Stephanie W Watts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7014794/publications.pdf

Version: 2024-02-01

165 papers

3,714 citations

34 h-index 52 g-index

167 all docs

167 docs citations

times ranked

167

3948 citing authors

#	Article	IF	CITATIONS
1	Identification of Piezo1 channels in perivascular adipose tissue (PVAT) and their potential role in vascular function. Pharmacological Research, 2022, 175, 105995.	3.1	12
2	Aortic stiffness is lower when PVAT is included: a novel ex vivo mechanics study. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H1003-H1013.	1.5	7
3	Reply to De Mey et al American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H683-H684.	1.5	O
4	Reply to Boedtkjer and Aalkjaer. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H687-H688.	1.5	1
5	5â€HT ₇ Receptors Mediate Dilation of Rat Cremaster Muscle Arterioles <i>in vivo</i> FASEB Journal, 2022, 36, .	0.2	O
6	Targeting Adipose Tissues with ATS9R Nanoparticles for Drug Delivery. FASEB Journal, 2022, 36, .	0.2	0
7	Divergence of Chemerin Reduction by an ATS9R Nanoparticle Targeting Adipose Tissue In Vitro vs. In Vivo in the Rat. Biomedicines, 2022, 10, 1635.	1.4	1
8	Vascular reactivity stimulated by TMA and TMAO: Are perivascular adipose tissue and endothelium involved?. Pharmacological Research, 2021, 163, 105273.	3.1	16
9	Broadening Experiences in Scientific Training (BEST): Do biomedical faculty members want institutional help?. SN Social Sciences, 2021, 1, 1.	0.4	3
10	Connecting Generations of Scientists in the Council on Hypertension Through Harriet Dustan. Hypertension, 2021, 77, 296-307.	1.3	0
11	Transglutaminases Are Active in Perivascular Adipose Tissue. International Journal of Molecular Sciences, 2021, 22, 2649.	1.8	O
12	Using data to make the case for program resources and sustainability: the BEST action inventory case study. SN Social Sciences, 2021, 1, 140.	0.4	1
13	Physiology and Pharmacology of Neurotransmitter Transporters. , 2021, 11, 2279-2295.		8
14	Reduction in Hindquarter Vascular Resistance Supports 5-HT7 Receptor Mediated Hypotension. Frontiers in Physiology, 2021, 12, 679809.	1.3	7
15	Male and female high-fat diet-fed Dahl SS rats are largely protected from vascular dysfunctions: PVAT contributions reveal sex differences. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H15-H28.	1.5	11
16	Guidelines for the measurement of vascular function and structure in isolated arteries and veins. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H77-H111.	1.5	74
17	5-HT7 Receptor Restrains 5-HT–induced 5-HT2A Mediated Contraction in the Isolated Abdominal Vena Cava. Journal of Cardiovascular Pharmacology, 2021, 78, 319-327.	0.8	2
18	International Union of Basic and Clinical Pharmacology. CX. Classification of Receptors for 5-hydroxytryptamine; Pharmacology and Function. Pharmacological Reviews, 2021, 73, 310-520.	7.1	127

