Michael D Ryan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7014790/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reversible Proton-Coupled Reduction of an Iron Nitrosyl Porphyrin within [DBU–H]+-Based Protic Ionic Liquid Nanodomains. Inorganic Chemistry, 2021, 60, 10631-10641.	1.9	3
2	Ion Pairing versus Solvation of Dinitrobenzene Anions in Room-Temperature Ionic Liquids (RTILs): Vibrational Signatures of RTIL–Substrate Interactions. Journal of Physical Chemistry A, 2020, 124, 10225-10238.	1.1	0
3	Voltammetry and Spectroelectrochemistry of TCNQ in Acetonitrile/RTIL Mixtures. Molecules, 2020, 25, 303.	1.7	6
4	Infrared Spectroelectrochemistry of Iron-Nitrosyl Triarylcorroles. Implications for Ligand Noninnocence. Inorganic Chemistry, 2020, 59, 3232-3238.	1.9	12
5	Proton Transfer versus Hydrogen Bonding in a Reduced Iron Porphyrin Nitrosyl Complex. Inorganic Chemistry, 2019, 58, 13788-13795.	1.9	7
6	Investigation of solvation and solvent coordination effects in iron porphyrin nitrosyls by infrared spectroelectrochemistry and DFT calculations. Journal of Porphyrins and Phthalocyanines, 2019, 23, 639-644.	0.4	1
7	Proton-coupled reduction of an iron nitrosyl porphyrin in the protic ionic liquid nanodomain. Electrochimica Acta, 2019, 295, 735-741.	2.6	7
8	Insight into Solvent Coordination of an Iron Porphyrin Hydroxylamine Complex from Spectroscopy and DFT Calculations. European Journal of Inorganic Chemistry, 2018, 2018, 1762-1765.	1.0	6
9	The use of RRDE voltammetry to study acid-base reactions in unbuffered solutions. Electrochimica Acta, 2018, 281, 17-23.	2.6	4
10	Redox and Spectroscopic Properties of Iron Porphyrin Nitroxyl in the Presence of Weak Acids. Inorganic Chemistry, 2017, 56, 3302-3309.	1.9	28
11	Altering the Coordination of Iron Porphyrins by Ionic Liquid Nanodomains in Mixed Solvent Systems. Chemistry - A European Journal, 2017, 23, 13076-13086.	1.7	5
12	Catalytic Reduction of Bisulfite by Myoglobin/Surfactant Films. Electroanalysis, 2017, 29, 2437-2443.	1.5	1
13	Impact of the Flipped Classroom on Student Performance and Retention: A Parallel Controlled Study in General Chemistry. Journal of Chemical Education, 2016, 93, 13-23.	1.1	188
14	X-ray Structure and Properties of the Ferrous Octaethylporphyrin Nitroxyl Complex. Inorganic Chemistry, 2016, 55, 2070-2075.	1.9	27
15	Influence of RTIL Nanodomains on the Voltammetry and Spectroelectrochemistry Of Fullerene C60 in Benzonitrile/Room Temperature Ionic Liquids Mixtures. Electrochimica Acta, 2016, 191, 567-576.	2.6	12
16	Spectroscopic Evidence of Nanodomains in THF/RTIL Mixtures: Spectroelectrochemical and Voltammetric Study of Nickel Porphyrins. Analytical Chemistry, 2015, 87, 12245-12253.	3.2	12
17	Visible and infrared spectroelectrochemistry of zinc and manganese porphinones: Metal vs. porphyrin reduction. Journal of Electroanalytical Chemistry, 2015, 744, 17-24.	1.9	7
18	Electrochemistry and Spectroelectrochemistry of 1,4-Dinitrobenzene in Acetonitrile and Room-Temperature Ionic Liquids: Ion-Pairing Effects in Mixed Solvents. Analytical Chemistry, 2014, 86, 6617-6625.	3.2	26

#	Article	IF	CITATIONS
19	In Situ Study of the Photodegradation of Carbofuran Deposited on TiO2Film under UV Light, Using ATR-FTIR Coupled to HS-MCR-ALS. Environmental Science & Technology, 2013, 47, 130729104008008.	4.6	2
20	Visible and infrared spectroelectrochemistry of cobalt porphinones and porphinediones. Journal of Electroanalytical Chemistry, 2012, 670, 16-22.	1.9	9
