
Antonio Rampino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7015134/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Abnormal RasGRP1 Expression in the Post-Mortem Brain and Blood Serum of Schizophrenia Patients. Biomolecules, 2022, 12, 328.	4.0	4
2	Machine Learning algorithm unveils glutamatergic alterations in the post-mortem schizophrenia brain. NPJ Schizophrenia, 2022, 8, 8.	3.6	16
3	Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature, 2022, 604, 502-508.	27.8	929
4	Genetic control of variability in subcortical and intracranial volumes. Molecular Psychiatry, 2021, 26, 3876-3883.	7.9	6
5	The interaction between cannabis use and a CB1-related polygenic co-expression index modulates dorsolateral prefrontal activity during working memory processing. Brain Imaging and Behavior, 2021, 15, 288-299.	2.1	11
6	Machine learning-based ability to classify psychosis and early stages of disease through parenting and attachment-related variables is associated with social cognition. BMC Psychology, 2021, 9, 47.	2.1	7
7	Evidence of an interaction between <i>FXR1</i> and <i>GSK3β</i> polymorphisms on levels of Negative Symptoms of Schizophrenia and their response to antipsychotics. European Psychiatry, 2021, 64, e39.	0.2	6
8	Strategies for Psychiatric Rehabilitation and their Cognitive Outcomes in Schizophrenia: Review of Last Five-year Studies. Clinical Practice and Epidemiology in Mental Health, 2021, 17, 31-47.	1.2	3
9	A generative-discriminative framework that integrates imaging, genetic, and diagnosis into coupled low dimensional space. Neurolmage, 2021, 238, 118200.	4.2	2
10	Toll-Like Receptors in Stem/Progenitor Cells. Handbook of Experimental Pharmacology, 2021, , 175-212.	1.8	3
11	Multivariate patterns of gray matter volume in thalamic nuclei are associated with positive schizotypy in healthy individuals. Psychological Medicine, 2020, 50, 1501-1509.	4.5	10
12	The interaction between OXTR rs2268493 and perceived maternal care is associated with amygdala–dorsolateral prefrontal effective connectivity during explicit emotion processing. European Archives of Psychiatry and Clinical Neuroscience, 2020, 270, 553-565.	3.2	9
13	A Pattern of Cognitive Deficits Stratified for Genetic and Environmental Risk Reliably Classifies Patients With Schizophrenia From Healthy Control Subjects. Biological Psychiatry, 2020, 87, 697-707.	1.3	33
14	NURR1 and ERR1 Modulate the Expression of Genes of a <i>DRD2</i> Coexpression Network Enriched for Schizophrenia Risk. Journal of Neuroscience, 2020, 40, 932-941.	3.6	19
15	M207. REVEALING HYPOTHALAMIC PATHWAYS CONTRIBUTION TO OLANZAPINE- INDUCED METABOLIC SYNDROME: FROM MURINE MODEL TO HUMAN TRANSLATION. Schizophrenia Bulletin, 2020, 46, S215-S215.	4.3	0
16	Grey Matter Heterotopia and Criminal Responsibility in a Case of Personal Injury Defense. Frontiers in Psychiatry, 2020, 11, 261.	2.6	3
17	Emotional Stability Interacts with Cortisol Levels Before fMRI on Brain Processing of Fearful Faces. Neuroscience, 2019, 416, 190-197.	2.3	7
18	239. Systems-Level Correlates of the Co-Expression of Schizophrenia Risk Genes. Biological Psychiatry, 2019, 85, S99.	1.3	0

