
Christoph A E Lambert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7014429/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Class II/III Transition in Triarylamine Redox Systems. Journal of the American Chemical Society, 1999, 121, 8434-8442.	13.7	503
2	Origin of High Second- and Third-Order Nonlinear Optical Response in Ammonio/Borato Diphenylpolyene Zwitterions:  the Remarkable Role of Polarized Aromatic Groups. Journal of the American Chemical Society, 2003, 125, 15651-15658.	13.7	485
3	Organic Mixedâ€Valence Compounds: A Playground for Electrons and Holes. Angewandte Chemie - International Edition, 2012, 51, 326-392.	13.8	472
4	Exciton Transport in Molecular Aggregates – From Natural Antennas to Synthetic Chromophore Systems. Advanced Energy Materials, 2017, 7, 1700236.	19.5	249
5	Bridge-mediated hopping or superexchange electron-transfer processes in bis(triarylamine) systems. Nature Materials, 2002, 1, 69-73.	27.5	241
6	Are Polar Organometallic Compounds "Carbanions� The Gegenion Effect on Structure and Energies of Alkali-Metal Compounds. Angewandte Chemie International Edition in English, 1994, 33, 1129-1140.	4.4	213
7	UV/Vis/NIR spectral properties of triarylamines and their corresponding radical cations. Chemical Physics, 2005, 316, 141-152.	1.9	184
8	A Reliable Quantum-Chemical Protocol for the Characterization of Organic Mixed-Valence Compounds. Journal of the American Chemical Society, 2009, 131, 16292-16302.	13.7	184
9	Cyclic (Amino)(aryl)carbenes Enter the Field of Chromophore Ligands: Expanded π System Leads to Unusually Deep Red Emitting Cu ^I Compounds. Journal of the American Chemical Society, 2020, 142, 8897-8909.	13.7	157
10	How Delocalized Is N,N,Nâ€~,Nâ€~-Tetraphenylphenylenediamine Radical Cation? An Experimental and Theoretical Study on the Electronic and Molecular Structure. Journal of the American Chemical Society, 2004, 126, 7834-7845.	13.7	156
11	Electrochemistry and Photophysics of Donor-Substituted Triarylboranes: Symmetry Breaking in Ground and Excited State. Chemistry - A European Journal, 2006, 12, 2358-2370.	3.3	156
12	One- and Two-Dimensional Electron Transfer Processes in Triarylamines with Multiple Redox Centers. Angewandte Chemie - International Edition, 1998, 37, 2107-2110.	13.8	151
13	Sind polare Organometallverbindungen "Carbanionen� Der Einfluß des Gegenions auf Struktur und Energie von Organoalkalimetallverbindungen. Angewandte Chemie, 1994, 106, 1187-1199.	2.0	145
14	Optical and electronic properties of air-stable organoboron compounds with strongly electron-accepting bis(fluoromesityl)boryl groups. Chemical Science, 2015, 6, 308-321.	7.4	128
15	Towards Polycyclic Aromatic Hydrocarbons with a Singlet Openâ€Shell Ground State. Angewandte Chemie - International Edition, 2011, 50, 1756-1758.	13.8	124
16	Crystal, Molecular and Electronic Structure ofN,Nâ€2-Diphenyl-N,Nâ€2-bis(2,4-dimethylphenyl)-(1,1â€2-biphenyl)-4,4â€2-diamine and the Corresponding Rad Cation. Chemistry - A European Journal, 2004, 10, 83-91.	ical.3	121
17	Computational and spectroscopic studies of organic mixed-valence compounds: where is the charge?. Physical Chemistry Chemical Physics, 2011, 13, 16973.	2.8	121
18	From Valence Trapped to Valence Delocalized by Bridge State Modification in Bis(triarylamine) Radical Cations:  Evaluation of Coupling Matrix Elements in a Three-Level System. Journal of Physical Chemistry A, 2004, 108, 6474-6486.	2.5	120

