
Shannon C Kenney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7015778/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reduced IRF4 expression promotes lytic phenotype in Type 2 EBV-infected B cells. PLoS Pathogens, 2022, 18, e1010453.	4.7	10
2	Hippo signaling effectors YAP and TAZ induce Epstein-Barr Virus (EBV) lytic reactivation through TEADs in epithelial cells. PLoS Pathogens, 2021, 17, e1009783.	4.7	9
3	ΔNp63α promotes Epstein-Barr virus latency in undifferentiated epithelial cells. PLoS Pathogens, 2021, 17, e1010045.	4.7	8
4	EBNA2-deleted Epstein-Barr virus (EBV) isolate, P3HR1, causes Hodgkin-like lymphomas and diffuse large B cell lymphomas with type II and Wp-restricted latency types in humanized mice. PLoS Pathogens, 2020, 16, e1008590.	4.7	16
5	B cells infected with Type 2 Epstein-Barr virus (EBV) have increased NFATc1/NFATc2 activity and enhanced lytic gene expression in comparison to Type 1 EBV infection. PLoS Pathogens, 2020, 16, e1008365.	4.7	24
6	An EBNA3A-Mutated Epstein-Barr Virus Retains the Capacity for Lymphomagenesis in a Cord Blood-Humanized Mouse Model. Journal of Virology, 2020, 94, .	3.4	5
7	Epstein-Barr Virus Infection Promotes Epithelial Cell Growth by Attenuating Differentiation-Dependent Exit from the Cell Cycle. MBio, 2019, 10, .	4.1	25
8	Development of a novel inducer for EBV lytic therapy. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 2259-2264.	2.2	7
9	Complete and Durable Responses in Primary Central Nervous System Posttransplant Lymphoproliferative Disorder with Zidovudine, Ganciclovir, Rituximab, and Dexamethasone. Clinical Cancer Research, 2018, 24, 3273-3281.	7.0	20
10	Human Cytomegalovirus Productively Replicates <i>In Vitro</i> in Undifferentiated Oral Epithelial Cells. Journal of Virology, 2018, 92, .	3.4	10
11	A cancer-associated Epstein-Barr virus BZLF1 promoter variant enhances lytic infection. PLoS Pathogens, 2018, 14, e1007179.	4.7	68
12	Epstein–Barr Virus Gene BARF1 Expression is Regulated by the Epithelial Differentiation Factor ΔNp63α in Undifferentiated Nasopharyngeal Carcinoma. Cancers, 2018, 10, 76.	3.7	14
13	An EBNA3C-deleted Epstein-Barr virus (EBV) mutant causes B-cell lymphomas with delayed onset in a cord blood-humanized mouse model. PLoS Pathogens, 2018, 14, e1007221.	4.7	22
14	The Epstein-Barr virus EBNA2 protein induces a subset of NOTCH target genes in thyroid cancer cell lines but fails to suppress proliferation. Surgery, 2017, 161, 195-201.	1.9	1
15	Latent Membrane Protein 1 (LMP1) and LMP2A Collaborate To Promote Epstein-Barr Virus-Induced B Cell Lymphomas in a Cord Blood-Humanized Mouse Model but Are Not Essential. Journal of Virology, 2017, 91, .	3.4	33
16	Differentiation-Dependent LMP1 Expression Is Required for Efficient Lytic Epstein-Barr Virus Reactivation in Epithelial Cells. Journal of Virology, 2017, 91, .	3.4	40
17	Restricted TET2 Expression in Germinal Center Type B Cells Promotes Stringent Epstein-Barr Virus Latency. Journal of Virology, 2017, 91, .	3.4	18
18	Adoptively transferred Vγ9Vδ2 T cells show potent antitumor effects in a preclinical B cell lymphomagenesis model. JCI Insight, 2017, 2, .	5.0	56

