Richard J Walters

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7014905/publications.pdf

Version: 2024-02-01

623574 526166 29 830 14 27 citations g-index h-index papers 30 30 30 1045 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	What limits insect fecundity? Body size―and temperatureâ€dependent egg maturation and oviposition in a butterfly. Functional Ecology, 2008, 22, 523-529.	1.7	171
2	What keeps insects small?—Size dependent predation on two species of butterfly larvae. Evolutionary Ecology, 2006, 20, 575-589.	0.5	73
3	What Keeps Insects Small? Time Limitation during Oviposition Reduces the Fecundity Benefit of Female Size in a Butterfly. American Naturalist, 2007, 169, 768-779.	1.0	72
4	Forecasting extinction risk of ectotherms under climate warming: an evolutionary perspective. Functional Ecology, 2012, 26, 1324-1338.	1.7	66
5	QUANTITATIVE GENETIC DIVERGENCE AND STANDING GENETIC (CO)VARIANCE IN THERMAL REACTION NORMS ALONG LATITUDE. Evolution; International Journal of Organic Evolution, 2013, 67, 2385-2399.	1.1	56
6	Plastic and evolutionary responses to heat stress in a temperate dung fly: negative correlation between basal and induced heat tolerance?. Journal of Evolutionary Biology, 2016, 29, 900-915.	0.8	46
7	Modelling dispersal of a temperate insect in a changing climate. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 2017-2023.	1.2	40
8	Experimental evolution for generalists and specialists reveals multivariate genetic constraints on thermal reaction norms. Journal of Evolutionary Biology, 2014, 27, 1975-1989.	0.8	38
9	Why does a grasshopper have fewer, larger offspring at its range limits?. Journal of Evolutionary Biology, 2006, 19, 267-276.	0.8	32
10	Elevated temperature increases genome-wide selection on de novo mutations. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20203094.	1.2	29
11	Cold spot microrefugia hold the key to survival for Brazil's Critically Endangered Araucaria tree. Global Change Biology, 2019, 25, 4339-4351.	4.2	26
12	Evaluating the effects of integrating trees into temperate arable systems on pest control and pollination. Agricultural Systems, 2019, 176, 102676.	3.2	25
13	Evaluating a traitâ€based approach to compare natural enemy and pest communities in agroforestry vs. arable systems. Ecological Applications, 2021, 31, e02294.	1.8	20
14	Productivity, biodiversity trade-offs, and farm income in an agroforestry versus an arable system. Ecological Economics, 2022, 191, 107214.	2.9	15
15	Implications of existing local (mal)adaptations for ecological forecasting under environmental change. Evolutionary Applications, 2019, 12, 1487-1502.	1.5	14
16	Integrating the influence of weather into mechanistic models of butterfly movement. Movement Ecology, 2019, 7, 24.	1.3	13
17	The importance of including habitat-specific behaviour in models of butterfly movement. Oecologia, 2020, 193, 249-259.	0.9	13
18	Floristic change in Brazil's southern Atlantic Forest biodiversity hotspot: From the Last Glacial Maximum to the late 21st Century. Quaternary Science Reviews, 2021, 264, 107005.	1.4	11

#	Article	IF	CITATIONS
19	Management to Promote Flowering Understoreys Benefits Natural Enemy Diversity, Aphid Suppression and Income in an Agroforestry System. Agronomy, 2021, 11, 651.	1.3	10
20	Host-dependent differences in prey acquisition between populations of a kleptoparasitic spider Argyrodes kumadai (Araneae: Theridiidae). Ecological Entomology, 2007, 32, 38-44.	1.1	9
21	Comprehensive thermal performance curves for yellow dung fly life history traits and the temperature-size-rule. Journal of Thermal Biology, 2021, 100, 103069.	1.1	9
22	Niche complementarity drives increases in pollinator functional diversity in diversified agroforestry systems. Agriculture, Ecosystems and Environment, 2022, 336, 108035.	2.5	8
23	Quantifying the effectiveness of agri-environment schemes for a grassland butterfly using individual-based models. Ecological Modelling, 2019, 411, 108798.	1.2	7
24	Complex latitudinal variation in the morphology of the kleptoparasitic spider Argyrodes kumadai associated with host use and climatic conditions. Population Ecology, 2013, 55, 43-51.	0.7	5
25	Behavioural modes in butterflies: their implications for movement and searching behaviour. Animal Behaviour, 2020, 169, 23-33.	0.8	5
26	Data on the movement behaviour of four species of grassland butterfly. Data in Brief, 2019, 27, 104611.	0.5	3
27	Behavior underpins the predictive power of a traitâ€based model of butterfly movement. Ecology and Evolution, 2020, 10, 3200-3208.	0.8	3
28	Heritable responses to combined effects of heat stress and ivermectin in the yellow dung fly. Chemosphere, 2022, 286, 131030.	4.2	3
29	Growth rate mediates hidden developmental plasticity of female yellow dung fly reproductive morphology in response to environmental stressors. Evolution & Development, 2022, 24, 3-15.	1.1	3