
Francesco Sestili

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7014882/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Use of Air-Classification Technology to Manage Mycotoxin and Arsenic Contaminations in Durum Wheat-Derived Products. Foods, 2022, 11, 304.	1.9	2
2	Increasing the Versatility of Durum Wheat through Modifications of Protein and Starch Composition and Grain Hardness. Foods, 2022, 11, 1532.	1.9	16
3	QTL Analysis of Five Morpho-Physiological Traits in Bread Wheat Using Two Mapping Populations Derived from Common Parents. Genes, 2021, 12, 604.	1.0	7
4	Biotechnological Resources to Increase Disease-Resistance by Improving Plant Immunity: A Sustainable Approach to Save Cereal Crop Production. Plants, 2021, 10, 1146.	1.6	14
5	A Green Nanostructured Pesticide to Control Tomato Bacterial Speck Disease. Nanomaterials, 2021, 11, 1852.	1.9	15
6	Bran-Enriched Milled Durum Wheat Fractions Obtained Using Innovative Micronization and Air-Classification Pilot Plants. Foods, 2021, 10, 1796.	1.9	4
7	Enrichment of provitamin A content in durum wheat grain by suppressing β-carotene hydroxylase 1 genes with a TILLING approach. Theoretical and Applied Genetics, 2021, 134, 4013-4024.	1.8	8
8	The Triple Jags of Dietary Fibers in Cereals: How Biotechnology Is Longing for High FiberGrains. Frontiers in Plant Science, 2021, 12, 745579.	1.7	15
9	Milling and rheological properties of high amylose wheat. Journal of Cereal Science, 2021, 102, 103335.	1.8	12
10	Qualitative Characterization of Unrefined Durum Wheat Air-Classified Fractions. Foods, 2021, 10, 2817.	1.9	10
11	A Cross between Bread Wheat and a 2D(2R) Disomic Substitution Triticale Line Leads to the Formation of a Novel Disomic Addition Line and Provides Information of the Role of Rye Secalins on Breadmaking Characteristics. International Journal of Molecular Sciences, 2020, 21, 8450.	1.8	1
12	CRISPR-Cas9 Multiplex Editing of the α-Amylase/Trypsin Inhibitor Genes to Reduce Allergen Proteins in Durum Wheat. Frontiers in Sustainable Food Systems, 2020, 4, .	1.8	55
13	Reduction of Allergenic Potential in Bread Wheat RNAi Transgenic Lines Silenced for CM3, CM16 and 0.28 ATI Genes. International Journal of Molecular Sciences, 2020, 21, 5817.	1.8	22
14	Can Manipulation of Durum Wheat Amylose Content Reduce the Glycaemic Index of Spaghetti?. Foods, 2020, 9, 693.	1.9	25
15	Effect of <i>Gluâ€Ð1</i> introgression on dough―and pastaâ€making quality of durum wheat lines with different glutenin composition and amylose content. Cereal Chemistry, 2019, 96, 207-219.	1.1	6
16	Effect of <i>Gluâ€D1 gene</i> introgression and amylose content on breadmaking potential of blends of durum and hexaploid wheat. Cereal Chemistry, 2019, 96, 193-206.	1.1	13
17	Green Production and Biotechnological Applications of Cell Wall Lytic Enzymes. Applied Sciences (Switzerland), 2019, 9, 5012.	1.3	17
18	Provitamin A Biofortification of Durum Wheat through a TILLING Approach. International Journal of Molecular Sciences, 2019, 20, 5703.	1.8	20