#	Article	IF	Citations
19	Phenotypic Changes in T Cell and Macrophage Subtypes in Perivascular Adipose Tissues Precede High-Fat Diet-Induced Hypertension. Frontiers in Physiology, 2021, 12, 616055.	1.3	9
20	Blood pressure changes PVAT function and transcriptome: use of the mid-thoracic aorta coarcted rat. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 319, H1313-H1324.	1.5	4
21	Endogenous Chemerin from PVAT Amplifies Electrical Field-Stimulated Arterial Contraction: Use of the Chemerin Knockout Rat. International Journal of Molecular Sciences, 2020, 21, 6392.	1.8	10
22	Na \tilde{A}^- ve, Regulatory, Activated, and Memory Immune Cells Co-exist in PVATs That Are Comparable in Density to Non-PVAT Fats in Health. Frontiers in Physiology, 2020, 11, 58.	1.3	16
23	Chemerin as a Driver of Hypertension: A Consideration. American Journal of Hypertension, 2020, 33, 975-986.	1.0	36
24	Chemerin contributes to in vivo adipogenesis in a location-specific manner. PLoS ONE, 2020, 15, e0229251.	1.1	22
25	A New Function for Perivascular Adipose Tissue (PVAT): Assistance of Arterial Stress Relaxation. Scientific Reports, 2020, 10, 1807.	1.6	26
26	Michigan State University BEST. , 2020, , 47-74.		0
27	Activation of the 5â€HT ₇ receptor but not nitric oxide synthase is necessary for chronic 5â€hydroxytryptamineâ€induced hypotension. Experimental Physiology, 2020, 105, 2025-2032.	0.9	3
28	Different blood pressure responses in hypertensive rats following chemerin mRNA inhibition in dietary high fat compared to dietary high-salt conditions. Physiological Genomics, 2019, 51, 553-561.	1.0	16
29	Creation of the 5-hydroxytryptamine receptor 7 knockout rat as a tool for cardiovascular research. Physiological Genomics, 2019, 51, 290-301.	1.0	9
30	5-HT does not lower blood pressure in the 5-HT ₇ knockout rat. Physiological Genomics, 2019, 51, 302-310.	1.0	17
31	Exploring the Impact of Formal Internships on Biomedical Graduate and Postgraduate Careers: An Interview Study. CBE Life Sciences Education, 2019, 18, ar20.	1.1	22
32	Faculty perceptions and knowledge of career development of trainees in biomedical science: What do we (think we) know?. PLoS ONE, 2019, 14, e0210189.	1.1	22
33	Loss-of-Function Mutations in Human Regulator of G Protein Signaling RGS2 Differentially Regulate Pharmacological Reactivity of Resistance Vasculature. Molecular Pharmacology, 2019, 96, 826-834.	1.0	6
34	Fenfluramine-induced PVAT-dependent contraction depends on norepinephrine and not serotonin. Pharmacological Research, 2019, 140, 43-49.	3.1	10
35	Perivascular Adipocytes Store Norepinephrine by Vesicular Transport. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 188-199.	1.1	24
36	Contribution of left ventricular residual stress by myocytes and collagen: existence of inter-constituent mechanical interaction. Biomechanics and Modeling in Mechanobiology, 2018, 17, 985-999.	1.4	9

3

#	Article	IF	CITATIONS
37	Whole-Body but Not Hepatic Knockdown of Chemerin by Antisense Oligonucleotide Decreases Blood Pressure in Rats. Journal of Pharmacology and Experimental Therapeutics, 2018, 365, 212-218.	1.3	16
38	Renal perivascular adipose tissue: Form and function. Vascular Pharmacology, 2018, 106, 37-45.	1.0	23
39	Hypertension Induced Morphological and Physiological Changes in Cells of the Arterial Wall. American Journal of Hypertension, 2018, 31, 1067-1078.	1.0	60
40	Adipogenic potential of perivascular adipose tissue preadipocytes is improved by coculture with primary adipocytes. Cytotechnology, 2018, 70, 1435-1445.	0.7	4
41	Editorial: Perivascular Adipose Tissue (PVAT) in Health and Disease. Frontiers in Physiology, 2018, 9, 1004.	1.3	3
42	The chemerin knockout rat reveals chemerin dependence in female, but not male, experimental hypertension. FASEB Journal, 2018, 32, 6596-6614.	0.2	19
43	Perivascular Adipocytes Store Norepinephrine by Vesicular Transport. FASEB Journal, 2018, 32, 605.3.	0.2	0
44	Chemerin-induced arterial contraction is Gi- and calcium-dependent. Vascular Pharmacology, 2017, 88, 30-41.	1.0	33
45	3T3‣1 cells and perivascular adipocytes are not equivalent in amine transporter expression. FEBS Letters, 2017, 591, 137-144.	1.3	4
46	Regulator of G Protein Signaling 6 Protects the Heart from Ischemic Injury. Journal of Pharmacology and Experimental Therapeutics, 2017, 360, 409-416.	1.3	15
47	5-HT causes splanchnic venodilation. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H676-H686.	1.5	20
48	Expansion and Adipogenesis Induction of Adipocyte Progenitors from Perivascular Adipose Tissue Isolated by Magnetic Activated Cell Sorting. Journal of Visualized Experiments, 2017, , .	0.2	4
49	New actions of an old friend: perivascular adipose tissue's adrenergic mechanisms. British Journal of Pharmacology, 2017, 174, 3454-3465.	2.7	25
50	Perivascular Adipose Tissue's Impact on Norepinephrine-Induced Contraction of Mesenteric Resistance Arteries. Frontiers in Physiology, 2017, 8, 37.	1.3	29
51	Serial Measurements of Splanchnic Vein Diameters in Rats Using High-Frequency Ultrasound. Frontiers in Pharmacology, 2016, 7, 116.	1.6	11
52	The adipokine chemerin amplifies electrical field-stimulated contraction in the isolated rat superior mesenteric artery. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H498-H507.	1.5	38
53	Oh, the places you'll go! My many colored serotonin (apologies to Dr. Seuss). American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H1225-H1233.	1.5	12
54	The distribution and adipogenic potential of perivascular adipose tissue adipocyte progenitors is dependent on sexual dimorphism and vessel location. Physiological Reports, 2016, 4, e12993.	0.7	20

