
## Andrew J Watson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7015376/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Biological homeostasis of the global environment: the parable of Daisyworld. Tellus, Series B:<br>Chemical and Physical Meteorology, 2022, 35, 284.                                                                                            | 0.8 | 208       |
| 2  | A comparison of multiple regression and neural network techniques for mapping in situ<br>pCO <sub>2</sub> data. Tellus, Series B: Chemical and Physical Meteorology, 2022, 57, 375.                                                            | 0.8 | 30        |
| 3  | The Integrated Carbon Observation System in Europe. Bulletin of the American Meteorological Society, 2022, 103, E855-E872.                                                                                                                     | 1.7 | 44        |
| 4  | Tidal mixing of estuarine and coastal waters in the western English Channel is a control on spatial<br>and temporal variability in seawater CO <sub>2</sub> . Biogeosciences, 2022,<br>19, 1657-1674.                                          | 1.3 | 5         |
| 5  | Global Carbon Budget 2021. Earth System Science Data, 2022, 14, 1917-2005.                                                                                                                                                                     | 3.7 | 663       |
| 6  | The rise of angiosperms strengthened fire feedbacks and improved the regulation of atmospheric oxygen. Nature Communications, 2021, 12, 503.                                                                                                   | 5.8 | 18        |
| 7  | Winter Air ea CO <sub>2</sub> Fluxes Constructed From Summer Observations of the Polar Southern<br>Ocean Suggest Weak Outgassing. Journal of Geophysical Research: Oceans, 2021, 126, e2020JC016600.                                           | 1.0 | 10        |
| 8  | Circulation-driven variability of Atlantic anthropogenic carbon transports and uptake. Nature Geoscience, 2021, 14, 571-577.                                                                                                                   | 5.4 | 15        |
| 9  | Variability of North Atlantic CO <sub>2</sub> fluxes for the 2000–2017<br>period estimated from atmospheric inverse analyses. Biogeosciences, 2021, 18, 4549-4570.                                                                             | 1.3 | 1         |
| 10 | Revised estimates of ocean-atmosphere CO2 flux are consistent with ocean carbon inventory. Nature Communications, 2020, 11, 4422.                                                                                                              | 5.8 | 129       |
| 11 | Tracking the spread of a passive tracer through Southern Ocean water masses. Ocean Science, 2020, 16, 323-336.                                                                                                                                 | 1.3 | 9         |
| 12 | Meridional Overturning Circulation in a Multibasin Model. Part I: Dependence on Southern Ocean<br>Buoyancy Forcing. Journal of Physical Oceanography, 2020, 50, 1159-1178.                                                                     | 0.7 | 10        |
| 13 | Global Carbon Budget 2020. Earth System Science Data, 2020, 12, 3269-3340.                                                                                                                                                                     | 3.7 | 1,477     |
| 14 | Reconciling Observation and Model Trends in North Atlantic Surface CO <sub>2</sub> . Global<br>Biogeochemical Cycles, 2019, 33, 1204-1222.                                                                                                     | 1.9 | 14        |
| 15 | On the Future of Argo: A Global, Full-Depth, Multi-Disciplinary Array. Frontiers in Marine Science,<br>2019, 6, .                                                                                                                              | 1.2 | 235       |
| 16 | Key Uncertainties in the Recent Airâ€5ea Flux of CO <sub>2</sub> . Global Biogeochemical Cycles, 2019, 33, 1548-1563.                                                                                                                          | 1.9 | 54        |
| 17 | Constraining the Oceanic Uptake and Fluxes of Greenhouse Gases by Building an Ocean Network of<br>Certified Stations: The Ocean Component of the Integrated Carbon Observation System, ICOS-Oceans.<br>Frontiers in Marine Science, 2019, 6, . | 1.2 | 13        |
| 18 | Diapycnal Mixing in the Southern Ocean Diagnosed Using the DIMES Tracer and Realistic Velocity<br>Fields. Journal of Geophysical Research: Oceans, 2018, 123, 2615-2634.                                                                       | 1.0 | 2         |

| #  | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Long-Term Planetary Habitability and the Carbonate-Silicate Cycle. Astrobiology, 2018, 18, 469-480.                                                                                                                              | 1.5  | 20        |