#	Article	IF	CITATIONS
19	Electronic Coupling in Tetraanisylarylenediamine Mixed-Valence Systems:Â The Interplay between Bridge Energy and Geometric Factors. Journal of the American Chemical Society, 2005, 127, 8508-8516.	13.7	107
20	Synthesis, (Non)Linear Optical and Redox Properties of a Donor-Substituted Truxenone Derivative. Chemistry - A European Journal, 1998, 4, 2129-2135.	3.3	106
21	Highly Fluorescent Open-Shell NIR Dyes: The Time-Dependence of Back Electron Transfer in Triarylamine-Perchlorotriphenylmethyl Radicals. Journal of Physical Chemistry C, 2009, 113, 20958-20966.	3.1	100
22	Neutral Organic Mixed-Valence Compounds:Â Synthesis and All-Optical Evaluation of Electron-Transfer Parameters. Journal of the American Chemical Society, 2007, 129, 5515-5527.	13.7	96
23	Synthesis and Nonlinear Optical Properties of Three-Dimensional Phosphonium Ion Chromophores. Chemistry - A European Journal, 1998, 4, 512-521.	3.3	94
24	Excited Mixed-Valence States of Symmetrical Donorâ^'Acceptorâ^'Donor Ï€ Systems. Journal of Physical Chemistry A, 2006, 110, 5204-5214.	2.5	94
25	Axially Chiral β,β′-Bisporphyrins: Synthesis and Configurational Stability Tuned by the Central Metals. Journal of the American Chemical Society, 2008, 130, 17812-17825.	13.7	90
26	Pyrene Molecular Orbital Shuffle—Controlling Excited State and Redox Properties by Changing the Nature of the Frontier Orbitals. Chemistry - A European Journal, 2017, 23, 13164-13180.	3.3	90
27	Two-photon states in squaraine monomers and oligomers. Chemical Physics, 2002, 279, 179-207.	1.9	88
28	Electronic Couplings in Organic Mixed-Valence Compounds:Â The Contribution of Photoelectron Spectroscopy. Journal of the American Chemical Society, 2004, 126, 2727-2731.	13.7	85
29	Subchromophore interactions in tricyanovinyl-substituted triarylamines—a combined experimental and computational study. Journal of the Chemical Society Perkin Transactions II, 1999, , 577-588.	0.9	83
30	Optically and Thermally Induced Electron Transfer Pathways in Hexakis[4-(N,N-diarylamino)phenyl]benzene Derivatives. Chemistry - A European Journal, 2002, 8, 3467.	3.3	83
31	Tuning the π-bridge of quadrupolar triarylborane chromophores for one- and two-photon excited fluorescence imaging of lysosomes in live cells. Chemical Science, 2019, 10, 5405-5422.	7.4	83
32	Optoelectronic Processes in Squaraine Dyeâ€Đoped OLEDs for Emission in the Nearâ€Infrared. Advanced Materials, 2013, 25, 2943-2947.	21.0	82
33	[2.2]Paracyclophane-Bridged Mixed-Valence Compounds:Â Application of a Generalized Mullikenâ^'Hush Three-Level Model. Journal of Physical Chemistry A, 2006, 110, 1177-1189.	2.5	81
34	Redoxâ€switchable Intramolecular <i>Ï€â^'Ï€</i> â€Stacking of Perylene Bisimide Dyes in a Cyclophane. Advanced Materials, 2013, 25, 410-414.	21.0	80
35	Synthesis and Photophysics of a Neutral Organic Mixed-Valence Compound. Angewandte Chemie - International Edition, 2004, 43, 5851-5856.	13.8	78
36	Polarizedï€-Electron Systems in a Chemically Generated Electric Field: Second-Order Nonlinear Optical Properties of Ammonium/Borate Zwitterions. Angewandte Chemie International Edition in English, 1996, 35, 644-646.	4.4	73