#	Article	IF	Citations
55	Chemerin Peptide Releases Catecholamines from Rat Adrenal Medulla. Pharmacologia, 2016, 7, 290-295.	0.3	3
56	Measurement of Smooth Muscle Function in the Isolated Tissue Bath-applications to Pharmacology Research. Journal of Visualized Experiments, 2015, , 52324.	0.2	32
57	5â€HT is a potent relaxant in rat superior mesenteric veins. Pharmacology Research and Perspectives, 2015, 3, e00103.	1.1	25
58	Pharmacological research and precision cancer medicine: A call for manuscripts. Pharmacological Research, 2015, 102, 308-309.	3.1	0
59	Organic cation transporter 3 contributes to norepinephrine uptake into perivascular adipose tissue. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H1904-H1914.	1.5	40
60	Trash Talk by Fat. Hypertension, 2015, 66, 466-468.	1.3	2
61	Introducing a checklist for manuscript submission to Pharmacological Research. Pharmacological Research, 2015, 102, 319-321.	3.1	3
62	The persistence of active smooth muscle in the female rat cervix through pregnancy. American Journal of Obstetrics and Gynecology, 2015, 212, 244.e1-244.e8.	0.7	11
63	Chemerin: A comprehensive review elucidating the need for cardiovascular research. Pharmacological Research, 2015, 99, 351-361.	3.1	70
64	Transglutaminase activity is decreased in large arteries from hypertensive rats compared with normotensive controls. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H592-H602.	1.5	9
65	5-Hydroxytryptamine does not reduce sympathetic nerve activity or neuroeffector function in the splanchnic circulation. European Journal of Pharmacology, 2015, 754, 140-147.	1.7	8
66	An immunohistochemical analysis of SERT in the blood–brain barrier of the male rat brain. Histochemistry and Cell Biology, 2015, 144, 321-329.	0.8	22
67	Divergent signaling mechanisms for venous versus arterial contraction as revealed by endothelin-1. Journal of Vascular Surgery, 2015, 62, 721-733.	0.6	8
68	SERT and the Bloodâ€Brain Barrier: An Inâ€Depth Analysis of the Male Rat Brain. FASEB Journal, 2015, 29, 834.1.	0.2	1
69	Perivascular adipose tissue contains functional catecholamines. Pharmacology Research and Perspectives, 2014, 2, e00041.	1.1	55
70	Serotonin and sensory nerves: Meeting in the cardiovascular system. Vascular Pharmacology, 2014, 63, 1-3.	1.0	7
71	Elimination of Vitamin D Receptor in Vascular Endothelial Cells Alters Vascular Function. Hypertension, 2014, 64, 1290-1298.	1.3	134
72	Tissue transglutaminase promotes serotonin-induced AKT signaling and mitogenesis in pulmonary vascular smooth muscle cells. Cellular Signalling, 2014, 26, 2818-2825.	1.7	38