| 20 | Global Carbon Budget 2017. Earth System Science Data, 2018, 10, 405-448.                                                                                                                                                         | 3.7  | 801       |
| 21 | Ocean ventilation and deoxygenation in a warming world: posters. Philosophical Transactions Series<br>A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20170241.                                                  | 1.6  | 1         |
| 22 | Ocean deoxygenation, the global phosphorus cycle and the possibility of human-caused large-scale<br>ocean anoxia. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences,<br>2017, 375, 20160318. | 1.6  | 43        |
| 23 | Ocean ventilation and deoxygenation in a warming world: introduction and overview. Philosophical<br>Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20170240.                                | 1.6  | 34        |
| 24 | A measurement system for vertical seawater profiles close to the air–sea interface. Ocean Science, 2017, 13, 649-660.                                                                                                            | 1.3  | 9         |
| 25 | Oceans on the edge of anoxia. Science, 2016, 354, 1529-1530.                                                                                                                                                                     | 6.0  | 31        |
| 26 | A multi-decade record of high-quality<br><i>f</i> CO <sub>2</sub> data in version 3 of the<br>Surface Ocean CO <sub>2</sub> Atlas (SOCAT). Earth System Science Data,<br>2016, 8, 383-413.                                       | 3.7  | 413       |
| 27 | Carbon dynamics of the Weddell Gyre, Southern Ocean. Global Biogeochemical Cycles, 2015, 29, 288-306.                                                                                                                            | 1.9  | 24        |
| 28 | Estimating a Submesoscale Diffusivity Using a Roughness Measure Applied to a Tracer Release<br>Experiment in the Southern Ocean. Journal of Physical Oceanography, 2015, 45, 1610-1631.                                          | 0.7  | 11        |
| 29 | Southern Ocean buoyancy forcing of ocean ventilation and glacial atmospheric CO2. Nature<br>Geoscience, 2015, 8, 861-864.                                                                                                        | 5.4  | 99        |
| 30 | Trends in anthropogenic CO2 in water masses of the Subtropical North Atlantic Ocean. Progress in Oceanography, 2015, 131, 21-32.                                                                                                 | 1.5  | 15        |
| 31 | Proterozoic oxygen rise linked to shifting balance between seafloor and terrestrial weathering.<br>Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9073-9078.                        | 3.3  | 66        |
| 32 | Direct Estimate of Lateral Eddy Diffusivity Upstream of Drake Passage. Journal of Physical<br>Oceanography, 2014, 44, 2593-2616.                                                                                                 | 0.7  | 68        |
| 33 | Rapid cross-density ocean mixing at mid-depths in the Drake Passage measured by tracer release.<br>Nature, 2013, 501, 408-411.                                                                                                   | 13.7 | 61        |
| 34 | Habitable Zone Lifetimes of Exoplanets around Main Sequence Stars. Astrobiology, 2013, 13, 833-849.                                                                                                                              | 1.5  | 92        |
| 35 | Dynamic seasonal cycling of inorganic carbon downstream of South Georgia, Southern Ocean.<br>Deep-Sea Research Part II: Topical Studies in Oceanography, 2012, 59-60, 25-35.                                                     | 0.6  | 31        |
| 36 | The runaway greenhouse: implications for future climate change, geoengineering and planetary<br>atmospheres. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences,<br>2012, 370, 4197-4216.     | 1.6  | 84        |

| #  | Article                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Diapycnal diffusivities from a tracer release experiment in the deep sea, integrated over 13 years.<br>Geophysical Research Letters, 2012, 39, .                                              | 1.5 | 8         |
| 38 | Monitoring and interpreting the ocean uptake of atmospheric CO <sub>2</sub> . Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 1997-2008.    | 1.6 | 8         |
| 39 | Symbiotic physiology promotes homeostasis in Daisyworld. Journal of Theoretical Biology, 2011, 274, 170-182.                                                                                  | 0.8 | 18        |
| 40 | Timing of Neoproterozoic glaciations linked to transport-limited global weathering. Nature<br>Geoscience, 2011, 4, 861-864.                                                                   | 5.4 | 83        |
| 41 | Meridional Density Gradients Do Not Control the Atlantic Overturning Circulation. Journal of<br>Physical Oceanography, 2010, 40, 368-380.                                                     | 0.7 | 54        |
| 42 | Rapid changes in surface water carbonate chemistry during Antarctic sea ice melt. Tellus, Series B:<br>Chemical and Physical Meteorology, 2010, 62, 621-635.                                  | 0.8 | 18        |
