
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7015733/publications.pdf Version: 2024-02-01

LOSE M RUDDIO

#	Article	IF	CITATIONS
1	Induction Heating of Two Magnetically Independent Loads With a Single Transmitter. IEEE Transactions on Power Electronics, 2022, 37, 3391-3402.	7.9	2
2	Power factor correction stage and matrix zero voltage switching resonant inverter for domestic induction heating appliances. IET Power Electronics, 2022, 15, 1134-1143.	2.1	3
3	High-Performance Class-E Quasi-Resonant Inverter for Domestic Induction Heating Applications. , 2022, , .		3
4	Design and Optimization of a SiC-Based Versatile Bidirectional High-Voltage Waveform Generator. , 2022, , .		2
5	Induction Heating Cookers: A Path Towards Decarbonization Using Energy Saving Cookers. , 2022, , .		1
6	Multiphase PFC Rectifier and Modulation Strategies for Domestic Induction Heating Applications. IEEE Transactions on Industrial Electronics, 2021, 68, 6424-6433.	7.9	11
7	Asymmetrical Noncomplementary Modulation Strategies for Independent Power Control in Multioutput Resonant Inverters. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 629-637.	5.4	5
8	Multi-Electrode Architecture Modeling and Optimization for Homogeneous Electroporation of Large Volumes of Tissue. Energies, 2021, 14, 1892.	3.1	4
9	Large-Signal Electrical Parameter Characterization in Inductive Power Transfer Systems. , 2021, , .		1
10	Constant-Current Gate Driver for GaN HEMTs Applied to Resonant Power Conversion. Energies, 2021, 14, 2377.	3.1	5
11	Power Factor Correction using Asymmetrical Modulation for Flexible Induction Heating Appliances. , 2021, , .		2
12	Double Inverter with Common Resonant Capacitor for Elliptical Coil Induction Heating Devic. , 2021, , .		0
13	Domestic induction heating system with standard primary inductor for reduced-size and high distance cookware. , 2021, , .		1
14	Matrix ZVS Resonant Inverter for Domestic Induction Heating Applications Featuring a Front-End PFC Stage. , 2021, , .		2
15	Multiple-Output Generator for Omnidirectional Electroporation and Real-Time Process Monitoring. , 2021, , .		1
16	Mains-Synchronized Pulse Density Modulation Strategy Applied to a ZVS Resonant Matrix Inverter. IEEE Transactions on Industrial Electronics, 2021, 68, 10835-10844.	7.9	6
17	GaN-Based Versatile Waveform Generator for Biomedical Applications of Electroporation. IEEE Access, 2020, 8, 97196-97203.	4.2	16
18	Analysis and Modeling of the Forces Exerted on the Cookware in Induction Heating Applications. IEEE Access, 2020, 8, 131178-131187.	4.2	13

#	Article	IF	CITATIONS
19	An Inductive Power Transfer System Case Study: Large Gap in Low Power Wireless Power Supply. , 2020, , .		3
20	A front-end PFC stage for improved performance of flexible induction heating appliances. International Journal of Applied Electromagnetics and Mechanics, 2020, 63, S115-S121.	0.6	2
21	Electro-thermal modeling of irreversible electroporation and validation method of electric field distribution. International Journal of Applied Electromagnetics and Mechanics, 2020, 63, S41-S50.	0.6	3
22	Real-Time Impedance Monitoring During Electroporation Processes in Vegetal Tissue Using a High-Performance Generator. Sensors, 2020, 20, 3158.	3.8	12
23	Design methodology of high performance domestic induction heating systems under worktop. IET Power Electronics, 2020, 13, 300-306.	2.1	10
24	Adapting of Non-Metallic Cookware for Induction Heating Technology via Thin-Layer Non-Magnetic Conductive Coatings. IEEE Access, 2020, 8, 11219-11227.	4.2	15
25	Multi-Output Resonant Power Converters for Domestic Induction Heating. , 2020, , .		2
26	Multiresonant Power Converter for Improved Dual-Frequency Induction Heating. IEEE Transactions on Power Electronics, 2019, 34, 2097-2103.	7.9	15
27	A Versatile Large-Signal High-Frequency Arbitrary Waveform Generator Using GaN Devices. , 2019, , .		11
28	High-Frequency GaN-Based Induction Heating Versatile Module for Flexible Cooking Surfaces. , 2019, , .		9
29	WBG Semiconductor and Capacitor Technology Evaluation for Pulsed Electroporation Applications. , 2019, , .		2
30	An analysis of electromagnetic forces on cooking vessels used in domestic induction heating appliances oriented to identify the properties of materials. , 2019, , .		3
31	Multiple-Output ZVS Resonant Inverter Architecture for Flexible Induction Heating Appliances. IEEE Access, 2019, 7, 157046-157056.	4.2	27
32	Histopathological and Ultrastructural Changes after Electroporation in Pig Liver Using Parallel-Plate Electrodes and High-Performance Generator. Scientific Reports, 2019, 9, 2647.	3.3	29
33	Industrial Electronics for Biomedicine: A New Cancer Treatment Using Electroporation. IEEE Industrial Electronics Magazine, 2019, 13, 6-18.	2.6	23
34	Asymmetrical Modulation Strategies for Partially Covered Inductors in Flexible Induction Heating Appliances. , 2019, , .		0
35	Design of a Three Inductor System with One Externally Fed for an Inductively Coupled Heating Application. , 2019, , .		4
36	High-Performance and Cost-Effective ZCS Matrix Resonant Inverter for Total Active Surface Induction Heating Appliances. IEEE Transactions on Power Electronics, 2019, 34, 117-125.	7.9	22

