
Xavier Costa-Pérez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7015278/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ONETS: Online Network Slice Broker From Theory to Practice. IEEE Transactions on Wireless Communications, 2022, 21, 121-134.	9.2	14
2	SARDO: An Automated Search-and-Rescue Drone-Based Solution for Victims Localization. IEEE Transactions on Mobile Computing, 2022, 21, 3312-3325.	5.8	42
3	Adversarial Attacks Against Deep Learning-Based Network Intrusion Detection Systems and Defense Mechanisms. IEEE/ACM Transactions on Networking, 2022, 30, 1294-1311.	3.8	24
4	MARISA: A Self-configuring Metasurfaces Absorption and Reflection Solution Towards 6G. , 2022, , .		15
5	LACO: A Latency-Driven Network Slicing Orchestration in Beyond-5G Networks. IEEE Transactions on Wireless Communications, 2021, 20, 667-682.	9.2	18
6	RISMA: Reconfigurable Intelligent Surfaces Enabling Beamforming for IoT Massive Access. IEEE Journal on Selected Areas in Communications, 2021, 39, 1072-1085.	14.0	53
7	Integrating Fronthaul and Backhaul Networks: Transport Challenges and Feasibility Results. IEEE Transactions on Mobile Computing, 2021, 20, 533-549.	5.8	13
8	vrAln: Deep Learning based Orchestration for Computing and Radio Resources in vRANs. IEEE Transactions on Mobile Computing, 2021, , 1-1.	5.8	13
9	Automated Service Provisioning and Hierarchical SLA Management in 5G Systems. IEEE Transactions on Network and Service Management, 2021, 18, 4669-4684.	4.9	10
10	5Growth: An End-to-End Service Platform for Automated Deployment and Management of Vertical Services over 5G Networks. IEEE Communications Magazine, 2021, 59, 84-90.	6.1	54
11	An Optimal Deployment Framework for Multi-Cloud Virtualized Radio Access Networks. IEEE Transactions on Wireless Communications, 2021, 20, 2251-2265.	9.2	23
12	Bayesian Online Learning for Energy-Aware Resource Orchestration in Virtualized RANs. , 2021, , .		15
13	Ï€-ROAD: a Learn-as-You-Go Framework for On-Demand Emergency Slices in V2X Scenarios. , 2021, , .		4
14	Demonstrating a Bayesian Online Learning for Energy-Aware Resource Orchestration in vRANs. , 2021, , \cdot		4
15	Multi-Domain Solutions for the Deployment of Private 5G Networks. IEEE Access, 2021, 9, 106865-106884.	4.2	21
16	RISe of Flight: RIS-Empowered UAV Communications for Robust and Reliable Air-to-Ground Networks. IEEE Open Journal of the Communications Society, 2021, 2, 1616-1629.	6.9	24
17	O-RAN: Disrupting the Virtualized RAN Ecosystem. IEEE Communications Standards Magazine, 2021, 5, 96-103.	4.9	78

18 Nuberu. , 2021, , .

#	Article	IF	CITATIONS
19	PAPIR: Practical RIS-aided Localization via Statistical User Information. , 2021, , .		16
20	EdgeBOL. , 2021, , .		10
21	LaSR: A Supple Multi-Connectivity Scheduler for Multi-RAT OFDMA Systems. IEEE Transactions on Mobile Computing, 2020, 19, 624-639.	5.8	14
22	A Machine Learning Approach to 5G Infrastructure Market Optimization. IEEE Transactions on Mobile Computing, 2020, 19, 498-512.	5.8	80
23	DeepCog: Optimizing Resource Provisioning in Network Slicing With Al-Based Capacity Forecasting. IEEE Journal on Selected Areas in Communications, 2020, 38, 361-376.	14.0	72
24	Benchmarking open source NFV MANO systems: OSM and ONAP. Computer Communications, 2020, 161, 86-98.	5.1	36
25	System-Level Optimization in Poisson Cellular Networks: An Approach Based on the Generalized Benders Decomposition. IEEE Wireless Communications Letters, 2020, 9, 1773-1777.	5.0	4
26	Automating Vertical Services Deployments over the 5CT Platform. IEEE Communications Magazine, 2020, 58, 44-50.	6.1	9
27	ARENA: A Data-Driven Radio Access Networks Analysis of Football Events. IEEE Transactions on Network and Service Management, 2020, 17, 2634-2647.	4.9	3
28	NSBchain: A Secure Blockchain Framework for Network Slicing Brokerage. , 2020, , .		35
29	Resource Allocation for Network Slicing in Mobile Networks. IEEE Access, 2020, 8, 214696-214706.	4.2	25
30	Multiservice-Based Network Slicing Orchestration With Impatient Tenants. IEEE Transactions on Wireless Communications, 2020, 19, 5010-5024.	9.2	22
31	Tiki-Taka. , 2020, , .		17
32	Al-Based Autonomous Control, Management, and Orchestration in 5G: From Standards to Algorithms. IEEE Network, 2020, 34, 14-20.	6.9	20
33	STORNS: Stochastic Radio Access Network Slicing. , 2019, , .		10
34	RL-NSB: Reinforcement Learning-Based 5G Network Slice Broker. IEEE/ACM Transactions on Networking, 2019, 27, 1543-1557.	3.8	80
35	Testbeds for Future Wireless Networks. Wireless Communications and Mobile Computing, 2019, 2019, 1-2.	1.2	2

36 vrAln., 2019,,.