| 43 | Anthropogenic carbon accumulation in the subtropical North Atlantic. Journal of Geophysical Research, 2010, 115, .                                                                            | 3.3 | 26        |
| 44 | Tracking the Variable North Atlantic Sink for Atmospheric CO <sub>2</sub> . Science, 2009, 326, 1391-1393.                                                                                    | 6.0 | 173       |
| 45 | Nitrogen-enhanced greenhouse warming on earlyÂEarth. Nature Geoscience, 2009, 2, 891-896.                                                                                                     | 5.4 | 247       |
| 46 | Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep-Sea Research Part II: Topical Studies in Oceanography, 2009, 56, 554-577. | 0.6 | 1,540     |
| 47 | Trends in North Atlantic sea-surface fCO2 from 1990 to 2006. Deep-Sea Research Part II: Topical Studies<br>in Oceanography, 2009, 56, 620-629.                                                | 0.6 | 119       |
| 48 | Transports of Nordic Seas water masses and excess SF6 through Fram Strait to the Arctic Ocean.<br>Progress in Oceanography, 2008, 78, 1-11.                                                   | 1.5 | 32        |
| 49 | The Greenland Sea tracer experiment 1996–2002: Horizontal mixing and transport of Greenland Sea<br>Intermediate Water. Progress in Oceanography, 2008, 78, 85-105.                            | 1.5 | 32        |
| 50 | Ocean biogeochemical response to phytoplanktonâ€ <b>i</b> ight feedback in a global model. Journal of<br>Geophysical Research, 2008, 113, .                                                   | 3.3 | 33        |
| 51 | Implications of an Anthropic Model of Evolution for Emergence of Complex Life and Intelligence.<br>Astrobiology, 2008, 8, 175-185.                                                            | 1.5 | 42        |
| 52 | An operational monitoring system to provide indicators of CO2-related variables in the ocean. ICES<br>Journal of Marine Science, 2008, 65, 1498-1503.                                         | 1.2 | 27        |
| 53 | The island mass effect and biological carbon uptake for the subantarctic Crozet Archipelago. Deep-Sea<br>Research Part II: Topical Studies in Oceanography, 2007, 54, 2174-2190.              | 0.6 | 50        |
| 54 | A variable and decreasing sink for atmospheric CO <sub>2</sub> in the North Atlantic. Journal of<br>Geophysical Research, 2007, 112, .                                                        | 3.3 | 195       |

| #  | Article                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Short-circuiting of the overturning circulation in the Antarctic Circumpolar Current. Nature, 2007, 447, 194-197.                                                                                          | 13.7 | 81        |
| 56 | Matching carbon pools and fluxes for the Southern Ocean Iron Release Experiment (SOIREE). Deep-Sea<br>Research Part I: Oceanographic Research Papers, 2006, 53, 1941-1960.                                 | 0.6  | 7         |
| 57 | The role of Southern Ocean mixing and upwelling in glacial-interglacial atmospheric CO2 change.<br>Tellus, Series B: Chemical and Physical Meteorology, 2006, 58, 73-87.                                   | 0.8  | 167       |
| 58 | Bistability of atmospheric oxygen and the Great Oxidation. Nature, 2006, 443, 683-686.                                                                                                                     | 13.7 | 243       |
| 59 | The CO2 system in a Redfield context during an iron enrichment experiment in the Southern Ocean.<br>Marine Chemistry, 2005, 95, 89-105.                                                                    | 0.9  | 23        |
| 60 | Seasonal sea-surface carbon dioxide in the Azores area. Marine Chemistry, 2005, 96, 35-51.                                                                                                                 | 0.9  | 15        |
| 61 | Can limited ocean mixing buffer rapid climate change?. Tellus, Series A: Dynamic Meteorology and Oceanography, 2005, 57, 676-690.                                                                          | 0.8  | 5         |
| 62 | Intermediate water from the Greenland Sea in the Faroe Bank Channel: spreading of released sulphur<br>hexafluoride. Deep-Sea Research Part I: Oceanographic Research Papers, 2005, 52, 279-294.            | 0.6  | 18        |
| 63 | Iron and mixing affect biological carbon uptake in SOIREE and EisenEx, two Southern Ocean iron<br>fertilisation experiments. Deep-Sea Research Part I: Oceanographic Research Papers, 2005, 52, 1001-1019. | 0.6  | 38        |
| 64 | Bio-optical feedbacks among phytoplankton, upper ocean physics and sea-ice in a global model.<br>Geophysical Research Letters, 2005, 32, .                                                                 | 1.5  | 162       |
| 65 | Air-sea gas exchange in Antarctic waters. Antarctic Science, 2004, 16, 517-529.                                                                                                                            | 0.5  | 18        |
| 66 | Biotic enhancement of weathering, atmospheric oxygen and carbon dioxide in the Neoproterozoic.<br>Geophysical Research Letters, 2004, 31, n/a-n/a.                                                         | 1.5  | 96        |