SHANNON C KENNEY

#	Article	IF	CITATIONS
19	Hypoxia-inducible factor-1α plays roles in Epstein-Barr virus's natural life cycle and tumorigenesis by inducing lytic infection through direct binding to the immediate-early BZLF1 gene promoter. PLoS Pathogens, 2017, 13, e1006404.	4.7	55
20	Leflunomide/teriflunomide inhibit Epstein-Barr virus (EBV)-induced lymphoproliferative disease and lytic viral replication. Oncotarget, 2017, 8, 44266-44280.	1.8	61
21	PD-1/CTLA-4 Blockade Inhibits Epstein-Barr Virus-Induced Lymphoma Growth in a Cord Blood Humanized-Mouse Model. PLoS Pathogens, 2016, 12, e1005642.	4.7	87
22	Human papillomavirus promotes Epstein-Barr virus maintenance and lytic reactivation in immortalized oral keratinocytes. Virology, 2016, 495, 52-62.	2.4	50
23	Lenalidomide, Thalidomide, and Pomalidomide Reactivate the Epstein–Barr Virus Lytic Cycle through Phosphoinositide 3-Kinase Signaling and Ikaros Expression. Clinical Cancer Research, 2016, 22, 4901-4912.	7.0	41
24	5-hydroxymethylation of the EBV genome regulates the latent to lytic switch. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E7257-65.	7.1	28
25	Cellular Differentiation Regulator BLIMP1 Induces Epstein-Barr Virus Lytic Reactivation in Epithelial and B Cells by Activating Transcription from both the R and Z Promoters. Journal of Virology, 2015, 89, 1731-1743.	3.4	75
26	LMP1-deficient Epstein-Barr virus mutant requires T cells for lymphomagenesis. Journal of Clinical Investigation, 2015, 125, 304-315.	8.2	56
27	Differentiation-Dependent KLF4 Expression Promotes Lytic Epstein-Barr Virus Infection in Epithelial Cells. PLoS Pathogens, 2015, 11, e1005195.	4.7	79
28	Regulation of the latent-lytic switch in Epstein–Barr virus. Seminars in Cancer Biology, 2014, 26, 60-68.	9.6	219
29	Epstein-Barr Virus Kinase-Targeted Therapy for Primary Central Nervous System Post-Transplant Lymphoproliferative Disorder. Blood, 2014, 124, 1750-1750.	1.4	Ο
30	Viral Genome Methylation Differentially Affects the Ability of BZLF1 versus BRLF1 To Activate Epstein-Barr Virus Lytic Gene Expression and Viral Replication. Journal of Virology, 2013, 87, 935-950.	3.4	53
31	Thalidomide, Lenalidomide and Pomalidomide Disrupt Epstein-Barr Virus (EBV) Latency: Clinical Implications. Blood, 2013, 122, 3499-3499.	1.4	2
32	The B-Cell Specific Transcription Factor, Oct-2, Promotes Epstein-Barr Virus Latency by Inhibiting the Viral Immediate-Early Protein, BZLF1. PLoS Pathogens, 2012, 8, e1002516.	4.7	32
33	An Epstein-Barr Virus (EBV) Mutant with Enhanced BZLF1 Expression Causes Lymphomas with Abortive Lytic EBV Infection in a Humanized Mouse Model. Journal of Virology, 2012, 86, 7976-7987.	3.4	102
34	The Cellular Ataxia Telangiectasia-Mutated Kinase Promotes Epstein-Barr Virus Lytic Reactivation in Response to Multiple Different Types of Lytic Reactivation-Inducing Stimuli. Journal of Virology, 2012, 86, 13360-13370.	3.4	71
35	A New Model of Epstein-Barr Virus Infection Reveals an Important Role for Early Lytic Viral Protein Expression in the Development of Lymphomas. Journal of Virology, 2011, 85, 165-177.	3.4	239
36	The Epstein-Barr Virus BRRF1 Protein, Na, Induces Lytic Infection in a TRAF2- and p53-Dependent Manner. Journal of Virology, 2011, 85, 4318-4329.	3.4	30