#	Article	IF	CITATIONS
37	FPCA-Based Resonant Load Identification Technique for Flexible Induction Heating Appliances. IEEE Transactions on Industrial Electronics, 2018, 65, 9421-9428.	7.9	25
38	A Flexible Cooking Zone Composed of Partially Overlapped Inductors. IEEE Transactions on Industrial Electronics, 2018, 65, 7762-7771.	7.9	25
39	Design and Experimental Analysis of PFC Rectifiers for Domestic Induction Heating Applications. IEEE Transactions on Power Electronics, 2018, 33, 6582-6594.	7.9	33
40	A Versatile Resonant Tank Identification Methodology for Induction Heating Systems. IEEE Transactions on Power Electronics, 2018, 33, 1897-1901.	7.9	40
41	Inductor System Evaluation for Simultaneous Wireless Energy Transfer and Induction Heating. , 2018, ,		5
42	A Versatile Hardware Platform for Teaching Resonant Power Conversion Courses. , 2018, , .		1
43	High-performance and cost-effective single-ended induction heating appliance using new mos-controlled thyristors. , 2018, , .		1
44	High frequency electroporation for biomedical applications using GaN gate injection transistors. , 2018, , .		1
45	Soft-transient modulation strategy for improved efficiency and EMC performance of PFC converters applied to flexible induction heating appliances. , 2018, , .		6
46	Induction Heating. , 2018, , 265-287.		5
47	High power density PCB coil array applied to domestic induction heating appliances. , 2018, , .		3
48	An Inter-Disciplinary Approach to Teaching Biomedical Electronics with an Electroporation-Applied Example. , 2018, , .		2
49	Interleaved Resonant Boost Inverter Featuring SiC Module for High-Performance Induction Heating. IEEE Transactions on Power Electronics, 2017, 32, 1018-1029.	7.9	28
50	Design of power converters for induction heating applications taking advantage of wide-bandgap semiconductors. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2017, 36, 483-488.	0.9	10
51	Improved Litz wire manufacture process using resonant power converter-based induction heating. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2017, 36, 476-482.	0.9	3
52	Long-term effectiveness of irreversible electroporation in a murine model of colorectal liver metastasis. Scientific Reports, 2017, 7, 44821.	3.3	9
53	Multiple-output ZCS resonant inverter for multi-coil induction heating appliances. , 2017, , .		7