#	Article	IF	CITATIONS
73	Serotonin-induced Hypotension is Mediated by a Decrease in Intestinal Vascular Resistance. Pharmacologia, 2014, 5, 50-54.	0.3	8
74	One-Month Serotonin Infusion Results in a Prolonged Fall in Blood Pressure in the Deoxycorticosterone Acetate (DOCA) Salt Hypertensive Rat. ACS Chemical Neuroscience, 2013, 4, 141-148.	1.7	16
75	Chemerin Connects Fat to Arterial Contraction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1320-1328.	1.1	126
76	Decreased transglutaminase activity in aorta from hypertensive rats, measured by in situ detection of a free amine donor. FASEB Journal, 2013, 27, 1108.2.	0.2	0
77	ChemR23 Receptor signals through proâ€contractile signaling pathways. FASEB Journal, 2013, 27, 923.7.	0.2	0
78	Vena cava and aortic smooth muscle cells express transglutaminases 1 and 4 in addition to transglutaminase 2. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H1355-H1366.	1.5	26
79	Smooth Muscle Pharmacology in the Isolated Virgin and Pregnant Rat Uterus and Cervix. Journal of Pharmacology and Experimental Therapeutics, 2012, 341, 587-596.	1.3	19
80	5-hydroxytryptamine (5-HT) reduces total peripheral resistance during chronic infusion: direct arterial mesenteric relaxation is not involved. BMC Pharmacology, 2012, 12, 4.	0.4	22
81	Reverse-mode Na+/Ca2+ exchange is an important mediator of venous contraction. Pharmacological Research, 2012, 66, 544-554.	3.1	17
82	Serotonin and Blood Pressure Regulation. Pharmacological Reviews, 2012, 64, 359-388.	7.1	306
83	Perivascular fat impairs contraction in aorta from obese but not lean adult rats. FASEB Journal, 2012, 26, 1115.4.	0.2	1
84	Researcher Beware! Decreased TG2 and OCT3 Expression in Vascular Smooth Muscle Cells Upon Culture. FASEB Journal, 2012, 26, 870.14.	0.2	0
85	Contraction of rat vena cava by endothelinâ€1 is dependent on phospholipaseâ€Cβ, but independent of IP 3 receptor activation. FASEB Journal, 2012, 26, 1049.3.	0.2	0
86	An imaging apparatus for simultaneous measurement of isometric contraction and Ca 2+ fluorescence in large blood vessels of the rat. FASEB Journal, 2012, 26, 870.31.	0.2	0
87	Regional blood flow changes underlying the hypotensive action of 5â€HT:Studies using Doppler and Microsphere technologies. FASEB Journal, 2012, 26, 684.12.	0.2	0
88	Peripheral macrophage depletion impairs phenylephrine mediated contraction in aorta from stroke prone spontaneously hypertensive rats, but does not alter the effect of perivascular fat. FASEB Journal, 2012, 26, .	0.2	0
89	5-Hydroxtryptamine Receptors in Systemic Hypertension: An Arterial Focus. Cardiovascular Therapeutics, 2011, 29, 54-67.	1.1	44
90	Drug Delivery: Enabling Technology for Drug Discovery and Development. iPRECIO® Micro Infusion Pump: Programmable, Refillable, and Implantable. Frontiers in Pharmacology, 2011, 2, 44.	1.6	51