| 67 | A decrease in the sink for atmospheric CO2in the North Atlantic. Geophysical Research Letters, 2004, 31, n/a-n/a.                                                                                          | 1.5  | 92        |
| 68 | Turbulent diapycnal mixing in the Nordic seas. Journal of Geophysical Research, 2004, 109, .                                                                                                               | 3.3  | 37        |
| 69 | Carbon Dioxide Fluxes in the Global Ocean. , 2003, , 123-143.                                                                                                                                              |      | 36        |
| 70 | Implications of coral reef buildup for the controls on atmospheric CO2since the Last Glacial<br>Maximum. Paleoceanography, 2003, 18, n/a-n/a.                                                              | 3.0  | 90        |
| 71 | Modeling the response of the oceanic Si inventory to perturbation, and consequences for atmospheric CO2. Global Biogeochemical Cycles, 2002, 16, 19-1-19-25.                                               | 1.9  | 50        |
| 72 | Long-lived vortices as a mode of deep ventilation in the Greenland Sea. Nature, 2002, 416, 525-527.                                                                                                        | 13.7 | 89        |

| #  | Article                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Determination of Persian Gulf Water Transport and oxygen utilisation rates using SF6as a novel transient tracer. Geophysical Research Letters, 2001, 28, 815-818.                                                                          | 1.5  | 29        |
| 74 | Chlorofluorocarbon-derived formation rates of the deep and bottom waters of the Weddell Sea.<br>Journal of Geophysical Research, 2001, 106, 2899-2919.                                                                                     | 3.3  | 22        |
| 75 | A Lagrangian SF6 tracer study of an anticyclonic eddy in the North Atlantic: patch evolution, vertical<br>mixing and nutrient supply to the mixed layer. Deep-Sea Research Part II: Topical Studies in<br>Oceanography, 2001, 48, 705-724. | 0.6  | 92        |
| 76 | Southern Ocean iron enrichment promotes inorganic carbon drawdown. Deep-Sea Research Part II:<br>Topical Studies in Oceanography, 2001, 48, 2483-2507.                                                                                     | 0.6  | 59        |
| 77 | Tracer Release Experiments. , 2001, , 333-339.                                                                                                                                                                                             |      | Ο         |
| 78 | Tracer Release Experiments. , 2001, , 3004-3009.                                                                                                                                                                                           |      | 0         |
| 79 | Tracer Release Experiments. , 2001, , 87-92.                                                                                                                                                                                               |      | Ο         |
| 80 | A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization.<br>Nature, 2000, 407, 695-702.                                                                                                               | 13.7 | 1,417     |
| 81 | Redfield revisited: 1. Regulation of nitrate, phosphate, and oxygen in the ocean. Global Biogeochemical Cycles, 2000, 14, 225-248.                                                                                                         | 1.9  | 182       |
| 82 | Redfield revisited: 2. What regulates the oxygen content of the atmosphere?. Global Biogeochemical Cycles, 2000, 14, 249-268.                                                                                                              | 1.9  | 144       |
| 83 | In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile<br>tracers. Global Biogeochemical Cycles, 2000, 14, 373-387.                                                                            | 1.9  | 1,177     |
| 84 | On the sources of Weddell Gyre Antarctic Bottom Water. Journal of Geophysical Research, 2000, 105, 1093-1104.                                                                                                                              | 3.3  | 81        |
| 85 | Oceanographic tracer release experiments using sulphur hexafluoride. Journal of Geophysical<br>Research, 2000, 105, 14325-14337.                                                                                                           | 3.3  | 37        |
| 86 | The sensitivity of atmospheric CO2 concentrations to input of iron to the oceans. Tellus, Series B:<br>Chemical and Physical Meteorology, 1999, 51, 453-460.                                                                               | 0.8  | 10        |
| 87 | Coevolution of the Earth's environment and life: Goldilocks, Gaia and the anthropic principle.<br>Geological Society Special Publication, 1999, 150, 75-88.                                                                                | 0.8  | 31        |