54 Analysis and design of tubular coils for wireless inductive power transfer systems. , 2017, , .

#	Article	IF	CITATIONS
55	Modeling of domestic induction heating systems with non-linear saturable loads. , 2017, , .		12
56	High performance boost inverter featuring GaN-based devices for electro surgical units. , 2017, , .		7
57	Design and Optimization of Small Inductors on Extra-Thin PCB for Flexible Cooking Surfaces. IEEE Transactions on Industry Applications, 2017, 53, 371-379.	4.9	15
58	Design method for domestic induction heating systems with a larger load distance. , 2017, , .		1
59	Active power factor corrector for high power domestic induction heating appliances. , 2017, , .		4
60	High performance full-bridge multi-inverter featuring 900-V SiC devices for domestic induction heating applications. EPE Journal (European Power Electronics and Drives Journal), 2017, 27, 143-152.	0.7	4
61	Power losses in flux concentrators of inductor systems for induction cooktops. , 2017, , .		Ο
62	Design and Implementation of a Test-Bench for Efficiency Measurement of Domestic Induction Heating Appliances. Energies, 2016, 9, 636.	3.1	3
63	High frequency and power density gallium nitride based inverter for magneto fluid hyperthermia. , 2016, , .		1
64	Pulse density modulated control for the series resonant multi-inverter for induction heating applications. , 2016, , .		3
65	Design of efficient loads for domestic induction heating applications by means of non-magnetic thin metallic layers. , 2016, , .		2
66	Assymmetric duty-cycle phase-shift modulation for power management in double half-bridge inverter with partly coupled inductive loads. , 2016, , .		0
67	Multiple-output boost resonant inverter for high efficiency and cost-effective induction heating applications. , 2016, , .		7
68	Analytical solution of the induced currents in multilayer cylindrical conductors under external electromagnetic sources. Applied Mathematical Modelling, 2016, 40, 10667-10678.	4.2	11
69	Irreversible electroporation of the liver: is there a safe limit to the ablation volume?. Scientific Reports, 2016, 6, 23781.	3.3	22
70	Calculation of losses in PCB windings for multi-coil contactless charging systems. , 2016, , .		0
71	Full-bridge series resonant multi-inverter featuring new 900-V SiC devices for improved induction heating appliances. , 2016, , .		5
72	Heat Management in Power Converters: From State of the Art to Future Ultrahigh Efficiency Systems. IEEE Transactions on Power Electronics, 2016, 31, 7896-7908.	7.9	117

#	Article	IF	CITATIONS
73	Normal-Mode Decomposition of Surface Power Distribution in Multiple-Coil Induction Heating Systems. IEEE Transactions on Magnetics, 2016, 52, 1-8.	2.1	12
74	A Versatile Multilevel Converter Platform for Cancer Treatment Using Irreversible Electroporation. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2016, 4, 236-242.	5.4	32
75	Dual-Output Boost Resonant Full-Bridge Topology and its Modulation Strategies for High-Performance Induction Heating Applications. IEEE Transactions on Industrial Electronics, 2016, 63, 3554-3561.	7.9	48
76	Operating Conditions Monitoring for High Power Density and Cost-Effective Resonant Power Converters. IEEE Transactions on Power Electronics, 2016, 31, 488-496.	7.9	8
77	Design and Implementation of PCB Inductors With Litz-Wire Structure for Conventional-Size Large-Signal Domestic Induction Heating Applications. IEEE Transactions on Industry Applications, 2015, 51, 2434-2442.	4.9	33
78	Optimized 4-coil inductor system arrangement for induction heating appliances. , 2015, , .		3
79	Minimization of vias in PCB implementations of planar coils with litz-wire structure. , 2015, , .		8
80	A review of pulse generation topologies for clinical electroporation. , 2015, , .		3
81	Series resonant multi-inverter prototype for domestic induction heating. , 2015, , .		1
82	Ultra high efficiency adaptable class-DE inverter for resonant power conversion. , 2015, , .		0
83	Performance Evaluation of Graphite Thin Slabs for Induction Heating Domestic Applications. IEEE Transactions on Industry Applications, 2015, 51, 2398-2404.	4.9	8
84	Advanced induction heating appliances using high-voltage GaN gate injection transistors. , 2015, , .		6
85	A Comparative Evaluation of SiC Power Devices for High-Performance Domestic Induction Heating. IEEE Transactions on Industrial Electronics, 2015, 62, 4795-4804.	7.9	44
86	Soft-Stop Optimal Trajectory Control for Improved Performance of the Series-Resonant Multiinverter for Domestic Induction Heating Applications. IEEE Transactions on Industrial Electronics, 2015, 62, 6251-6259.	7.9	15
87	Phaseâ€shift modulation in double halfâ€bridge inverter with common resonant capacitor for induction heating appliances. IET Power Electronics, 2015, 8, 1128-1136.	2.1	23
88	Analytical Model of the Half-Bridge Series Resonant Inverter for Improved Power Conversion Efficiency and Performance. IEEE Transactions on Power Electronics, 2015, 30, 4128-4143.	7.9	52
89	Frequency-Dependent Resistance of Planar Coils in Printed Circuit Board With Litz Structure. IEEE Transactions on Magnetics, 2014, 50, 1-9.	2.1	45
90	Analysis and design of high-efficiency resonant inverters for domestic induction heating applications. International Journal of Applied Electromagnetics and Mechanics, 2014, 44, 201-208.	0.6	11