#	Article	IF	Citations
91	Comparison of the function of the serotonin transporter in the vasculature of male and female rats. Clinical and Experimental Pharmacology and Physiology, 2011, 38, 314-322.	0.9	10
92	Lack of the serotonin transporter (SERT) reduces the ability of 5-hydroxytryptamine to lower blood pressure. Naunyn-Schmiedeberg's Archives of Pharmacology, 2011, 383, 543-546.	1.4	9
93	Indoleamine 2,3-diooxygenase in periaortic fat: mechanisms of inhibition of contraction. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H1236-H1247.	1.5	32
94	5â€HT is unable to relax the isolated mesenteric artery: molecular and functional evidence. FASEB Journal, 2011, 25, 1021.1.	0.2	0
95	The Uptake of Norepinephrine by Vascular Smooth Muscle Cells. FASEB Journal, 2011, 25, .	0.2	0
96	Endothelinâ€1 increases the frequency of smooth muscle calcium waves in vena cava but not aorta. FASEB Journal, 2011, 25, 1026.2.	0.2	0
97	Modification of proteins by norepinephrine is important for vascular contraction. Frontiers in Physiology, 2010, 1, 131.	1.3	18
98	Uric Acid Does Not Affect the Acetylcholine-Induced Relaxation of Aorta from Normotensive and Deoxycorticosterone Acetate-Salt Hypertensive Rats. Journal of Pharmacology and Experimental Therapeutics, 2010, 333, 758-763.	1.3	13
99	Serotonin Receptors in Rat Jugular Vein: Presence and Involvement in the Contraction. Journal of Pharmacology and Experimental Therapeutics, 2010, 334, 116-123.	1.3	6
100	Endothelin receptors: what's new and what do we need to know?. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 298, R254-R260.	0.9	65
101	Serotonin infusion via the iPrecio $\hat{A}^{@}$ micro infusion pump results in repeated reductions in blood pressure in the normotensive Sprague Dawley rat FASEB Journal, 2010, 24, lb551.	0.2	2
102	Differential Expression of Pancreatitis-Associated Protein and Thrombospondins in Arterial versus Venous Tissues. Journal of Vascular Research, 2009, 46, 551-560.	0.6	4
103	The love of a lifetime: 5-HT in the cardiovascular system. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R252-R256.	0.9	22
104	BODY DISTRIBUTION OF INFUSED SEROTONIN IN RATS. Clinical and Experimental Pharmacology and Physiology, 2009, 36, 599-601.	0.9	23
105	Serotonylation of Vascular Proteins Important to Contraction. PLoS ONE, 2009, 4, e5682.	1.1	93
106	Pharmacological characterization of the serotonin receptor mediating contraction in the rat jugular vein. FASEB Journal, 2009, 23, 933.2.	0.2	0
107	ETB receptor activation changes ETB receptor location in venous but not aortic smooth muscle cells. FASEB Journal, 2009, 23, 945.7.	0.2	0
108	Enzymatic sources of basal hydrogen peroxide (H 2 O 2) levels in rat arterial and venous tissues. FASEB Journal, 2009, 23, 937.11.	0.2	0

7

#	Article	IF	CITATIONS
109	Pharmacological endothelin receptor interaction does not occur in veins from ETB receptor deficient rats. Vascular Pharmacology, 2008, 49, 6-13.	1.0	13
110	A Serotonergic System in Veins: Serotonin Transporter-Independent Uptake. Journal of Pharmacology and Experimental Therapeutics, 2008, 325, 714-722.	1.3	25
111	5-Hydroxytryptamine Lowers Blood Pressure in Normotensive and Hypertensive Rats. Journal of Pharmacology and Experimental Therapeutics, 2008, 325, 1031-1038.	1.3	47
112	A comparison of reactive oxygen species metabolism in the rat aorta and vena cava: focus on xanthine oxidase. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H1341-H1350.	1.5	13
113	Vascular reactivity, 5-HT uptake, and blood pressure in the serotonin transporter knockout rat. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H1745-H1752.	1.5	27
114	Do different Ca entry mechanisms mediate Endothelinâ€1â€Induced contraction of rat aorta and vena cava?. FASEB Journal, 2008, 22, 744.15.	0.2	0
115	Rat thoracic vena cava ETB receptors reâ€sensitize faster than venous ETA receptors. FASEB Journal, 2008, 22, 965.11.	0.2	0
116	Uric acid does not impact the endothelialâ€dependent relaxation of aorta from normal and hypertensive rats. FASEB Journal, 2008, 22, 965.5.	0.2	0
117	Electron microscopy of serotonin in arterial smooth muscle tissue. FASEB Journal, 2008, 22, 744.5.	0.2	0
118	Serotonin Uptake in Veins, as Opposed to Arteries, Is Independent of the Serotonin Transporter. FASEB Journal, 2008, 22, 1208.4.	0.2	0
119	The 5-Hydroxytryptamine2A Receptor Is Involved in (+)-Norfenfluramine-Induced Arterial Contraction and Blood Pressure Increase in Deoxycorticosterone Acetate-Salt Hypertension. Journal of Pharmacology and Experimental Therapeutics, 2007, 321, 485-491.	1.3	5
120	Serotonin (5-HT) in Veins: Not All in Vain. Journal of Pharmacology and Experimental Therapeutics, 2007, 323, 415-421.	1.3	28
121	Morphological and biochemical characterization of remodeling in aorta and vena cava of DOCA-salt hypertensive rats. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H2438-H2448.	1.5	49
122	Preferential Myosin Heavy Chain Isoform B Expression May Contribute to the Faster Velocity of Contraction in Veins versus Arteries. Journal of Vascular Research, 2007, 44, 264-272.	0.6	6
123	Arterial and Venous Function in Hypertension. , 2007, , 205-212.		4
124	Big ET-1 processing into vasoactive peptides in arteries and veins. Vascular Pharmacology, 2007, 47, 302-312.	1.0	18
125	ETB receptor deficient rats have an elevation of ETB receptor and norepinephrine transporter protein in stellate ganglia. FASEB Journal, 2007, 21, A1264.	0.2	1
126	Increased serotonin uptake and decreased serotonin metabolism in veins: is there a role in the control of vascular tone and blood pressure?. FASEB Journal, 2007, 21, A1239.	0.2	0