SHANNON C KENNEY

#	Article	IF	CITATIONS
37	Cellular Transcription Factor Oct-1 Interacts with the Epstein-Barr Virus BRLF1 Protein To Promote Disruption of Viral Latency. Journal of Virology, 2011, 85, 8940-8953.	3.4	32
38	Validation of Arrayâ€based RNA Expression Profiles in Paraffinâ€embedded Samples of Epsteinâ€Barr Virusâ€related Malignancy. FASEB Journal, 2011, 25, lb313.	0.5	0
39	Hsp90 inhibitors: A potential treatment for latent EBV infection?. Cell Cycle, 2010, 9, 1665-1666.	2.6	9
40	Methylation-Dependent Binding of the Epstein-Barr Virus BZLF1 Protein to Viral Promoters. PLoS Pathogens, 2009, 5, e1000356.	4.7	70
41	CCAAT/enhancer binding proteins α and β regulate the tumor necrosis factor receptor 1 gene promoter. Molecular Immunology, 2009, 46, 2706-2713.	2.2	20
42	X-Box-Binding Protein 1 Activates Lytic Epstein-Barr Virus Gene Expression in Combination with Protein Kinase D. Journal of Virology, 2007, 81, 7363-7370.	3.4	105
43	ZEB1 and c-Jun Levels Contribute to the Establishment of Highly Lytic Epstein-Barr Virus Infection in Gastric AGS Cells. Journal of Virology, 2007, 81, 10113-10122.	3.4	49
44	Roles of lytic viral infection and IL-6 in early versus late passage lymphoblastoid cell lines and EBV-associated lymphoproliferative disease. International Journal of Cancer, 2007, 121, 1274-1281.	5.1	55
45	BZLF1 Activation of the Methylated Form of the BRLF1 Immediate-Early Promoter Is Regulated by BZLF1 Residue 186. Journal of Virology, 2005, 79, 7338-7348.	3.4	75
46	Epstein-Barr Virus Lytic Infection Is Required for Efficient Production of the Angiogenesis Factor Vascular Endothelial Growth Factor in Lymphoblastoid Cell Lines. Journal of Virology, 2005, 79, 13984-13992.	3.4	93
47	Epstein-Barr Virus Lytic Infection Contributes to Lymphoproliferative Disease in a SCID Mouse Model. Journal of Virology, 2005, 79, 13993-14003.	3.4	198
48	Lytic Induction Therapy for Epstein-Barr Virus-Positive B-Cell Lymphomas. Journal of Virology, 2004, 78, 1893-1902.	3.4	200
49	The BRRF1 Early Gene of Epstein-Barr Virus Encodes a Transcription Factor That Enhances Induction of Lytic Infection by BRLF1. Journal of Virology, 2004, 78, 4983-4992.	3.4	54
50	Reactivation of Latent Epstein-Barr Virus by Methotrexate: A Potential Contributor to Methotrexate-Associated Lymphomas. Journal of the National Cancer Institute, 2004, 96, 1691-1702.	6.3	228
51	The EBV lytic switch protein, Z, preferentially binds to and activates the methylated viral genome. Nature Genetics, 2004, 36, 1099-1104.	21.4	170
52	Chemotherapy induces lytic EBV replication and confers ganciclovir susceptibility to EBV-positive epithelial cell tumors. Cancer Research, 2002, 62, 1920-6.	0.9	133
53	Epstein-Barr Virus Immediate-Early Protein BZLF1 Is SUMO-1 Modified and Disrupts Promyelocytic Leukemia Bodies. Journal of Virology, 2001, 75, 2388-2399.	3.4	213
54	Epstein-Barr Virus Immediate-Early Protein BRLF1 Interacts with CBP, Promoting Enhanced BRLF1 Transactivation. Journal of Virology, 2001, 75, 6228-6234.	3.4	44

#	Article	IF	CITATIONS
55	Epstein-Barr Virus Immediate-Early Proteins BZLF1 and BRLF1 Activate the ATF2 Transcription Factor by Increasing the Levels of Phosphorylated p38 and c-Jun N-Terminal Kinases. Journal of Virology, 2000, 74, 1224-1233.	3.4	161
56	Rescue of the Epstein–Barr Virus BZLF1 Mutant, Z(S186A), Early Gene Activation Defect by the BRLF1 Gene Product. Virology, 1998, 251, 187-197.	2.4	59
57	Direct BRLF1 binding is required for cooperative BZLF1/BRLF1 activation of the Epstein-Barr virus early promoter, BMRF1. Nucleic Acids Research, 1993, 21, 1999-2007.	14.5	141