FRANCESCO SESTILI

#	Article	IF	CITATIONS
19	Enhancing grain size in durum wheat using RNAi to knockdown GW2 genes. Theoretical and Applied Genetics, 2019, 132, 419-429.	1.8	33
20	Combining mutations at genes encoding key enzymes involved in starch synthesis affects the amylose content, carbohydrate allocation and hardness in the wheat grain. Plant Biotechnology Journal, 2018, 16, 1723-1734.	4.1	57
21	Molecular characterisation of two novel starch granule proteins 1 in wild and cultivated diploid A genome wheat species. Journal of Plant Research, 2018, 131, 487-496.	1.2	2
22	Metabolic response to amylose-rich wheat-based rusks in overweight individuals. European Journal of Clinical Nutrition, 2018, 72, 904-912.	1.3	18
23	Wheat ATI CM3, CM16 and 0.28 Allergens Produced in Pichia Pastoris Display a Different Eliciting Potential in Food Allergy to Wheat ‡. Plants, 2018, 7, 101.	1.6	19
24	Synergistic Effect of Sulfur and Nitrogen in the Organic and Mineral Fertilization of Durum Wheat: Grain Yield and Quality Traits in the Mediterranean Environment. Agronomy, 2018, 8, 189.	1.3	53
25	Protein Hydrolysate Stimulates Growth in Tomato Coupled With N-Dependent Gene Expression Involved in N Assimilation. Frontiers in Plant Science, 2018, 9, 1233.	1.7	108
26	Production and molecular characterization of bread wheat lines with reduced amount of α-type gliadins. BMC Plant Biology, 2017, 17, 248.	1.6	32
27	The impact of the SSIIa <i>null</i> mutations on grain traits and composition in durum wheat. Breeding Science, 2016, 66, 572-579.	0.9	28
28	The Chinese bread wheat cultivar Xiaoyanmai 7 harbours genes encoding a pair of novel high-molecular-weight glutenin subunits inherited from cereal rye. Crop and Pasture Science, 2016, 67, 29.	0.7	1
29	The down-regulation of the genes encoding Isoamylase 1 alters the starch composition of the durum wheat grain. Plant Science, 2016, 252, 230-238.	1.7	14
30	Characterization of durum wheat high molecular weight glutenin subunits Bx20 and By20 sequences by a molecular and proteomic approach. Journal of Mass Spectrometry, 2016, 51, 512-517.	0.7	20
31	TILLING mutants of durum wheat result in a high amylose phenotype and provide information on alternative splicing mechanisms. Plant Science, 2015, 233, 127-133.	1.7	54
32	Development and characterization of highâ€amylose wheat lines. Starch/Staerke, 2015, 67, 247-254.	1.1	9
33	An asparagine residue at the N-terminus affects the maturation process of low molecular weight glutenin subunits of wheat endosperm. BMC Plant Biology, 2014, 14, 64.	1.6	20
34	Development of a TILLING resource in durum wheat for reverse- and forward-genetic analyses. Crop and Pasture Science, 2014, 65, 112.	0.7	33
35	Identification and characterization of granule bound starch synthase I (GBSSI) gene of tartary buckwheat (Fagopyrum tataricum Gaertn.). Gene, 2014, 534, 229-235.	1.0	24

TILLING for Improved Starch Composition in Wheat. , 2014, , 467-487.

9

FRANCESCO SESTILI

#	Article	IF	CITATIONS
37	New Starch Phenotypes Produced by TILLING in Barley. PLoS ONE, 2014, 9, e107779.	1.1	59
38	Comparative proteomic analysis of kernel proteins of two high amylose transgenic durum wheat lines obtained by biolistic and Agrobacterium-mediated transformations. Journal of Cereal Science, 2013, 58, 15-22.	1.8	17
39	Amylose content is not affected by overexpression of the <i>Wxâ€B1</i> gene in durum wheat. Plant Breeding, 2012, 131, 700-706.	1.0	33
40	Characterization of SBEIIa homoeologous genes in bread wheat. Molecular Genetics and Genomics, 2012, 287, 515-524.	1.0	6
41	Correspondence between two minor Glu-A3 genes of durum wheat and their encoded polypeptides by using a proteomic approach. Journal of Cereal Science, 2012, 55, 385-391.	1.8	3
42	Effect of the introduction of D-genome related wheat proteins in durum wheat on pasta and bread making quality and the effect of higher amylose on pasta. CFW Plexus, 2012, , .	0.0	0
43	High resolution melting analysis for the detection of EMS induced mutations in wheat Sbella genes. BMC Plant Biology, 2011, 11, 156.	1.6	115
44	A novel wheat variety with elevated content of amylose increases resistant starch formation and may beneficially influence glycaemia in healthy subjects. Food and Nutrition Research, 2011, 55, 7074.	1.2	82
45	Production of novel allelic variation for genes involved in starch biosynthesis through mutagenesis. Molecular Breeding, 2010, 25, 145-154.	1.0	78
46	Increasing the amylose content of durum wheat through silencing of the SBEIIagenes. BMC Plant Biology, 2010, 10, 144.	1.6	151
47	Approaches for Modification of Starch Composition in Durum Wheat. Cereal Chemistry, 2010, 87, 28-34.	1.1	33
48	Characterization of KNOX genes in Medicago truncatula. Plant Molecular Biology, 2008, 67, 135-150.	2.0	41