#	Article	IF	CITATIONS
127	Chronic 5â€HT: An unexpected depressor in mineralocorticoid hypertension. FASEB Journal, 2007, 21, .	0.2	O
128	Endothelin (ET) receptor interaction does not occur in vena cava from ET _B receptor deficient rats. FASEB Journal, 2007, 21, A517.	0.2	0
129	Existence of multiple 5â€HT uptake mechanisms in peripheral arteries. FASEB Journal, 2007, 21, A518.	0.2	0
130	Endogenous serotonin potentiates norepinephrineâ€induced contraction of the superior mesenteric artery. FASEB Journal, 2007, 21, A517.	0.2	0
131	5-HYDROXYTRYPTAMINE IN THE CARDIOVASCULAR SYSTEM: FOCUS ON THE SEROTONIN TRANSPORTER (SERT). Clinical and Experimental Pharmacology and Physiology, 2006, 33, 575-583.	0.9	144
132	Mechanisms of Hypertension Induced by Nitric Oxide (NO) Deficiency: Focus on Venous Function. Journal of Cardiovascular Pharmacology, 2006, 47, 742-750.	0.8	21
133	A new signaling paradigm for serotonin: use of Crk-associated substrate in arterial contraction. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H2857-H2863.	1.5	29
134	Arterial 5-Hydroxytryptamine Transporter Function Is Impaired in Deoxycorticosterone Acetate and Nï‰-Nitro- I -Arginine But Not Spontaneously Hypertensive Rats. Hypertension, 2006, 48, 134-140.	1.3	14
135	Pleiotropic Effects of Hydrogen Peroxide in Arteries and Veins From Normotensive and Hypertensive Rats. Hypertension, 2006, 47, 482-487.	1.3	39
136	Response to Blood Pressure in Mutant Rats Lacking the 5-Hydroxytryptamine Transporter. Hypertension, 2006, 48, .	1.3	0
137	Reactive oxygen species metabolism in veins and arteries from rat: why is it different?. FASEB Journal, 2006, 20, A725.	0.2	0
138	A new CAS(t) member for 5â€HT: use of Crkâ€Associated Substrate (CAS) in arterial contraction. FASEB Journal, 2006, 20, A1107.	0.2	0
139	Peripheral arteries take up but do not concentrate 5â€HT. FASEB Journal, 2006, 20, .	0.2	0
140	5-HT in systemic hypertension: foe, friend or fantasy?. Clinical Science, 2005, 108, 399-412.	1.8	80
141	Endothelin in the splanchnic vascular bed of DOCA-salt hypertensive rats. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H729-H736.	1.5	9
142	Activation of Vascular BK Channel by Tempol in DOCA-Salt Hypertensive Rats. Hypertension, 2005, 46, 1154-1162.	1.3	35
143	Increased O 2 $\hat{A}\cdot\hat{a}$? Production and Upregulation of ET B Receptors by Sympathetic Neurons in DOCA-Salt Hypertensive Rats. Hypertension, 2004, 43, 1048-1054.	1.3	56
144	The Fenfluramine Metabolite (+)-Norfenfluramine Is Vasoactive. Journal of Pharmacology and Experimental Therapeutics, 2004, 309, 845-852.	1.3	20