ΑΝΤΟΝΙΟ ΚΑΜΡΙΝΟ

#	Article	IF	CITATIONS
19	01.7. TRANSLATING TRANSCRIPTOME DATA MINING INTO NEUROBIOLOGICAL AND CLINICAL READOUTS. Schizophrenia Bulletin, 2019, 45, S161-S161.	4.3	0
20	Reproducible grey matter patterns index a multivariate, global alteration of brain structure in schizophrenia and bipolar disorder. Translational Psychiatry, 2019, 9, 12.	4.8	35
21	Prefrontal Coexpression of Schizophrenia Risk Genes Is Associated With Treatment Response in Patients. Biological Psychiatry, 2019, 86, 45-55.	1.3	27
22	Thalamic connectivity measured with fMRI is associated with a polygenic index predicting thalamo-prefrontal gene co-expression. Brain Structure and Function, 2019, 224, 1331-1344.	2.3	18
23	O5. Classification of Schizophrenia Using Machine Learning With Multimodal Markers. Biological Psychiatry, 2019, 85, S107.	1.3	2
24	F175. Prefrontal Co-Expression of miR-137 Target Genes is Related With Prefrontal Activity During Emotion Recognition. Biological Psychiatry, 2019, 85, S281.	1.3	0
25	Antipsychotic Drug Responsiveness and Dopamine Receptor Signaling; Old Players and New Prospects. Frontiers in Psychiatry, 2019, 9, 702.	2.6	43
26	Genetic Variation of a <i>DRD2</i> Co-expression Network is Associated with Changes in Prefrontal Function After D2 Receptors Stimulation. Cerebral Cortex, 2019, 29, 1162-1173.	2.9	19
27	Familial Risk and a Genome-Wide Supported DRD2 Variant for Schizophrenia Predict Lateral Prefrontal-Amygdala Effective Connectivity During Emotion Processing. Schizophrenia Bulletin, 2018, 44, 834-843.	4.3	16
28	09.4. PREDICTING SCHIZOPHRENIA: IDENTIFICATION OF MULTIMODAL MARKERS OF DISEASE THROUGH A MACHINE LEARNING APPROACH. Schizophrenia Bulletin, 2018, 44, S100-S101.	4.3	0
29	Transcriptomic context of <i>DRD1</i> is associated with prefrontal activity and behavior during working memory. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5582-5587.	7.1	18
30	DRD2 co-expression network and a related polygenic index predict imaging, behavioral and clinical phenotypes linked to schizophrenia. Translational Psychiatry, 2017, 7, e1006-e1006.	4.8	52
31	Genetic variation is associated with RTN4R expression and working memory processing in healthy humans. Brain Research Bulletin, 2017, 134, 162-167.	3.0	3
32	A Polygenic Risk Score of glutamatergic SNPs associated with schizophrenia predicts attentional behavior and related brain activity in healthy humans. European Neuropsychopharmacology, 2017, 27, 928-939.	0.7	17
33	Association of functional genetic variation in PP2A with prefrontal working memory processing. Behavioural Brain Research, 2017, 316, 125-130.	2.2	11
34	Grey matter volume patterns in thalamic nuclei are associated with familial risk for schizophrenia. Schizophrenia Research, 2017, 180, 13-20.	2.0	40
35	Prefrontal activity during working memory is modulated by the interaction of variation in CB1 and COX2 coding genes and correlates with frequency of cannabis use. Cortex, 2016, 81, 231-238.	2.4	25
36	Combined effect of genetic variants in the GluN2B coding gene <i>(GRIN2B)</i> on prefrontal function during working memory performance. Psychological Medicine, 2016, 46, 1135-1150.	4.5	25