#	Article	IF	CITATIONS
91	Soft-stop optimal trajectory control for improved operation of the series resonant multi-inverter. , 2014, , .		1
92	Efficiency improvement of switched-mode power converters under light-load conditions. , 2014, , .		0
93	Experimental evaluation of dynamic load changes in flexible induction heating appliances. , 2014, , .		2
94	Direct AC–AC Resonant Boost Converter for Efficient Domestic Induction Heating Applications. IEEE Transactions on Power Electronics, 2014, 29, 1128-1139.	7.9	67
95	AC Power Losses Model for Planar Windings With Rectangular Cross-Sectional Conductors. IEEE Transactions on Power Electronics, 2014, 29, 23-28.	7.9	61
96	Induction Heating Technology and Its Applications: Past Developments, Current Technology, and Future Challenges. IEEE Transactions on Industrial Electronics, 2014, 61, 2509-2520.	7.9	570
97	SiC BJT-based full-ZCS quasi-resonant converter with improved efficiency for induction heating applications. , 2014, , .		2
98	Performance evaluation of graphite thin slabs for induction heating domestic applications. , 2014, , .		0
99	Introduction to the Special Section on Induction Heating Systems. IEEE Transactions on Industrial Electronics, 2014, 61, 2504-2508.	7.9	13
100	Design and Implementation of a High-Efficiency Multiple-Output Resonant Converter for Induction Heating Applications Featuring Wide Bandgap Devices. IEEE Transactions on Power Electronics, 2014, 29, 2539-2549.	7.9	70
101	Efficient and Cost-Effective ZCS Direct AC–AC Resonant Converter for Induction Heating. IEEE Transactions on Industrial Electronics, 2014, 61, 2546-2555.	7.9	45
102	Loss analysis of multistranded twisted wires by using 3D-FEA simulation. , 2014, , .		7
103	FEA-Based Model of Elliptic Coils of Rectangular Cross Section. IEEE Transactions on Magnetics, 2014, 50, 1-7.	2.1	11
104	Design and implementation of PCB inductors with litz-wire structure for conventional-size large-signal domestic induction heating applications. , 2014, , .		20
105	Multi-MOSFET-Based Series Resonant Inverter for Improved Efficiency and Power Density Induction Heating Applications. IEEE Transactions on Power Electronics, 2014, 29, 4301-4312.	7.9	36
106	A Class-E Direct AC–AC Converter With Multicycle Modulation for Induction Heating Systems. IEEE Transactions on Industrial Electronics, 2014, 61, 2521-2530.	7.9	63
107	Full-bridge quasi-resonant class-DE inverter for optimized high frequency operation with GaN HEMT devices. , 2014, , .		3
108	Improved Operation of SiC–BJT-Based Series Resonant Inverter With Optimized Base Drive. IEEE Transactions on Power Electronics, 2014, 29, 5097-5101.	7.9	30

