

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/701599/publications.pdf Version: 2024-02-01

DEEULI

#	Article	IF	CITATIONS
1	pH-Sensitive nanoparticles based on amphiphilic imidazole/cholesterol modified hydroxyethyl starch for tumor chemotherapy. Carbohydrate Polymers, 2022, 277, 118827.	10.2	30
2	Mimicking the Composition and Structure of the Osteochondral Tissue to Fabricate a Heterogeneous Three-Layer Scaffold for the Repair of Osteochondral Defects. ACS Applied Bio Materials, 2022, 5, 734-746.	4.6	7
3	Functionalization of an Injectable Self-Healing pH-Responsive Hydrogel by Incorporating a Curcumin/Polymerized β-Cyclodextrin Inclusion Complex for Selective Toxicity to Osteosarcoma. ACS Applied Polymer Materials, 2022, 4, 1243-1254.	4.4	10
4	Fabrication of oxidized sodium alginate-collagen heterogeneous bilayer barrier membrane with osteogenesis-promoting ability. International Journal of Biological Macromolecules, 2022, 202, 55-67.	7.5	15
5	Crosslinking effect of dialdehyde cholesterol modified starch nanoparticles on collagen hydrogel. Carbohydrate Polymers, 2022, 285, 119237.	10.2	19
6	Antibacterial dialdehyde sodium alginate∫ε-polylysine microspheres for fruit preservation. Food Chemistry, 2022, 387, 132885.	8.2	31
7	Matrix metalloproteinase-responsive collagen-oxidized hyaluronic acid injectable hydrogels for osteoarthritic therapy. , 2022, 137, 212804.		13
8	Emulsion Template Fabrication of Antibacterial Gelatin-Based Scaffolds with a Preferred Microstructure for Accelerated Wound Healing. ACS Applied Polymer Materials, 2022, 4, 3885-3895.	4.4	8
9	¹³¹ I-Labeled Silk Fibroin Microspheres for Radioembolic Therapy of Rat Hepatocellular Carcinoma. ACS Applied Materials & Interfaces, 2022, 14, 21848-21859.	8.0	10
10	Hydrothermal shrinkage behavior of pigskin. Thermochimica Acta, 2021, 699, 178896.	2.7	2
11	Stability Enhanced Pickering Emulsions Based on Gelatin and Dialdehyde Starch Nanoparticles as Simple Strategy for Structuring Liquid Oils. Food and Bioprocess Technology, 2021, 14, 1600-1610.	4.7	10
12	Dihydromyricetin-Loaded Pickering Emulsions Stabilized by Dialdehyde Cellulose Nanocrystals for Preparation of Antioxidant Gelatin–Based Edible Films. Food and Bioprocess Technology, 2021, 14, 1648-1661.	4.7	32
13	Functionalization of an Electroactive Self-Healing Polypyrrole-Grafted Gelatin-Based Hydrogel by Incorporating a Polydopamine@AgNP Nanocomposite. ACS Applied Bio Materials, 2021, 4, 5797-5808.	4.6	19
14	Acclimation to a broad range of nitrate strength on a euryhaline marine microalga Tetraselmis subcordiformis for photosynthetic nitrate removal and high-quality biomass production. Science of the Total Environment, 2021, 781, 146687.	8.0	12
15	Proteoglycans in the periodontium: A review with emphasis on specific distributions, functions, and potential applications. Journal of Periodontal Research, 2021, 56, 617-632.	2.7	12
16	Green synthesis of κ-carrageenan@Ag submicron-particles with high aqueous stability, robust antibacterial activity and low cytotoxicity. Materials Science and Engineering C, 2020, 106, 110185.	7.3	31
17	Synthesis of silver nanoparticles using oxidized amylose and combination with curcumin for enhanced antibacterial activity. Carbohydrate Polymers, 2020, 230, 115573.	10.2	45
18	pH-Responsive nanoparticles based on cholesterol/imidazole modified oxidized-starch for targeted anticancer drug delivery. Carbohydrate Polymers, 2020, 233, 115858.	10.2	53