#	Article	IF	Citations
145	The Serotonin Transporter is Present and Functional in Peripheral Arterial Smooth Muscle. Journal of Cardiovascular Pharmacology, 2004, 43, 770-781.	0.8	46
146	Characterization of the Contractile 5-Hydroxytryptamine Receptor in the Renal Artery of the Normotensive Rat. Journal of Pharmacology and Experimental Therapeutics, 2004, 309, 165-172.	1.3	27
147	Arteries and Veins Desensitize Differently to Endothelin. Journal of Cardiovascular Pharmacology, 2004, 43, 387-393.	0.8	25
148	Arterial expression of 5-HT2B and 5-HT1B receptors during development of DOCA-salt hypertension. BMC Pharmacology, 2003, 3, 12.	0.4	43
149	NADPH Oxidase–Derived Superoxide Augments Endothelin-1–Induced Venoconstriction in Mineralocorticoid Hypertension. Hypertension, 2003, 42, 316-321.	1.3	75
150	Serotonin-Induced Contraction in Mesenteric Resistance Arteries. Hypertension, 2002, 39, 825-829.	1.3	47
151	5-Hydroxytryptamine2B Receptor Function Is Enhanced in the Nï‰-Nitro-l-arginine Hypertensive Rat. Journal of Pharmacology and Experimental Therapeutics, 2002, 303, 179-187.	1.3	50
152	Upregulation of Arterial Serotonin 1B and 2B Receptors in Deoxycorticosterone Acetate-Salt Hypertension. Hypertension, 2002, 39, 394-398.	1.3	38
153	Endothelin receptor function in mesenteric veins from deoxycorticosterone acetate salt-hypertensive rats. Journal of Hypertension, 2002, 20, 665-676.	0.3	20
154	Endothelin-1-induced venous contraction is maintained in DOCA-salt hypertension; studies with receptor agonists. British Journal of Pharmacology, 2002, 137, 69-79.	2.7	31
155	Inability of Serotonin to Activate the c-Jun N-terminal Kinase and p38 Kinase Pathways in Rat Aortic Vascular Smooth Muscle Cells. BMC Pharmacology, 2001, 1, 8.	0.4	10
156	Activation of Erk Mitogen-Activated Protein Kinase Proteins by Vascular Serotonin Receptors. Journal of Cardiovascular Pharmacology, 2001, 38, 539-551.	0.8	42
157	Enhanced Contraction to 5-Hydroxytryptamine Is Not Due to "Unmasking―of 5-Hydroxytryptamine _{1B} Receptors in the Mesenteric Artery of the Deoxycorticosterone Acetate–Salt Rat. Hypertension, 2001, 38, 891-895.	1.3	20
158	5-Hydroxytryptamine–Induced Potentiation of Endothelin-1– and Norepinephrine-Induced Contraction Is Mitogen-Activated Protein Kinase Pathway Dependent. Hypertension, 2000, 35, 244-248.	1.3	44
159	5-HT2B-receptor antagonist LY-272015 is antihypertensive in DOCA-salt-hypertensive rats. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 276, H944-H952.	1.5	39
160	Epidermal growth factor: a potent vasoconstrictor in experimental hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 276, H976-H983.	1.5	42
161	The development of enhanced arterial serotonergic hyperresponsiveness in mineralocorticoid hypertension. Journal of Hypertension, 1998, 16, 811-822.	0.3	24
162	Serotonin Stimulates Protein Tyrosyl Phosphorylation and Vascular Contraction via Tyrosine Kinase. Journal of Vascular Research, 1996, 33, 288-298.	0.6	61

STEPHANIE W WATTS

#	Article	IF	CITATIONS
163	Vascular Gap Junctional Communication Is Increased in Mineralocorticoid-Salt Hypertension. Hypertension, 1996, 28, 888-893.	1.3	38
164	5-Hydroxytryptamine _{2B} Receptor Mediates Contraction in the Mesenteric Artery of Mineralocorticoid Hypertensive Rats. Hypertension, 1995, 26, 1056-1059.	1.3	32
165	Doctoral Trainee Preferences for Career Development Resources: The Influence of Peer and Other Supportive Social Capital. International Journal of Doctoral Studies, 0, 14, 675-702.	1.0	8