ΑΝΤΟΝΙΟ ΚΑΜΡΙΝΟ

#	Article	IF	CITATIONS
37	Ankyrin-3 as a molecular marker of early-life stress and vulnerability to psychiatric disorders. Translational Psychiatry, 2016, 6, e943-e943.	4.8	34
38	BDNF rs6265 methylation and genotype interact on risk for schizophrenia. Epigenetics, 2016, 11, 11-23.	2.7	48
39	FXR1P is a GSK3Î ² substrate regulating mood and emotion processing. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4610-9.	7.1	46
40	DRD2/CHRNA5 Interaction on Prefrontal Biology and Physiology during Working Memory. PLoS ONE, 2014, 9, e95997.	2.5	19
41	Prefronto-striatal physiology is associated with schizotypy and is modulated by a functional variant of DRD2. Frontiers in Behavioral Neuroscience, 2014, 8, 235.	2.0	22
42	DRD2 genotype predicts prefrontal activity during working memory after stimulation of D2 receptors with bromocriptine. Psychopharmacology, 2014, 231, 2361-2370.	3.1	14
43	Expression of DISC1-Interactome Members Correlates with Cognitive Phenotypes Related to Schizophrenia. PLoS ONE, 2014, 9, e99892.	2.5	23
44	Association of <i>GSK-3β</i> Genetic Variation With GSK-3β Expression, Prefrontal Cortical Thickness, Prefrontal Physiology, and Schizophrenia. American Journal of Psychiatry, 2013, 170, 868-876.	7.2	56
45	Converging Evidence for the Association of Functional Genetic Variation in the Serotonin Receptor 2a Gene With Prefrontal Function and Olanzapine Treatment. JAMA Psychiatry, 2013, 70, 921.	11.0	46
46	Mirtazapine Add-On Improves Olanzapine Effect on Negative Symptoms of Schizophrenia. Journal of Clinical Psychopharmacology, 2013, 33, 810-812.	1.4	10
47	Poster #25 A GENETIC VARIANT OF THE DOPAMINE D2 RECEPTOR GENE PREDICTS PREFRONTAL ACTIVITY DURINGWORKING MEMORY RETRIEVAL IN HUMANS. Schizophrenia Research, 2012, 136, S100.	2.0	0
48	Poster #153 THE ROLE OF DRD2 RS1076560 AND AKT1 RS1130233 VARIANTS IN THE MODULATION OF ATTENTION IN PATIENTSWITH SCHIZOPHRENIA AND HEALTHY SUBJECTS. Schizophrenia Research, 2012, 136, S146.	2.0	0
49	Synaptic modulators Nrxn1 and Nrxn3 are disregulated in a Disc1 mouse model of schizophrenia. Molecular Psychiatry, 2011, 16, 585-587.	7.9	32
50	Stress-Related Methylation of the Catechol- <i>O</i> -Methyltransferase Val ¹⁵⁸ Allele Predicts Human Prefrontal Cognition and Activity. Journal of Neuroscience, 2011, 31, 6692-6698.	3.6	182
51	Functional variants of the dopamine receptor D2 gene modulate prefronto-striatal phenotypes in schizophrenia. Brain, 2009, 132, 417-425.	7.6	123
52	Functional Variation of the Dopamine D ₂ Receptor Gene Is Associated with Emotional Control as well as Brain Activity and Connectivity during Emotion Processing in Humans. Journal of Neuroscience, 2009, 29, 14812-14819.	3.6	99
53	Association of the Ser ⁷⁰⁴ Cys DISC1 polymorphism with human hippocampal formation gray matter and function during memory encoding. European Journal of Neuroscience, 2008, 28, 2129-2136.	2.6	86
54	Epistasis between Dopamine Regulating Genes Identifies a Nonlinear Response of the Human Hippocampus During Memory Tasks. Biological Psychiatry, 2008, 64, 226-234.	1.3	76

#	Article	IF	CITATIONS
55	Polymorphisms in human dopamine D2 receptor gene affect gene expression, splicing, and neuronal activity during working memory. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20552-20557.	7.1	378
56	COMT Val158Met polymorphism predicts negative symptoms response to treatment with olanzapine in schizophrenia. Schizophrenia Research, 2007, 95, 253-255.	2.0	49
57	Additive Effects of Genetic Variation in Dopamine Regulating Genes on Working Memory Cortical Activity in Human Brain. Journal of Neuroscience, 2006, 26, 3918-3922.	3.6	208