21	Spectroelectrochemical elucidation of the kinetics of two closely spaced electron transfers. Journal of Electroanalytical Chemistry, 2012, 677-680, 56-62.	1.9	1
22	Infrared Spectroelectrochemical Reduction of Iron Porphyrin Complexes. Inorganic Chemistry, 2010, 49, 6948-6954.	1.9	45
23	The voltammetric study of the reduction of tetraalkylammonium perchlorate by Fe (TPP) ^{2â^'} . Journal of Porphyrins and Phthalocyanines, 2007, 11, 519-523.	0.4	2
24	Use of Factor Analysis in Multi-Electron Spectroelectrochemistry. AIP Conference Proceedings, 2007, ,	0.3	1
25	The redox couple of the cytochrome c cyanide complex: The contribution of heme iron ligation to the structural stability, chemical reactivity, and physiological behavior of horse cytochrome c. Protein Science, 2006, 15, 234-241.	3.1	20
26	Far-infrared spectroelectrochemistry: a study of linear molybdenum/iron/sulfur clusters. Inorganica Chimica Acta, 2004, 357, 1332-1336.	1.2	5
27	Electrochemistry and spectroscopy of sulfate and thiosulfate complexes of iron porphyrins. Inorganica Chimica Acta, 2002, 328, 13-22.	1.2	5
28	Electrochemistry and spectroelectrochemistry of iron porphyrins in the presence of nitrite. Inorganica Chimica Acta, 2001, 314, 49-57.	1.2	18
29	Visible and resonance Raman spectra of low valent iron porphyrins. Inorganica Chimica Acta, 1999, 287, 21-26.	1.2	27
30	Use of Evolutionary Factor Analysis in the Spectroelectrochemistry ofEscherichia coliSulfite Reductase Hemoprotein and a Mo/Fe/S Cluster. Analytical Chemistry, 1999, 71, 1744-1752.	3.2	26
31	Chemical and Electrochemical Studies of Cl2FeS2MS2FeCl2n- Clusters [M = Mo (n = 2), W (n = 2), V (n =) Tj ETC	2q110.78	34314 rgBT /C
32	Direct Voltammetric Observation of Redox Driven Changes in Axial Coordination and Intramolecular Rearrangement of the Phenylalanine-82-Histidine Variant of Yeast Iso-1-cytochromecâ€. Biochemistry, 1998, 37, 13091-13101.	1.2	48
33	Reactions of Hydroxylamine with Metal Porphyrins. Inorganic Chemistry, 1997, 36, 3113-3118.	1.9	45
34	The Electrochemical Oxidation of Organic Selenides and Selenoxides. Journal of the Electrochemical Society, 1997, 144, 1952-1957.	1.3	11
35	Electrochemistry of iron-sulfur proteins. , 1997, , 325-359.		0
36	Electrochemistry of nitrite reductase model compounds 6. Voltammetric and spectroelectrochemical studies of iron(II) nitrosyl complexes with porphyrins, hydroprophyrins and porphinones. Inorganica Chimica Acta, 1997, 258, 247-255.	1.2	32

#	Article	IF	CITATIONS
37	Electrochemistry of nitrite reductase model compounds 5. Electrochemistry and spectroelectrochemistry of iron porphinone, porphindione and isobacteriochlorin complexes. Inorganica Chimica Acta, 1994, 225, 57-66.	1.2	14
38	Reaction of low-valent iron porphyrins with alkyl containing supporting electrolytes. Inorganica Chimica Acta, 1994, 226, 195-201.	1.2	8
39	The electrochemical reduction of iron porphyrin nitrosyls in the presence of weak acids. Journal of Electroanalytical Chemistry, 1994, 368, 209-219.	1.9	40
40	Electrochemical and spectroscopic studies of iron porphyrin nitrosyls and their reduction products. Inorganic Chemistry, 1991, 30, 1832-1839.	1.9	117
41	The electrochemistry and spectroelectrochemistry of sulfate complexes of iron porphyrins. Inorganica Chimica Acta, 1991, 179, 25-33.	1.2	9
42	Reduction potentials of anthelmintic drugs: Possible relationship to activity. Free Radical Biology and Medicine, 1989, 6, 131-139.	1.3	21
