
Ciara M Murphy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7014757/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials, 2010, 31, 461-466.	5.7	1,635
2	Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds. Cell Adhesion and Migration, 2010, 4, 377-381.	1.1	453
3	Crosslinking and Mechanical Properties Significantly Influence Cell Attachment, Proliferation, and Migration Within Collagen Glycosaminoglycan Scaffolds. Tissue Engineering - Part A, 2011, 17, 1201-1208.	1.6	265
4	Mesenchymal stem cell fate is regulated by the composition and mechanical properties of collagen–glycosaminoglycan scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 11, 53-62.	1.5	228
5	Cell-scaffold interactions in the bone tissue engineering triad. , 2013, 26, 120-132.		228
6	Novel Freeze-Drying Methods to Produce a Range of Collagen–Glycosaminoglycan Scaffolds with Tailored Mean Pore Sizes. Tissue Engineering - Part C: Methods, 2010, 16, 887-894.	1.1	211
7	The healing of bony defects by cell-free collagen-based scaffolds compared to stem cell-seeded tissue engineered constructs. Biomaterials, 2010, 31, 9232-9243.	5.7	204
8	A collagen–hydroxyapatite scaffold allows for binding and co-delivery of recombinant bone morphogenetic proteins and bisphosphonates. Acta Biomaterialia, 2014, 10, 2250-2258.	4.1	108
9	Effect of collagenâ€glycosaminoglycan scaffold pore size on matrix mineralization and cellular behavior in different cell types. Journal of Biomedical Materials Research - Part A, 2016, 104, 291-304.	2.1	68
10	Functionalising Collagen-Based Scaffolds With Platelet-Rich Plasma for Enhanced Skin Wound Healing Potential. Frontiers in Bioengineering and Biotechnology, 2019, 7, 371.	2.0	53
11	Nanoscale Chemical Interaction Enhances the Physical Properties of Bioglass Composites. ACS Nano, 2013, 7, 8469-8483.	7.3	35
12	3D-Printed Gelatin Methacrylate Scaffolds with Controlled Architecture and Stiffness Modulate the Fibroblast Phenotype towards Dermal Regeneration. Polymers, 2021, 13, 2510.	2.0	35
13	Injectable chitosan/collagen hydrogels nano-engineered with functionalized single wall carbon nanotubes for minimally invasive applications in bone. Materials Science and Engineering C, 2021, 128, 112340.	3.8	28
14	PTH(1-34) Treatment Increases Bisphosphonate Turnover in Fracture Repair in Rats. Journal of Bone and Mineral Research, 2015, 30, 1022-1029.	3.1	21
15	Synergistic use of biomaterials and licensed therapeutics to manipulate bone remodelling and promote non-union fracture repair. Advanced Drug Delivery Reviews, 2020, 160, 212-233.	6.6	19
16	Local delivery of recombinant human bone morphogenetic proteins and bisphosphonate via sucrose acetate isobutyrate can prevent femoral head collapse in Legg-Calve-Perthes disease: a pilot study in pigs. International Orthopaedics, 2014, 38, 1527-1533.	0.9	18
17	Bisphosphonate-adsorbed ceramic nanoparticles increase bone formation in an injectable carrier for bone tissue engineering. Journal of Tissue Engineering, 2015, 6, 204173141560944.	2.3	18
18	3D Printed Scaffolds Incorporated with Plateletâ€Rich Plasma Show Enhanced Angiogenic Potential while not Inducing Fibrosis. Advanced Functional Materials, 2022, 32, 2109915.	7.8	17

CIARA M MURPHY

#	Article	IF	CITATIONS
19	Activated protein C (APC) can increase bone anabolism via a protease-activated receptor (PAR)1/2 dependent mechanism. Journal of Orthopaedic Research, 2014, 32, 1549-1556.	1.2	12
20	Local coâ€delivery of rh <scp>BMP</scp> â€2 and cathepsin K inhibitor L006235 in poly(<scp>d,l</scp> â€lactideâ€ <i>co</i> â€glycolide) nanospheres. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2017, 105, 136-144.	1.6	9
21	Bioactive poly(methyl methacrylate) for bone fixation. RSC Advances, 2015, 5, 60681-60690.	1.7	5
22	The lubricating effect of iPS-reprogrammed fibroblasts on collagen-GAG scaffolds for cartilage repair applications. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 114, 104174.	1.5	3
23	Old Drugs, New Tricks – Redefining Therapeutic Strategies For Tissue Regeneration. Advanced Drug Delivery Reviews, 2021, 173, 279-280.	6.6	3