Defu Li

#	Article	IF	CITATIONS
19	Fabrication of Polypyrrole-Grafted Gelatin-Based Hydrogel with Conductive, Self-Healing, and Injectable Properties. ACS Applied Polymer Materials, 2020, 2, 3016-3023.	4.4	46
20	Oxidized starch cross-linked porous collagen-based hydrogel for spontaneous agglomeration growth of adipose-derived stem cells. Materials Science and Engineering C, 2020, 116, 111165.	7.3	15
21	Controlling the Pore Structure of Collagen Sponge by Adjusting the Cross-Linking Degree for Construction of Heterogeneous Double-Layer Bone Barrier Membranes. ACS Applied Bio Materials, 2020, 3, 2058-2067.	4.6	14
22	Development of Disulfide Bond Crosslinked Gelatin/ε-Polylysine Active Edible Film with Antibacterial and Antioxidant Activities. Food and Bioprocess Technology, 2020, 13, 577-588.	4.7	41
23	Facile Fabrication of Biocompatible Gelatin-Based Self-Healing Hydrogels. ACS Applied Polymer Materials, 2019, 1, 1350-1358.	4.4	120
24	Development of Microspheres Based on Thiol-Modified Sodium Alginate for Intestinal-Targeted Drug Delivery. ACS Applied Bio Materials, 2019, 2, 5810-5818.	4.6	21
25	Emulsion Template Method for the Fabrication of Gelatin-Based Scaffold with a Controllable Pore Structure. ACS Applied Materials & Interfaces, 2019, 11, 269-277.	8.0	51
26	Effects of carboxyl and aldehyde groups on the antibacterial activity of oxidized amylose. Carbohydrate Polymers, 2018, 192, 118-125.	10.2	52
27	One-Pot Approach for the Synthesis of Water-Soluble Anatase TiO ₂ Nanoparticle Cluster with Efficient Visible Light Photocatalytic Activity. Journal of Physical Chemistry C, 2018, 122, 26447-26453.	3.1	6
28	Fabrication of Antibacterial Collagen-Based Composite Wound Dressing. ACS Sustainable Chemistry and Engineering, 2018, 6, 9153-9166.	6.7	110
29	Preparation and characterization of dialdehyde \hat{l}^2 -cyclodextrin with broad-spectrum antibacterial activity. Food Research International, 2018, 111, 237-243.	6.2	22
30	Development of active rosmarinic acid-gelatin biodegradable films with antioxidant and long-term antibacterial activities. Food Hydrocolloids, 2018, 83, 308-316.	10.7	106
31	Comparative study of the physicochemical and photocatalytic properties of water-soluble polymer-capped TiO2 nanoparticles. Environmental Science and Pollution Research, 2018, 25, 26259-26266.	5.3	1
32	Synthesis of oxidized β-cyclodextrin with high aqueous solubility and broad-spectrum antimicrobial activity. Carbohydrate Polymers, 2017, 177, 97-104.	10.2	33
33	Preparation, characterization and antibacterial activity of oxidized κ-carrageenan. Carbohydrate Polymers, 2017, 174, 1051-1058.	10.2	89
34	Development of Antimicrobial Gelatin-Based Edible Films by Incorporation of Trans-Anethole/β-Cyclodextrin Inclusion Complex. Food and Bioprocess Technology, 2017, 10, 1844-1853.	4.7	32
35	Using oxidized amylose as carrier of linalool for the development of antibacterial wound dressing. Carbohydrate Polymers, 2017, 174, 1095-1105.	10.2	35
36	Development of Antimicrobial and Controlled Biodegradable Gelatin-Based Edible Films Containing Nisin and Amino-Functionalized Montmorillonite. Food and Bioprocess Technology, 2017, 10, 1727-1736.	4.7	42

Defu Li

#	Article	IF	CITATIONS
37	Shortâ€range and longâ€range crossâ€linking effects of polygenipin on gelatinâ€based composite materials. Journal of Biomedical Materials Research - Part A, 2016, 104, 2712-2722.	4.0	14
38	Oxidized amylose with high carboxyl content: A promising solubilizer and carrier of linalool for antimicrobial activity. Carbohydrate Polymers, 2016, 154, 13-19.	10.2	31
39	Molecular weight effects of PEG on the crystal structure and photocatalytic activities of PEG-capped TiO ₂ nanoparticles. RSC Advances, 2016, 6, 83366-83372.	3.6	17
40	Effect of oxidation level on the inclusion capacity and solution stability of oxidized amylose in aqueous solution. Carbohydrate Polymers, 2016, 138, 41-48.	10.2	16
41	Biological properties of dialdehyde carboxymethyl cellulose crosslinked gelatin–PEG composite hydrogel fibers for wound dressings. Carbohydrate Polymers, 2016, 137, 508-514.	10.2	141
42	Development and characterization of dialdehyde xanthan gum crosslinked gelatin based edible films incorporated with amino-functionalized montmorillonite. Food Hydrocolloids, 2015, 51, 129-135.	10.7	62
43	Comparative study of the effects of anatase and rutile titanium dioxide nanoparticles on the structure and properties of waterborne polyurethane. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 470, 92-99.	4.7	29
44	Preparation, physicochemical characterization and release behavior of the inclusion complex of trans -anethole and β-cyclodextrin. Food Research International, 2015, 74, 55-62.	6.2	76
45	Periodate oxidation of xanthan gum and its crosslinking effects on gelatin-based edible films. Food Hydrocolloids, 2014, 39, 243-250.	10.7	184
46	Ringâ€opening polymerization of genipin and its longâ€range crosslinking effect on collagen hydrogel. Journal of Biomedical Materials Research - Part A, 2013, 101A, 385-393.	4.0	55
47	Freezing–thawing effects on the properties of dialdehyde carboxymethyl cellulose crosslinked gelatin-MMT composite films. Food Hydrocolloids, 2013, 33, 273-279.	10.7	45
48	Freezing/thawing effects on the exfoliation of montmorillonite in gelatinâ€based bionanocomposite. Journal of Applied Polymer Science, 2013, 128, 3141-3148.	2.6	25
49	Effects of montmorillonite on the structure and properties of gelatinâ€polyethylene glycol composite fibers. Journal of Applied Polymer Science, 2013, 129, 773-778.	2.6	9
50	Preparation and properties of dialdehyde carboxymethyl cellulose crosslinked gelatin edible films. Food Hydrocolloids, 2012, 27, 22-29.	10.7	270
51	Ultrasonic irradiation in the enzymatic extraction of collagen. Ultrasonics Sonochemistry, 2009, 16, 605-609.	8.2	85
52	Temperature induced denaturation of collagen in acidic solution. Biopolymers, 2007, 86, 282-287.	2.4	111