| 88 | Assessing the seasonality of the oceanic sink for CO2in the northern hemisphere. Global<br>Biogeochemical Cycles, 1999, 13, 273-286.                                                                                                       | 1.9  | 20        |
| 89 | Modeling the geochemical cycle of iron in the oceans and its impact on atmospheric CO2concentrations. Clobal Biogeochemical Cycles, 1999, 13, 727-736.                                                                                     | 1.9  | 107       |
| 90 | Variation of pCO2 along a North Atlantic shipping route (U.K. to the Caribbean): A year of automated observations. Marine Chemistry, 1998, 60, 147-164.                                                                                    | 0.9  | 89        |

| #   | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Mixing of a tracer in the pycnocline. Journal of Geophysical Research, 1998, 103, 21499-21529.                                                                                                                                       | 3.3  | 488       |
| 92  | Physical evolution of the IronEx-I open ocean tracer patch. Deep-Sea Research Part II: Topical Studies in Oceanography, 1998, 45, 947-975.                                                                                           | 0.6  | 24        |
| 93  | Sulphur hexafluoride as a tracer of biogeochemical and physical processes in an open-ocean iron<br>fertilisation experiment. Deep-Sea Research Part II: Topical Studies in Oceanography, 1998, 45, 977-994.                          | 0.6  | 72        |
| 94  | Marine biological controls on climate via the carbon and sulphur geochemical cycles. Philosophical<br>Transactions of the Royal Society B: Biological Sciences, 1998, 353, 41-51.                                                    | 1.8  | 60        |
| 95  | Variability ofpCO2in the tropical Atlantic in 1995. Journal of Geophysical Research, 1998, 103, 5623-5634.                                                                                                                           | 3.3  | 47        |
| 96  | The flow of Antarctic bottom water to the southwest Indian Ocean estimated using CFCs. Journal of<br>Geophysical Research, 1998, 103, 27637-27653.                                                                                   | 3.3  | 62        |
| 97  | Volcanic iron, CO2, ocean productivity and climate. Nature, 1997, 385, 587-588.                                                                                                                                                      | 13.7 | 110       |
| 98  | On the use of carbon tetrachloride as a transient tracer of Weddell Sea deep and bottom waters.<br>Geophysical Research Letters, 1996, 23, 2943-2946.                                                                                | 1.5  | 22        |
| 99  | A summer-time sink for atmospheric carbon dioxide in the Southern Ocean between 88°W and 80°E.<br>Deep-Sea Research Part II: Topical Studies in Oceanography, 1995, 42, 1081-1091.                                                   | 0.6  | 55        |
| 100 | Thermal skin effect and the air-sea flux of carbon dioxide: A seasonal high-resolution estimate. Global<br>Biogeochemical Cycles, 1995, 9, 253-262.                                                                                  | 1.9  | 49        |
| 101 | Chlorofluorocarbon-113 in the northeast Atlantic. Journal of Geophysical Research, 1995, 100, 10745.                                                                                                                                 | 3.3  | 21        |
| 102 | Automated vacuum analysis of sulphur hexafluoride in seawater: derivation of the atmospheric trend (1970–1993) and potential as a transient tracer. Marine Chemistry, 1994, 48, 57-69.                                               | 0.9  | 86        |
| 103 | The impact of a coccolithophore bloom on oceanic carbon uptake in the northeast Atlantic during summer 1991. Deep-Sea Research Part I: Oceanographic Research Papers, 1994, 41, 297-314.                                             | 0.6  | 146       |
| 104 | Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment.<br>Nature, 1993, 364, 701-703.                                                                                                          | 13.7 | 903       |
| 105 | Diurnal variation in surface pCO2 and O2 at 60°N, 20°W in the North Atlantic. Deep-Sea Research Part<br>II: Topical Studies in Oceanography, 1993, 40, 409-422.                                                                      | 0.6  | 55        |
| 106 | The influence of the spring phytoplankton bloom on carbon dioxide and oxygen concentrations in the surface waters of the northeast Atlantic during 1989. Deep-sea Research Part A, Oceanographic Research Papers, 1992, 39, 137-152. | 1.6  | 33        |
| 107 | The BOFS 1990 spring bloom experiment: Temporal evolution and spatial variability of the hydrographic field. Progress in Oceanography, 1992, 29, 235-281.                                                                            | 1.5  | 58        |