#	Article	IF	CITATIONS
37	Hexaarylbenzenes—Prospects for Toroidal Delocalization of Charge and Energy. Angewandte Chemie - International Edition, 2005, 44, 7337-7339.	13.8	73
38	Electron Paramagnetic Resonance Spectroscopy of Bis(triarylamine) Paracyclophanes as Model Compounds for the Intermolecular Charge-Transfer in Solid State Materials for Optoelectronic Applications. Journal of Physical Chemistry C, 2009, 113, 2983-2995.	3.1	72
39	Localized versus Backbone Fluorescence in <i>N</i> - <i>p</i> -(Diarylboryl)phenyl-Substituted 2,7- and 3,6-Linked Polycarbazoles. Macromolecules, 2009, 42, 773-782.	4.8	68
40	Singlet–Singlet Exciton Annihilation in an Exciton-Coupled Squaraine-Squaraine Copolymer: A Model toward Hetero-J-Aggregates. Journal of Physical Chemistry C, 2014, 118, 17467-17482.	3.1	67
41	Heterocyclic quinones as core units for redox switches: UV–vis/NIR, FTIR spectroelectrochemistry and DFT calculations on the vibrational and electronic structure of the radical anions. Journal of Electroanalytical Chemistry, 2000, 484, 24-32.	3.8	66
42	Localization/Delocalization of Charges in Bay‣inked Perylene Bisimides. Chemistry - A European Journal, 2012, 18, 6764-6775.	3.3	66
43	Intervalence charge-transfer bands in triphenylamine-based polymers. Synthetic Metals, 2003, 139, 57-62.	3.9	65
44	[<i>n</i>]Helicene Diimides (<i>n</i> = 5, 6, and 7): Through-Bond versus Through-Space Conjugation. Journal of the American Chemical Society, 2020, 142, 21298-21303.	13.7	65
45	Squaraine Dyes as Efficient Coupling Bridges between Triarylamine Redox Centres. Chemistry - A European Journal, 2011, 17, 14147-14163.	3.3	64
46	Multiple Reduction of 2,5â€Bis(borolyl)thiophene: Isolation of a Negative Bipolaron by Comproportionation. Angewandte Chemie - International Edition, 2013, 52, 12852-12855.	13.8	62
47	Mulliken–Hush analysis of a bis(triarylamine) mixed-valence system with a Nâ∢ N distance of 28.7 Ã Chemical Communications, 2006, , 2959-2961.	4.1	61
48	Polymeric Squaraine Dyes as Electron Donors in Bulk Heterojunction Solar Cells. Macromolecular Chemistry and Physics, 2010, 211, 1098-1108.	2.2	60
49	Preparation, Properties, and Structures of the Radical Anions and Dianions of Azapentacenes. Journal of the American Chemical Society, 2017, 139, 15968-15976.	13.7	57
50	Complete Monitoring of Coherent and Incoherent Spin Flip Domains in the Recombination of Charge-Separated States of Donor-Iridium Complex-Acceptor Triads. Journal of the American Chemical Society, 2015, 137, 11011-11021.	13.7	55
51	Chargeâ€Transfer Interactions in Trisâ€Donor–Trisâ€Acceptor Hexaarylbenzene Redox Chromophores. Chemistry - A European Journal, 2012, 18, 11937-11948.	3.3	54
52	Coupled Oscillators for Tuning Fluorescence Properties of Squaraine Dyes. Journal of the American Chemical Society, 2015, 137, 3547-3557.	13.7	54
53	Highly Substituted Azulene Dyes as Multifunctional NLO and Electron-Transfer Compounds. Chemistry - A European Journal, 2003, 9, 4232-4239.	3.3	53
54	A small cationic donor–acceptor iridium complex with a long-lived charge-separated state. Chemical Communications, 2009, , 1670.	4.1	53

#	Article	IF	CITATIONS
55	Aggregation of Metalated Organics by Hydrogen Bonding: Synthesis and Crystal Structures of 2-Aminophenoxy-Aluminum and Salen-Aluminum Ligand-Separated Ion Pairs. Inorganic Chemistry, 1995, 34, 3765-3779.	4.0	50