#	Article	IF	CITATIONS
109	Thermal design optimization of a high-efficiency resonant converter based on multi-MOSFET cells using the Pareto analysis. , 2014, , .		1
110	Highâ€efficiency parallel quasiâ€resonant current source inverter featuring SiC metalâ€oxide semiconductor fieldâ€effect transistors for induction heating systems with coupled inductors. IET Power Electronics, 2013, 6, 183-191.	2.1	30
111	High-efficiency high-power density series resonant inverter based on a multi-Mosfet cell implementation. , 2013, , .		3
112	Printed circuit board implementation of small inductors for domestic induction heating applications using a planar litz wire structure. , 2013, , .		11
113	Induction Heating Appliances: Toward More Flexible Cooking Surfaces. IEEE Industrial Electronics Magazine, 2013, 7, 35-47.	2.6	133
114	A comparative evaluation of high-efficiency resonant converters for domestic induction heating. , 2013, , .		2
115	Series resonant inverter with active snubber circuit for improved efficiency operation applied to domestic induction heating. , 2013, , .		5
116	Half-bridge resonant inverter with SiC cascode applied to domestic induction heating. , 2013, , .		6
117	Multi-platform simulator for resonant power converter courses. , 2013, , .		1
118	Synthesized voice videos for reusable learning objects. , 2013, , .		0
119	Quantitative Evaluation of Induction Efficiency in Domestic Induction Heating Applications. IEEE Transactions on Magnetics, 2013, 49, 1382-1389.	2.1	73
120	Class-D/DE Dual-Mode-Operation Resonant Converter for Improved-Efficiency Domestic Induction Heating System. IEEE Transactions on Power Electronics, 2013, 28, 1274-1285.	7.9	102
121	Modulation Scheme for Improved Operation of an RB-IGBT-Based Resonant Inverter Applied to Domestic Induction Heating. IEEE Transactions on Industrial Electronics, 2013, 60, 2066-2073.	7.9	68
122	Analysis of the Mutual Inductance of Planar-Lumped Inductive Power Transfer Systems. IEEE Transactions on Industrial Electronics, 2013, 60, 410-420.	7.9	128
123	Computational Modeling of Two Partly Coupled Coils Supplied by a Double Half-Bridge Resonant Inverter for Induction Heating Appliances. IEEE Transactions on Industrial Electronics, 2013, 60, 3092-3105.	7.9	76
124	Elliptic flat-type inductor for low-cost flexible active surface implementations of domestic induction heating appliances. , 2013, , .		2
125	Mutual Impedance of Small Ring-Type Coils for Multiwinding Induction Heating Appliances. IEEE Transactions on Power Electronics, 2013, 28, 1025-1035.	7.9	44
126	Upgrading of double seriesâ€resonant halfâ€bridge inverter to improve efficiency. Electronics Letters, 2013, 49, 1091-1092.	1.0	2

#	Article	IF	CITATIONS
127	Multiple-Output Resonant Matrix Converter for Multiple Induction Heaters. IEEE Transactions on Industry Applications, 2012, 48, 1387-1396.	4.9	66
128	PCB multi-track coils for domestic induction heating applications. , 2012, , .		2
129	Optimal gate drive circuit design for ZVS operation of SiC-JFET devices. Electronics Letters, 2012, 48, 1621-1622.	1.0	4
130	Educational opportunities based on the university-industry synergies in an open innovation framework. European Journal of Engineering Education, 2012, 37, 15-28.	2.3	23
131	Frequency-dependent modelling of domestic induction heating systems using numerical methods for accurate time-domain simulation. IET Power Electronics, 2012, 5, 1291.	2.1	32
132	First harmonic equivalent impedance of coupled inductive loads for induction heating applications. , 2012, , .		5
133	Practical issues when calculating AC losses for magnetic devices in PCB implementations. , 2012, , .		11
134	High-efficiency power converters for domestic induction heating applications. , 2012, , .		3
135	Intermodulation distortion in 1SW-ZVS multi-inverter for induction heating home appliances. , 2012, , .		8
136	Half-bridge resonant inverter for domestic induction heating based on silicon carbide technology. , 2012, , .		10
137	Dual-mode-operation half-bridge resonant converter for improved-efficiency induction heating system. , 2012, , .		8
138	An application example to gain an insight into the electromagnetic quasistatic approach concept for graduate students. , 2011, , .		0
139	Analysis of the coupling between small ring-type coils used in adaptable-size burners for domestic induction heating hobs. , 2011, , .		1
140	Configurable snubber network for efficiency optimisation of resonant converters applied to multi-load induction heating. Electronics Letters, 2011, 47, 989.	1.0	25
141	FEA tool based model of partly coupled coils used in domestic induction cookers. , 2011, , .		7
142	Passive network equivalent of an induction system for domestic cookers applications based on FEA tool simulation. , 2011, , .		3
143	Multiple-output resonant matrix converter for multiple-inductive-load systems. , 2011, , .		12
144	Analysis and Modeling of Planar Concentric Windings Forming Adaptable-Diameter Burners for Induction Heating Appliances. IEEE Transactions on Power Electronics, 2011, 26, 1546-1558.	7.9	59