43	Electrochemistry of cyclic α-imino carboxylates and their metal complexes: Correlation with physiological activity. Chemico-Biological Interactions, 1989, 69, 235-244.	1.7	5
44	Reduction potentials of antimycobacterial agents: Relationship to activity. Bioelectrochemistry, 1989, 21, 269-278.	1.0	17
45	Reduction potentials of antimycobacterial agents: relationship to activity. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 275, 269-278.	0.3	4
46	Minimum Essential Structural Requirements for Lactam Antibiotic Action. Free Radical Research Communications, 1989, 7, 19-26.	1.8	6
47	Electrochemistry of the Anticancer Agents Methotrexate and α-Difluaromethylornithine in Iminium Form. Journal of Pharmaceutical Sciences, 1988, 77, 999-1002.	1.6	13
48	Electron transfer mechanism for β-lactam antibiotic action via side-chain imine. Bioorganic Chemistry, 1988, 16, 149-164.	2.0	13
49	The electrochemistry of iron porphyrin nitrosyls in the presence of pyridines and amines. Inorganica Chimica Acta, 1988, 153, 25-30.	1.2	24
50	Anticancer Quinones and Quinolines: Mode of Action Via Electron Transfer and Oxidative Stress. , 1988, , 295-307.		6
51	Electron Transfer Mechanism for Cocaine Action. , 1988, , 323-331.		6
52	Electron Transfer-Oxy Radical Mechanism for Anticancer Agents: Etoposide, Cu Dips, and BIS(9-Aminoacridines). , 1988, , 345-357.		3
53	Charge Transfer-Oxy Radical Mechanism for Anticancer Agents: mAMSA Derivatives, Rhodamine 123, and Nickel Salicylaldoximate. Free Radical Research Communications, 1987, 3, 347-356.	1.8	8
54	An integrated concept of amebicidal action: Electron transfer and oxy radicals. Free Radical Biology and Medicine, 1987, 3, 85-96.	1.3	30

#	Article	IF	CITATIONS
55	Mode of action of antiprotozoan agents. Electron transfer and oxy radicals. Life Sciences, 1987, 41, 1895-1902.	2.0	18
56	Electrochemistry of nitrite reductase model compounds. 3. Formation and characterization of a bis(hydroxylamine)(tetraphenylporphyrinato)iron(II) complex. Inorganic Chemistry, 1987, 26, 2480-2483.	1.9	32
57	Cyclic Voltammetry of Quinolinium Salts and Related Compounds: Correlation with Structure and Anticancer Activity. Journal of Pharmaceutical Sciences, 1987, 76, 481-484.	1.6	19
58	A novel approach to \hat{l}^2 -lactam chemistry in vivo: Electron transfer and oxy radical formation by iminium. Bioorganic Chemistry, 1987, 15, 423-441.	2.0	15
59	Conjugated and cross-conjugated mesomeric betaines. correlation of electroreduction with structure and physiological activity. Life Sciences, 1986, 39, 1085-1091.	2.0	21
60	Electrochemistry of nitrite reductase model compounds. 2. Formation of an iron bis-nitro porphyrin complex. Inorganic Chemistry, 1986, 25, 2606-2610.	1.9	21
61	Mechanism of antibacterial action: Electron transfer and oxy radicals. Journal of Free Radicals in Biology & Medicine, 1986, 2, 377-391.	2.1	49
62	Cyclic voltammetry with cyclic iminium ions: Implications for charge transfer with biomolecules (metabolites of nicotine, phencyclidine, and spermine). Bioorganic Chemistry, 1986, 14, 228-241.	2.0	29
63	Charge transfer mechanism for benzodiazepine (BZ) action. Bioelectrochemistry, 1986, 16, 407-426.	1.0	27
64	844 — Charge transfer mechanism for carcinogenesis by alkylating and other agents. Bioelectrochemistry, 1986, 15, 305-316.	1.0	18