| 108 | The Santa Monica Basin tracer experiment: A study of diapycnal and isopycnal mixing. Journal of<br>Geophysical Research, 1991, 96, 8695-8718.                                                                                        | 3.3  | 72        |

| #   | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Integrating samplers for the deep sea. Journal of Geophysical Research, 1991, 96, 8727-8732.                                                                                                                              | 3.3  | 9         |
| 110 | Analysis of sulfur hexafluoride in seawater. Journal of Geophysical Research, 1991, 96, 8733-8740.                                                                                                                        | 3.3  | 71        |
| 111 | The Santa Monica Basin tracer experiment: Comparison of release methods and performance of perfluorodecalin and sulfur hexafluoride. Journal of Geophysical Research, 1991, 96, 8719-8725.                                | 3.3  | 20        |
| 112 | Design of a small-scale in situ iron fertilization experiment. Limnology and Oceanography, 1991, 36, 1960-1965.                                                                                                           | 1.6  | 49        |
| 113 | Air–sea gas exchange in rough and stormy seas measured by a dual-tracer technique. Nature, 1991, 349,<br>145-147.                                                                                                         | 13.7 | 280       |
| 114 | Spatial variability in the sink for atmospheric carbon dioxide in the North Atlantic. Nature, 1991, 350, 50-53.                                                                                                           | 13.7 | 191       |
| 115 | Sulphur hexafluoride and helium-3 as sea-water tracers: deployment techniques and continuous underway analysis for sulphur hexafluoride. Analytica Chimica Acta, 1991, 249, 555-562.                                      | 2.6  | 42        |
| 116 | The use of Deliberately Injected Tracers for the Study of Diapycnal Mixing in the Ocean. Elsevier<br>Oceanography Series, 1988, 46, 11-20.                                                                                | 0.1  | 3         |
| 117 | Reply to "Is gullying associated with highly sodic colluvium? Further comment to the environmental<br>interpretation of southern African dongas― Palaeogeography, Palaeoclimatology, Palaeoecology,<br>1987, 58, 123-128. | 1.0  | 7         |
| 118 | Perfluorodecalin and sulphur hexafluoride as purposeful marine tracers: some deployment and<br>analysis techniques. Deep-sea Research Part A, Oceanographic Research Papers, 1987, 34, 19-31.                             | 1.6  | 32        |
| 119 | A deliberate tracer experiment in Santa Monica Basin. Nature, 1986, 323, 322-324.                                                                                                                                         | 13.7 | 52        |
| 120 | Recent history of atmospheric trace gas concentrations deduced from measurements in the deep sea:<br>Application to sulphur hexafluoride and carbon tetrachloride. Atmospheric Environment, 1985, 19,<br>1477-1484.       | 1.1  | 33        |
| 121 | Composition of particles in the global ocean. Deep-sea Research Part A, Oceanographic Research<br>Papers, 1985, 32, 1023-1039.                                                                                            | 1.6  | 27        |
| 122 | Temperatures in a runaway greenhouse on the evolving Venus: implications for water loss. Earth and<br>Planetary Science Letters, 1984, 68, 1-6.                                                                           | 1.8  | 28        |
| 123 | Biological homeostasis of the global environment: the parable of Daisyworld. Tellus, Series B:<br>Chemical and Physical Meteorology, 1983, 35B, 284-289.                                                                  | 0.8  | 223       |
| 124 | New observations on the prehistory and palaeoclimate of the Late Pleistocene in southern Africa.<br>World Archaeology, 1982, 13, 372-381.                                                                                 | 0.5  | 8         |
| 125 | The regulation of carbon dioxide and climate: Gaia or geochemistry. Planetary and Space Science, 1982, 30, 795-802.                                                                                                       | 0.9  | 86        |
| 126 | Stability of Pluto's atmosphere. Icarus, 1982, 51, 665-667.                                                                                                                                                               | 1.1  | 107       |

| #   | Article                                                                                                                        | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | The dynamics of a rapidly escaping atmosphere: Applications to the evolution of Earth and Venus.<br>Icarus, 1981, 48, 150-166. | 1.1 | 473       |
| 128 | Methanogenesis, fires and the regulation of atmospheric oxygen. BioSystems, 1978, 10, 293-298.                                 | 0.9 | 170       |
| 129 | Electron-capture detector. Journal of Chromatography A, 1978, 158, 123-138.                                                    | 1.8 | 71        |