#	Article	IF	CITATIONS
145	High Frequency Pulse Density Modulation for cost-effective and efficient multiple induction-heater architectures. , 2011, , .		2
146	Silicon carbide JFET resonant inverter for induction heating home appliances. , 2011, , .		10
147	Phase-shift control of dual half-bridge inverter feeding coupled loads for induction heating purposes. Electronics Letters, 2011, 47, 670.	1.0	34
148	Real-Time FPGA-Based Hardware-in-the-Loop Simulation Test Bench Applied to Multiple-Output Power Converters. IEEE Transactions on Industry Applications, 2011, 47, 853-860.	4.9	85
149	A Versatile Power Electronics Test-Bench Architecture Applied to Domestic Induction Heating. IEEE Transactions on Industrial Electronics, 2011, 58, 998-1007.	7.9	75
150	Series Resonant Multiinverter with Discontinuous-Mode Control for Improved Light-Load Operation. IEEE Transactions on Industrial Electronics, 2011, 58, 5163-5171.	7.9	78
151	COUPLING IMPEDANCE BETWEEN PLANAR COILS INSIDE A LAYERED MEDIA. Progress in Electromagnetics Research, 2011, 112, 381-396.	4.4	16
152	Series resonant inverter with selective harmonic operation applied to all-metal domestic induction heating. IET Power Electronics, 2011, 4, 587.	2.1	58
153	Educational activities and results obtained from a University-Industry collaborative framework experience. , 2011, , .		1
154	Pulse delay control strategy for improved power control and efficiency in multiple resonant load systems. , 2011, , .		4
155	An application of the impedance boundary condition for the design of coils used in domestic induction heating systems. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2011, 30, 1616-1625.	0.9	4
156	Efficiency-Oriented Design of ZVS Half-Bridge Series Resonant Inverter With Variable Frequency Duty Cycle Control. IEEE Transactions on Power Electronics, 2010, 25, 1671-1674.	7.9	158
157	Domestic Induction Appliances. IEEE Industry Applications Magazine, 2010, 16, 39-47.	0.4	164
158	Series resonant multi-inverter with discontinuous-mode control for improved light-load operation. , 2010, , .		11
159	Resonant inverter topologies for three concentric planar windings applied to domestic induction heating. Electronics Letters, 2010, 46, 1225.	1.0	33
160	Modeling of adaptable-diameter burners formed by concentric planar windings for domestic induction heating applications. , 2010, , .		1
161	Experimental setup for inductive efficiency measurements of domestic induction systems based on energy balance. , 2010, , .		6
162	A new single-instrument technique for parenchyma division and hemostasis in liver resection: a clinical feasibility study. American Journal of Surgery, 2010, 200, e75-e80.	1.8	20