3

#	Article	IF	CITATIONS
37	Latency-driven Network Slices Orchestration. , 2019, , .		1
38	A Utility-Driven Multi-Queue Admission Control Solution for Network Slicing. , 2019, , .		34
39	DeepCog: Cognitive Network Management in Sliced 5G Networks with Deep Learning. , 2019, , .		116
40	Resource Sharing Efficiency in Network Slicing. IEEE Transactions on Network and Service Management, 2019, 16, 909-923.	4.9	46
41	MANOaaS: A Multi-Tenant NFV MANO for 5G Network Slices. IEEE Communications Magazine, 2019, 57, 103-109.	6.1	34
42	Network Slicing Games: Enabling Customization in Multi-Tenant Mobile Networks. IEEE/ACM Transactions on Networking, 2019, 27, 662-675.	3.8	86
43	\$alpha\$-OMC: Cost-Aware Deep Learning for Mobile Network Resource Orchestration. , 2019, , .		6
44	WizHaul: On the Centralization Degree of Cloud RAN Next Generation Fronthaul. IEEE Transactions on Mobile Computing, 2018, 17, 2452-2466.	5.8	49
45	Network Slicing for 5G Networks. , 2018, , 327-370.		3
46	Overbooking Network Slices End-to-End. , 2018, , .		5
47	ORLA/OLAA: Orthogonal Coexistence of LAA and WiFi in Unlicensed Spectrum. IEEE/ACM Transactions on Networking, 2018, 26, 2665-2678.	3.8	22
48	Overbooking network slices through yield-driven end-to-end orchestration. , 2018, , .		70
49	FluidRAN: Optimized vRAN/MEC Orchestration. , 2018, , .		75
50	Joint Optimization of Edge Computing Architectures and Radio Access Networks. IEEE Journal on Selected Areas in Communications, 2018, 36, 2433-2443.	14.0	51
51	CARES: Computation-Aware Scheduling in Virtualized Radio Access Networks. IEEE Transactions on Wireless Communications, 2018, 17, 7993-8006.	9.2	24
52	How Should I Slice My Network?. , 2018, , .		60
53	Enabling Vertical Industries Adoption of 5G Technologies: A Cartography of Evolving Solutions. , 2018, , .		9
54	z-TORCH: An Automated NFV Orchestration and Monitoring Solution. IEEE Transactions on Network and Service Management, 2018, 15, 1292-1306.	4.9	47

XAVIER COSTA-PéREZ

#	Article	IF	CITATIONS
55	Network Slicing for Guaranteed Rate Services: Admission Control and Resource Allocation Games. IEEE Transactions on Wireless Communications, 2018, 17, 6419-6432.	9.2	105
56	OVNES: Demonstrating 5G network slicing overbooking on real deployments. , 2018, , .		18
57	5G-TRANSFORMER: Slicing and Orchestrating Transport Networks for Industry Verticals. IEEE Communications Magazine, 2018, 56, 78-84.	6.1	126
58	5G-Crosshaul: An SDN/NFV Integrated Fronthaul/Backhaul Transport Network Architecture. IEEE Wireless Communications, 2017, 24, 38-45.	9.0	93
59	Mobile traffic forecasting for maximizing 5G network slicing resource utilization. , 2017, , .		197
60	Multi-Tenant Radio Access Network Slicing: Statistical Multiplexing of Spatial Loads. IEEE/ACM Transactions on Networking, 2017, 25, 3044-3058.	3.8	119
61	5G-Crosshaul Network Slicing: Enabling Multi-Tenancy in Mobile Transport Networks. IEEE Communications Magazine, 2017, 55, 128-137.	6.1	304
62	Optimising 5G infrastructure markets: The business of network slicing. , 2017, , .		129
63	Toward the network of the future: From enabling technologies to 5G concepts. Transactions on Emerging Telecommunications Technologies, 2017, 28, e3205.	3.9	25
64	Novel Resource and Energy Management for 5G integrated backhaul/fronthaul (5G-Crosshaul). , 2017, ,		13
65	Massive Machine-Type Communications. IEEE Network, 2017, 31, 6-7.	6.9	26
66	Slice as a Service (SlaaS) Optimal IoT Slice Resources Orchestration. , 2017, , .		35
67	Network slicing games: Enabling customization in multi-tenant networks. , 2017, , .		74
68	Sharing of crosshaul networks via a multi-domain exchange environment for 5G services. , 2017, , .		3
69	Leading innovations towards 5G: Europe's perspective in 5G infrastructure public-private partnership (5G-PPP). , 2017, , .		6
70	RAVA $\hat{a} \in $ " Resource aware VNF agnostic NFV orchestration method for virtualized networks. , 2016, , .		3
71	A capacity broker architecture and framework for multi-tenant support in LTE-A networks. , 2016, , .		11
72	From network sharing to multi-tenancy: The 5G network slice broker. , 2016, 54, 32-39.		399