65	Cyclic voltammetry of phenazines and quinoxalines including mono- and di-N-oxides. Relation to structure and antimicrobial activity. Chemico-Biological Interactions, 1986, 60, 67-84.	1.7	49
66	Oxidative Ionic Metabolites of L-Methyl-4-Phenyl-L, 2, 3, 6-Tetrahydropy-Ridine (MPTP): Correlation of Electro-Reduction with Physiological Behavior. Free Radical Research Communications, 1986, 2, 107-113.	1.8	23
67	Charge Transfer in the Mechanism of Drug Action Involving Quinoxaline Di-N-oxides. Journal of Pharmaceutical Sciences, 1985, 74, 492-495.	1.6	30
68	Charge transfer and oxy radicals in antimalarial action. Quinones, dapsone metabolites, metal complexes, imunium ions, and peroxides. Journal of Free Radicals in Biology & Medicine, 1985, 1, 353-361.	2.1	34
69	Electrochemistry of nitrite reductase model compounds. 1. Electrochemistry of iron tetraphenylchlorin. Inorganic Chemistry, 1985, 24, 612-617.	1.9	23
70	A chronoamperometric kinetic study of the reduction of the double Fe4S4 clustered ferredoxin of Clostridium pasteurianum by methylviologen. Bioelectrochemistry, 1984, 12, 575-581.	1.0	5
71	The electron-transfer kinetics of spinach ferredoxin with strong reductants. Biochimica Et Biophysica Acta - Bioenergetics, 1982, 680, 242-249.	0.5	5
72	The reduction of cytochrome c by iron EDTA-like complexes: implications on charge effect corrections to mediator-protein rate constants. Journal of Inorganic Biochemistry, 1982, 17, 237-246.	1.5	4

#	Article	IF	CITATIONS
73	Molecular interpretation of kinetic-ionic strength effects. Journal of Inorganic Biochemistry, 1981, 15, 187-199.	1.5	10
74	Electrochemical approaches to the study of small molecule-protein reaction rates. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1980, 116, 587-594.	0.3	1
75	The use of rotating disk voltammetry for the determination of homogeneous small molecule-redox protein reaction rates. Analytical Biochemistry, 1980, 106, 269-277.	1.1	13
76	340 - Electrochemical approaches to the study of small molecule-protein reaction rates. Bioelectrochemistry, 1980, 7, 587-594.	1.0	3
77	The Electrochemical Oxidation of Substituted Catechols. Journal of the Electrochemical Society, 1980, 127, 1489-1495.	1.3	193
78	The chronoamperometric determination of homogeneous small molecule-redox protein reaction rates. Analytical Biochemistry, 1979, 96, 326-333.	1.1	21
79	OVERALL CHARGE CONTROL OF THE IONIC STRENGTH EFFECTS UPON THE REDOX KINETICS OF SMALL MOLECULE-PROTEIN AND PROTEIN-PROTEIN REACTIONS. , 1979, , 569-574.		0
80	240 - Electrochemical studies of cytochromes c. Bioelectrochemistry, 1978, 5, 478-482.	1.0	9
81	The Effect of Slow Twoâ€Electron Transfers and Disproportionation on Cyclic Voltammograms. Journal of the Electrochemical Society, 1978, 125, 547-555.	1.3	45
82	Comparative kinetic-ionic strength study of two differently charged cytochromes c: Effects are limited to overall charge. Biochemical and Biophysical Research Communications, 1977, 79, 769-775.	1.0	19
83	Effect of metal ions on the electrochemical reduction of benzil in non-aqueous solvents. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1976, 67, 333-357.	0.3	53
84	Spectroelectrochemical evaluation of homogeneous electron transfer involving biological molecules. Analytical Chemistry, 1975, 47, 885-890.	3.2	33
85	Effect of Sodium Ions on the Electrochemical Reduction of Diethyl Fumarate in Dimethylsulfoxide and Acetonitrile. Journal of the Electrochemical Society, 1974, 121, 881.	1.3	21