#	Article	IF	CITATIONS
163	Multiple-output resonant inverter topology for multi-inductor loads. , 2010, , .		12
164	Real-time FPGA-based Hardware-in-the-Loop development test-bench for multiple output power converters. , 2010, , .		16
165	Identification of the material properties used in domestic induction heating appliances for system-level simulation and design purposes. , 2010, , .		12
166	Series-Resonant Multiinverter for Multiple Induction Heaters. IEEE Transactions on Power Electronics, 2010, 25, 2860-2868.	7.9	115
167	Embedded Ring-Type Inductors Modeling With Application to Induction Heating Systems. IEEE Transactions on Magnetics, 2009, 45, 5333-5343.	2.1	20
168	Load-Adaptive Control Algorithm of Half-Bridge Series Resonant Inverter for Domestic Induction Heating. IEEE Transactions on Industrial Electronics, 2009, 56, 3106-3116.	7.9	200
169	System-on-programmable-chip-based versatile modulation architecture applied to domestic induction heating. , 2009, , .		2
170	Research and development of a new RF-assisted device for bloodless rapid transection of the liver: Computational modeling and in vivo experiments. BioMedical Engineering OnLine, 2009, 8, 6.	2.7	28
171	Power Measurement by Output-Current Integration in Series Resonant Inverters. IEEE Transactions on Industrial Electronics, 2009, 56, 559-567.	7.9	33
172	Laparoscopic blood-saving liver resection using a new radiofrequency-assisted device: preliminary report of an inÂvivo study with pig liver. Surgical Endoscopy and Other Interventional Techniques, 2008, 22, 1384-1391.	2.4	17
173	Versatile High-Frequency Inverter Module for Large-Signal Inductive Loads Characterization Up to 1.5 MHz and 7 kW. IEEE Transactions on Power Electronics, 2008, 23, 75-87.	7.9	28
174	Efficiency model of planar loaded twisted-wire windings in a magnetic substrate for domestic induction heating appliances. Power Electronics Specialist Conference (PESC), IEEE, 2008, , .	0.0	3
175	Modeling Mutual Impedances of Loaded Non-Coaxial Inductors for Induction Heating Applications. IEEE Transactions on Magnetics, 2008, 44, 4115-4118.	2.1	14
176	The domestic induction heating appliance: An overview of recent research. IEEE Applied Power Electronics Conference and Exposition, 2008, , .	0.0	54
177	A radiofrequency-assisted device for bloodless rapid transection of the liver: A comparative study in a pig liver model. European Journal of Surgical Oncology, 2008, 34, 599-605.	1.0	15
178	Radiofrequency hepatic ablation with internally cooled electrodes and hybrid applicators with distant saline infusion using an in vivo porcine model. European Journal of Surgical Oncology, 2008, 34, 822-830.	1.0	14
179	FPGA Implementation of a Switching Frequency Modulation Circuit for EMI Reduction in Resonant Inverters for Induction Heating Appliances. IEEE Transactions on Industrial Electronics, 2008, 55, 11-20.	7.9	94
180	A new dynamic electrical model of domestic induction heating loads. IEEE Applied Power Electronics Conference and Exposition, 2008, , .	0.0	18

#	Article	IF	CITATIONS
181	Electromagnetic induction of planar windings with cylindrical symmetry between two half-spaces. Journal of Applied Physics, 2008, 103, .	2.5	22
182	Small ablation zones created previous to saline infusion result in enlargement of the coagulated area during perfusion RF ablation: anex vivoexperimental study. Physiological Measurement, 2007, 28, N29-N37.	2.1	2
183	FPGA-Based Power Measuring for Induction Heating Appliances Using Sigma–Delta A/D Conversion. IEEE Transactions on Industrial Electronics, 2007, 54, 1843-1852.	7.9	57
184	Temperature Influence on Equivalent Impedance and Efficiency of Inductor Systems for Domestic Induction Heating Appliances. IEEE Applied Power Electronics Conference and Exposition, 2007, , .	0.0	26
185	Controlled-resistance loads for induction heating applications using thin non-magnetic metallic layers. Electronics Letters, 2007, 43, 461.	1.0	1
186	Methods and procedures for accurate induction heating load measurement and characterization. , 2007, , .		11
187	Comparing simulation alternatives of FPGA-based controllers for switching converters. , 2007, , .		10
188	Using Mixed-Signal Simulation to Design a Digital Power Measurement System for Induction Heating Home Appliances. , 2007, , .		6
189	Modeling and Calculation of the Efficiency for Low-cost Round-wire Planar Windings in Domestic Induction Heating Applications. , 2007, , .		3
190	Resonant Inverter Topology for All-Metal Domestic Induction Heating. , 2007, , .		12
191	A model of losses in twisted-multistranded wires for planar windings used in domestic induction heating appliances. IEEE Applied Power Electronics Conference and Exposition, 2007, , .	0.0	16
192	A model of the equivalent impedance of the coupled winding-load system for a domestic induction heating application. , 2007, , .		11
193	RF tumor ablation with internally cooled electrodes and saline infusion: what is the optimal location of the saline infusion?. BioMedical Engineering OnLine, 2007, 6, 30.	2.7	21
194	Improved Performance of Half-Bridge Series Resonant Inverter for Induction Heating with Discontinuous Mode Control. IEEE Applied Power Electronics Conference and Exposition, 2007, , .	0.0	22
195	Dual 1.5-MHz 3.5-kW versatile half-bridge series-resonant inverter module for inductive load characterization. IEEE Applied Power Electronics Conference and Exposition, 2007, , .	0.0	7
196	High frequency inverter design for large-signal characterization of domestic induction heating load. Industrial Electronics Society (IECON), Annual Conference of IEEE, 2006, , .	0.0	1
197	Frequency-dependent resistance in Litz-wire planar windings for domestic induction heating appliances. IEEE Transactions on Power Electronics, 2006, 21, 856-866.	7.9	144
198	Analytical equivalent impedance for a planar circular induction heating system. IEEE Transactions on Magnetics, 2006, 42, 84-86.	2.1	81