5

#	Article	IF	CITATIONS
73	5G rosshaul: An SDN/NFV control and data plane architecture for the 5G integrated Fronthaul/Backhaul. Transactions on Emerging Telecommunications Technologies, 2016, 27, 1196-1205.	3.9	24
74	Orchestration of Crosshaul slices from federated administrative domains. , 2016, , .		6
75	Service-oriented resource virtualization for evolving TDD networks towards 5G. , 2016, , .		8
76	A service-tailored TDD cell-less architecture. , 2016, , .		1
77	TD-LTE virtual cells: An SDN architecture for user-centric multi-eNB elastic resource management. Computer Communications, 2016, 83, 1-15.	5.1	12
78	On spectrum and infrastructure sharing in multi-operator cellular networks. , 2016, , .		5
79	On the benefits of time-varying routing in realistic mobile backhaul networks. , 2015, , .		Ο
80	RMSC: A Cell Slicing Controller for Virtualized Multi-Tenant Mobile Networks. , 2015, , .		21
81	E-Diophantine estimating peak allocated capacity in wireless networks. Computer Communications, 2015, 60, 1-11.	5.1	1
82	Xhaul: toward an integrated fronthaul/backhaul architecture in 5G networks. IEEE Wireless Communications, 2015, 22, 32-40.	9.0	132
83	SOLOR: Self-Optimizing WLANs With Legacy-Compatible Opportunistic Relays. IEEE/ACM Transactions on Networking, 2015, 23, 1202-1215.	3.8	3
84	Radio access network virtualization for future mobile carrier networks. , 2013, 51, 27-35.		228
85	RIA-ICCS: Intercell coordinated scheduling exploiting application Reservation Information. , 2013, , .		1
86	Latest trends in telecommunication standards. Computer Communication Review, 2013, 43, 64-71.	1.8	19
87	Asymmetric Uplink-Downlink Assignment for Energy-Efficient Mobile Communication Systems. , 2012, , .		13
88	Leveraging 802.11n frame aggregation to enhance QoS and power consumption in Wi-Fi networks. Computer Networks, 2012, 56, 2896-2911.	5.1	27
89	On centralized schedulers for 802.11e WLANs distribution <i>versus</i> grouping of resources allocation. Wireless Communications and Mobile Computing, 2012, 12, 1175-1190.	1.2	1
90	Designing energy efficient access points with Wi-Fi Direct. Computer Networks, 2011, 55, 2838-2855.	5.1	44

Xavier Costa-Pérez

#	Article	IF	CITATIONS
91	IEEE 802.11E QoS and power saving features overview and analysis of combined performance [Accepted from Open Call]. IEEE Wireless Communications, 2010, 17, 88-96.	9.0	56
92	E-Diophantine: An Admission Control Algorithm for WiMAX Networks. , 2010, , .		3
93	An adaptive solution for Wireless LAN distributed power saving modes. Computer Networks, 2009, 53, 3011-3030.	5.1	15
94	On the Challenges for the Maximization of Radio Resources Usage in WiMAX Networks. , 2008, , .		14
95	A Protocol Enhancement for IEEE 802.11 Distributed Power Saving Mechanisms No Data Acknowledgement. , 2007, , .		5
96	On distributed power saving mechanisms of wireless LANs 802.11e U-APSD vs 802.11 power save mode. Computer Networks, 2007, 51, 2326-2344.	5.1	15
97	AU-APSD: Adaptive IEEE 802.11e Unscheduled Automatic Power Save Delivery. , 2006, , .		15
98	Analysis of the integration of IEEE 802.11E capabilities in battery limited mobile devices. IEEE Wireless Communications, 2005, 12, 26-32.	9.0	23
99	Stochastic Properties of the Random Waypoint Mobility Model. Wireless Networks, 2004, 10, 555-567.	3.0	640
100	A simulation study on the performance of Mobile IPv6 in a WLAN-based cellular network. Computer Networks, 2002, 40, 191-204.	5.1	39
101	Service differentiation extensions for elastic and real-time traffic in 802.11 wireless LAN. , 0, , .		26
102	A performance study of fast handovers for mobile IPv6. , 0, , .		16
103	A performance study of hierarchical mobile IPv6 from a system perspective. , 0, , .		26
104	Utilization of the IEEE802.11 power save mode with IP paging. , 0, , .		3
105	APSM: bounding the downlink delay for 802.11 power save mode. , 0, , .		13