciseâ€induced pulmonary haemorrhage: A progressive disease affecting performance?. Equine Veterinary Journal, 2015, 47, 339-340.	0.9	4

#	Article	IF	CITATIONS
73	Tâ€ŧype voltageâ€gated Ca ²⁺ channels do not contribute to the negative feedback regulation of myogenic tone in murine superior epigastric arteries. Pharmacology Research and Perspectives, 2017, 5, e00320.	1.1	4
74	Introduction to ion channels and calcium signaling in the microcirculation. Current Topics in Membranes, 2020, 85, 1-18.	0.5	4
75	Potassium Channels in the Circulation of Skeletal Muscle. , 2001, , 505-522.		4
76	Effect of acute acid stress on isolated perfused gills of rainbow trout. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1980, 67, 141-145.	0.2	2
77	Neural Crest Ablation Does Not Alter Ventricular Pressure or Estimated Cardiac Output Despite Altered Morphology. Annals of the New York Academy of Sciences, 1990, 588, 389-392.	1.8	2
78	Vanishing Act. Hypertension, 2008, 52, 470-472.	1.3	1
79	Ca 2+ â€activated K + channels are controlled by Ca 2+ influx through voltageâ€gated Ca 2+ channels, not the release of Ca 2+ through ryanodine receptors in arteriolar smooth muscle. FASEB Journal, 2008, 22, 1142.2.	0.2	1
80	The heat is on! TRPV1 channels and resistance artery myogenic tone. Journal of Physiology, 2022, 600, 2021-2022.	1.3	1
81	Standing out in a crowd: knockout of ApoE increases the potency of endothelium-dependent vasodilators in mesenteric arteries. Cardiovascular Research, 2011, 92, 183-184.	1.8	0
82	Quick Change Artist. Hypertension, 2011, 57, 686-688.	1.3	0
83	Preface. Current Topics in Membranes, 2020, 85, xiii-xiv.	0.5	0
84	Another Piece of the Puzzle. Circulation Research, 2021, 128, 752-754.	2.0	0
85	Capillary Inward-Rectifying K+ Crippled in a Mouse Model of Alzheimer's Disease: Phosphatidylinositol 4,5-Bisphosphate to the Rescue!. Function, 2021, 2, zqab017.	1.1	Ο
86	Functional activity of BKCa channels is not coupled to the activity of ryanodine receptors in hamster cheek pouch arterioles. FASEB Journal, 2006, 20, A270.	0.2	0
87	Arteriolar smooth muscle calcium dynamics in hamster cheek pouch in vivo. FASEB Journal, 2006, 20, A273.	0.2	0
88	Connexin isoform expression in microvascular smooth muscle and endothelium. FASEB Journal, 2007, 21, A1217.	0.2	0
89	Do different Ca entry mechanisms mediate Endothelinâ€lâ€induced contraction of rat aorta and vena cava?. FASEB Journal, 2008, 22, 744.15.	0.2	0
90	Smooth muscle α 1D â€adrenoreceptors mediate phenylephrineâ€induced endothelial Ca 2+ transients in hamster cremaster arterioles. FASEB Journal, 2008, 22, 1149.4.	0.2	0

#	Article	IF	CITATIONS
91	IP 3 receptors, but not ryanodine receptors mediate subsarcolemmal Ca 2+ oscillations in arteriolar smooth muscle cells. FASEB Journal, 2009, 23, 767.3.	0.2	0
92	Differences in expression and function of ryanodine receptors between arteries and arterioles in the mouse. FASEB Journal, 2010, 24, 777.5.	0.2	0
93	Functional adrenoreceptor distribution in arteriolar networks of mouse gluteus maximus muscle. FASEB Journal, 2010, 24, 976.5.	0.2	0
94	Endothelinâ $\in 1$ increases the frequency of smooth muscle calcium waves in vena cava but not aorta. FASEB Journal, 2011, 25, 1026.2.	0.2	0
95	Contraction of rat vena cava by endothelinâ€1 is dependent on phospholipaseâ€Cβ, but independent of IP 3 receptor activation. FASEB Journal, 2012, 26, 1049.3.	0.2	0
96	Aging differentially alters calcium signals and myogenic tone in murine cremaster muscle feed arteries and downstream arterioles. FASEB Journal, 2012, 26, 861.3.	0.2	0
97	An imaging apparatus for simultaneous measurement of isometric contraction and Ca 2+ fluorescence in large blood vessels of the rat. FASEB Journal, 2012, 26, 870.31.	0.2	0
98	Aging increases the amplitude of spontaneous transient outward currents in murine resistance artery smooth muscle cells. FASEB Journal, 2013, 27, 679.4.	0.2	0
99	Angiotensin IIâ€independent Activation of AT1 Receptors in Skeletal Muscle Arterioles. FASEB Journal, 2013, 27, 678.13.	0.2	Ο
100	Mechanisms of endothelial dysfunction in penetrating cerebral arterioles of DOCAâ€salt hypertensive rats. FASEB Journal, 2013, 27, 678.7.	0.2	0
101	Abstract W P395: Aging Alters Vascular Stiffness in the Posterior Cerebral Artery in C57bl/6 Mice. Stroke, 2015, 46, .	1.0	Ο
102	Abstract TP451: Age-associated Changes in the Structure and Biomechanical Properties of Parenchymal Arterioles. Stroke, 2016, 47, .	1.0	0
103	Mineralocorticoid Receptor Signaling Regulates Parenchymal Arteriole Vasodilation and Cognitive Function. FASEB Journal, 2018, 32, 711.14.	0.2	Ο
104	Mineralocorticoid Receptor Signaling Regulates Parenchymal Arteriole Vasodilation and Cognitive Function. FASEB Journal, 2018, 32, 843.32.	0.2	0
105	Endothelial Mineralocorticoid Receptor Mediates Cerebrovascular Dysfunction in Parenchymal Arterioles during Angiotensin Ilâ€Hypertension. FASEB Journal, 2019, 33, 688.5.	0.2	Ο
106	High Fat Diet Consumption and its Association with Parenchymal Arteriole Structure and Cognition. FASEB Journal, 2019, 33, 688.3.	0.2	0
107	Carotid Artery Stiffness and Elasticity in Angiotensin II Treated Mice. FASEB Journal, 2020, 34, 1-1.	0.2	0
108	Something's fishy: cardiovascular ATPâ€sensitive K ⁺ channels in zebrafish. Journal of Physiology, 2022, 600, 169-170.	1.3	0

#	Article	IF	CITATIONS
109	Tuning the signal: ATP-sensitive K ⁺ channels direct blood flow to cerebral capillaries. Science Signaling, 2022, 15, eabo1118.	1.6	0
110	5â€HT ₇ Receptors Mediate Dilation of Rat Cremaster Muscle Arterioles <i>in vivo</i> . FASEB Journal, 2022, 36, .	0.2	0
111	Abstract T P416: Bilateral Common Carotid Artery Stenosis in Normotensive Rats Impairs Short-Term Memory and Dilation in Penetrating Arterioles. Stroke, 2015, 46, .	1.0	0
112	Abstract TP450: Angiotensin II-induced Hypertension is Associated With Parenchymal Arteriole and Posterior Cerebral Artery Remodeling and Reduced Cerebral Perfusion. Stroke, 2016, 47, .	1.0	0
113	Abstract TP455: Treatment With Trifluoromethoxyphenyl-3 (1propionylpiperidin-4-yl) Urea Improves Cognitive Functions and Endothelium Dependent Dilation in Penetrating Arterioles From Hypertensive Rats With Bilateral Common Carotid Stenosis. Stroke, 2016, 47, .	1.0	0