#	Article	IF	CITATIONS
199	Enhancement of induction heating performance by sandwiched planar windings. Electronics Letters, 2006, 42, 241.	1.0	20
200	An FPGA-Based Digital Modulator for Full- or Half-Bridge Inverter Control. IEEE Transactions on Power Electronics, 2006, 21, 1479-1483.	7.9	45
201	Magnetic vector potential based model for eddy-current loss calculation in round-wire planar windings. IEEE Transactions on Magnetics, 2006, 42, 2152-2158.	2.1	31
202	Evolving technology in bipolar perfused radiofrequency ablation: assessment of efficacy, predictability and safety in a pig liver model. European Radiology, 2006, 16, 1826-1834.	4.5	29
203	Modeling of Planar Spiral Inductors Between Two Multilayer Media for Induction Heating Applications. IEEE Transactions on Magnetics, 2006, 42, 3719-3729.	2.1	70
204	Improved perfusion system for bipolar radiofrequency ablation of liver: preliminary findings from a computer modeling study. Physiological Measurement, 2006, 27, N55-N66.	2.1	24
205	A Two-Output Series-Resonant Inverter for Induction-Heating Cooking Appliances. IEEE Transactions on Power Electronics, 2005, 20, 815-822.	7.9	121
206	Premature roll-off in radiofrequency ablation using bipolar saline-enhanced electrodes. European Radiology, 2005, 15, 1495-1496.	4.5	6
207	Simple resistance calculation in litz-wire planar windings for induction cooking appliances. IEEE Transactions on Magnetics, 2005, 41, 1280-1288.	2.1	80
208	A Three-Level Converter and Its Application to Power Factor Correction. IEEE Transactions on Power Electronics, 2005, 20, 1319-1327.	7.9	79
209	Efficiency Optimization in ZVS Series Resonant Inverters With Asymmetrical Voltage-Cancellation Control. IEEE Transactions on Power Electronics, 2005, 20, 1036-1044.	7.9	52
210	Electric Influence of NaCl Concentration into the Tissue in Radiofrequency Ablation. Radiology, 2004, 232, 932-933.	7.3	9
211	Asymmetrical Voltage-Cancellation Control for Full-Bridge Series Resonant Inverters. IEEE Transactions on Power Electronics, 2004, 19, 461-469.	7.9	197
212	Large hepatic ablation with bipolar saline-enhanced radiofrequency: an experimental study in in vivo porcine liver with a novel approach. Journal of Surgical Research, 2003, 110, 193-201.	1.6	48
213	Bipolar Saline-enhanced Electrode for Radiofrequency Ablation: Results of Experimental Study of in Vivo Porcine Liver. Radiology, 2003, 229, 447-456.	7.3	65
214	Hepatic lesion ablation with bipolar saline-enhanced radiofrequency in the audible spectrum. Academic Radiology, 1999, 6, 680-686.	2.5	41
215	A synthesis method for generating switched electronic converters. IEEE Transactions on Power Electronics, 1998, 13, 1056-1068.	7.9	19
216	A unified discrete-time state-space model for switching converters. IEEE Transactions on Power Electronics, 1995, 10, 694-707.	7.9	54

#	Article	IF	CITATIONS
217	Derivation of some classical modeling methods for power electronic converters from a unified model. , 0, , .		1
218	A new ZVS resonant sine-wave inverter obtained by a synthesis method. , 0, , .		0
219	A VHDL electrothermal modeling of power electronic circuits. , 0, , .		2
220	EMI improvements using the switching frequency modulation in a resonant inverter for domestic induction heating appliances. , 0, , .		14
221	Frequency-dependent resistance in Litz-wire planar windings for all-metal domestic induction heating appliances. , 0, , .		9
222	An electromagnetic-based model for calculating the efficiency in domestic induction heating appliances. , 0, , .		11