
Neil A Hukriede

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7015896/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Small molecules in regeneration. , 2022, , 451-464.		Ο
2	Modeling oxidative injury response in human kidney organoids. Stem Cell Research and Therapy, 2022, 13, 76.	5.5	14
3	Experimental models of acute kidney injury for translational research. Nature Reviews Nephrology, 2022, 18, 277-293.	9.6	32
4	Kidney repair and regeneration: perspectives of the NIDDK (Re)Building a Kidney consortium. Kidney International, 2022, 101, 845-853.	5.2	22
5	Validation of HDAC8 Inhibitors as Drug Discovery Starting Points to Treat Acute Kidney Injury. ACS Pharmacology and Translational Science, 2022, 5, 207-215.	4.9	11
6	A Simplified Method for Generating Kidney Organoids from Human Pluripotent Stem Cells. Journal of Visualized Experiments, 2021, , .	0.3	7
7	Protocol for Large-Scale Production of Kidney Organoids from Human Pluripotent Stem Cells. STAR Protocols, 2020, 1, 100150.	1.2	18
8	Introduction: The 2019 Federation of American Societies for Experimental Biology Acute Kidney Injury From Bench to Bedside Conference. Seminars in Nephrology, 2020, 40, 99-100.	1.6	1
9	Time-dependent effects of histone deacetylase inhibition in sepsis-associated acute kidney injury. Intensive Care Medicine Experimental, 2020, 8, 9.	1.9	12
10	The Utility of Human Kidney Organoids in Modeling Kidney Disease. Seminars in Nephrology, 2020, 40, 188-198.	1.6	11
11	A predicted Francisella tularensis DXD-motif glycosyltransferase blocks immune activation. Virulence, 2019, 10, 643-656.	4.4	3
12	The human nephrin Y1139RSL motif is essential for podocyte foot process organization and slit diaphragm formation during glomerular development. Journal of Biological Chemistry, 2019, 294, 10773-10788.	3.4	4
13	Sepsis-Associated Acute Kidney Injury: A Problem Deserving of New Solutions. Nephron, 2019, 143, 174-178.	1.8	26
14	Wnt signaling mediates new nephron formation during zebrafish kidney regeneration. Development (Cambridge), 2019, 146, .	2.5	26
15	Enhancing regeneration after acute kidney injury by promoting cellular dedifferentiation in zebrafish. DMM Disease Models and Mechanisms, 2019, 12, .	2.4	21
16	The role of macrophages during acute kidney injury: destruction and repair. Pediatric Nephrology, 2019, 34, 561-569.	1.7	65
17	The Lhx1-Ldb1 complex interacts with Furry to regulate microRNA expression during pronephric kidney development. Scientific Reports, 2018, 8, 16029.	3.3	6
18	A zebrafish model of infection-associated acute kidney injury. American Journal of Physiology - Renal Physiology, 2018, 315, F291-F299.	2.7	25

NEIL A HUKRIEDE

#	Article	IF	CITATIONS
19	<i>Bim</i> gene dosage is critical in modulating nephron progenitor survival in the absence of microRNAs during kidney development. FASEB Journal, 2017, 31, 3540-3554.	0.5	15
20	Drug Discovery to Halt the Progression of Acute Kidney Injury to Chronic Kidney Disease: A Case for Phenotypic Drug Discovery in Acute Kidney Injury. Nephron, 2017, 137, 268-272.	1.8	9
21	Wnt8a expands the pool of embryonic kidney progenitors in zebrafish. Developmental Biology, 2017, 425, 130-141.	2.0	8
22	Exploiting Analysis of Heterogeneity to Increase the Information Content Extracted from Fluorescence Micrographs of Transgenic Zebrafish Embryos. Assay and Drug Development Technologies, 2017, 15, 257-266.	1.2	4
23	BMP and retinoic acid regulate anterior–posterior patterning of the non-axial mesoderm across the dorsal–ventral axis. Nature Communications, 2016, 7, 12197.	12.8	30
24	Delayed treatment with PTBA analogs reduces postinjury renal fibrosis after kidney injury. American Journal of Physiology - Renal Physiology, 2016, 310, F705-F716.	2.7	28
25	Retinoic Acid Signaling Coordinates Macrophage-Dependent Injury and Repair after AKI. Journal of the American Society of Nephrology: JASN, 2016, 27, 495-508.	6.1	65
26	Conserved Overlapping Gene Arrangement, Restricted Expression, and Biochemical Activities of DNA Polymerase ν (POLN). Journal of Biological Chemistry, 2015, 290, 24278-24293.	3.4	9
27	Kidney Regeneration: Lessons from Development. Current Pathobiology Reports, 2015, 3, 67-79.	3.4	9
28	Zebrafish Models of Kidney Damage and Repair. Current Pathobiology Reports, 2015, 3, 163-170.	3.4	11
29	A PTBA small molecule enhances recovery and reduces postinjury fibrosis after aristolochic acid-induced kidney injury. American Journal of Physiology - Renal Physiology, 2014, 306, F496-F504.	2.7	68
30	osr1 Is Required for Podocyte Development Downstream of wt1a. Journal of the American Society of Nephrology: JASN, 2014, 25, 2539-2545.	6.1	27
31	Kidney regeneration: common themes from the embryo to the adult. Pediatric Nephrology, 2014, 29, 553-564.	1.7	26
32	HDAC inhibitors in kidney development and disease. Pediatric Nephrology, 2013, 28, 1909-1921.	1.7	52
33	Development of High-Content Assays for Kidney Progenitor Cell Expansion in Transgenic Zebrafish. Journal of Biomolecular Screening, 2013, 18, 1193-1202.	2.6	26
34	Histone Deacetylase Inhibitor Enhances Recovery after AKI. Journal of the American Society of Nephrology: JASN, 2013, 24, 943-953.	6.1	160
35	Apical Targeting and Endocytosis of the Sialomucin Endolyn are Essential for Establishment of Zebrafish Pronephric Kidney Function. Journal of Cell Science, 2012, 125, 5546-54.	2.0	3
36	<scp>OCRL1</scp> Modulates Cilia Length in Renal Epithelial Cells. Traffic, 2012, 13, 1295-1305.	2.7	52

NEIL A HUKRIEDE

#	Article	IF	CITATIONS
37	Identification of adult nephron progenitors capable of kidney regeneration in zebrafish. Nature, 2011, 470, 95-100.	27.8	258
38	Zebrafish kidney development: Basic science to translational research. Birth Defects Research Part C: Embryo Today Reviews, 2011, 93, 141-156.	3.6	52
39	A Simplified Synthesis of Novel Dictyostatin Analogues with <i>In Vitro</i> Activity against Epothilone B–Resistant Cells and Antiangiogenic Activity in Zebrafish Embryos. Molecular Cancer Therapeutics, 2011, 10, 994-1006.	4.1	21
40	Making a Tubule the Noncanonical Way. Journal of the American Society of Nephrology: JASN, 2011, 22, 1575-1577.	6.1	1
41	Lhx1 Is Required for Specification of the Renal Progenitor Cell Field. PLoS ONE, 2011, 6, e18858.	2.5	41
42	Intravenous Microinjections of Zebrafish Larvae to Study Acute Kidney Injury. Journal of Visualized Experiments, 2010, , .	0.3	53
43	Inhibition of Histone Deacetylase Expands the Renal Progenitor Cell Population. Journal of the American Society of Nephrology: JASN, 2010, 21, 794-802.	6.1	104
44	Characterization of an lhx1a transgenic reporter in zebrafish. International Journal of Developmental Biology, 2010, 54, 731-736.	0.6	39
45	Development of automated imaging and analysis for zebrafish chemical screens Journal of Visualized Experiments, 2010, , .	0.3	35
46	Automated imageâ€based phenotypic analysis in zebrafish embryos. Developmental Dynamics, 2009, 238, 656-663.	1.8	121
47	Scalable and Concise Synthesis of Dichlorofluorescein Derivatives Displaying Tissue Permeation in Live Zebrafish Embryos. ChemBioChem, 2008, 9, 214-218.	2.6	25
48	Generation of a transgenic zebrafish model of Tauopathy using a novel promoter element derived from the zebrafish eno2 gene. Nucleic Acids Research, 2007, 35, 6501-6516.	14.5	104
49	A Gene Expression Screen in Zebrafish Embryogenesis. Genome Research, 2001, 11, 1979-1987.	5.5	202