56	Energy Transfer Between Squaraine Polymer Sections: From <i>Helix</i> to <i>Zigzag</i> and All the Way Back. Journal of the American Chemical Society, 2015, 137, 7851-7861.	13.7	50
57	Bis(aminoaryl) Carbonâ€Bridged Oligo(phenylenevinylene)s Expand the Limits of Electronic Couplings. Angewandte Chemie - International Edition, 2017, 56, 2898-2902.	13.8	50
58	Hole Transfer Processes in <i>meta-</i> and <i>para-</i> Conjugated Mixed Valence Compounds: Unforeseen Effects of Bridge Substituents and Solvent Dynamics. Journal of the American Chemical Society, 2017, 139, 6200-6209.	13.7	50
59	Cooperative enhancement versus additivity of two-photon-absorption cross sections in linear and branched squaraine superchromophores. Physical Chemistry Chemical Physics, 2016, 18, 16404-16413.	2.8	49
60	Exciton Dynamics from Strong to Weak Coupling Limit Illustrated on a Series of Squaraine Dimers. Journal of Physical Chemistry C, 2018, 122, 8082-8093.	3.1	49
61	Charge-transfer transitions in triarylamine mixed-valence systems: the effect of temperature. Chemical Physics Letters, 2003, 373, 153-160.	2.6	48
62	Symmetry-dependent solvation of donor-substituted triarylboranes. Physical Chemistry Chemical Physics, 2008, 10, 6245.	2.8	48
63	Green-to-Red Electrochromic Fe(II) Metallo-Supramolecular Polyelectrolytes Self-Assembled from Fluorescent 2,6-Bis(2-pyridyl)pyrimidine Bithiophene. Inorganic Chemistry, 2017, 56, 1418-1432.	4.0	48
64	The Effect of Branching on the One―and Twoâ€Photon Absorption, Cell Viability, and Localization of Cationic Triarylborane Chromophores with Dipolar versus Octupolar Charge Distributions for Cellular Imaging. Chemistry - A European Journal, 2019, 25, 13164-13175.	3.3	48
65	Experimental and theoretical investigations on the structure and reactivity of .alphalithiomethoxyallene and its Grignard analog. Journal of Organic Chemistry, 1993, 58, 6377-6389.	3.2	46
66	Photoinduced Charge Transfer Processes along Triarylamine Redox Cascades. Journal of the American Chemical Society, 2005, 127, 10600-10610.	13.7	46
67	Synthesis of Functionalized 1,4-Azaborinines by the Cyclization of Di- <i>tert</i> -butyliminoborane and Alkynes. Journal of the American Chemical Society, 2016, 138, 8212-8220.	13.7	46
68	Synthesis, photophysical and electronic properties of tetra-donor- or acceptor-substituted <i>ortho</i> -perylenes displaying four reversible oxidations or reductions. Chemical Science, 2019, 10, 7516-7534.	7.4	45
69	Tuning of intervalence charge transfer energies by substituents in one-dimensional bis(triarylamine) systems. Perkin Transactions II RSC, 2002, , 2039-2043.	1.1	44
70	Dual Luminescence, Interligand Decay, and Nonradiative Electronic Relaxation of Cyclometalated Iridium Complexes in Solution. Journal of Physical Chemistry C, 2016, 120, 16459-16469.	3.1	42
71	Bromination Improves the Electron Mobility of Tetraazapentacene. Angewandte Chemie - International Edition, 2018, 57, 9543-9547.	13.8	42
72	"Inverted" sodium-lithium electronegativity: polarity and metalation energies of organic and inorganic alkali-metal compounds. Organometallics, 1993, 12, 853-859.	2.3	39

#	Article	IF	CITATIONS
73	Cationic π-electron systems with high quadratic hyperpolarisability. Perkin Transactions II RSC, 2001, , 964-974.	1.1	39
74	Multidimensional Electron Transfer Pathways in a Tetrahedral Tetrakis{4-[N,N-di(4-methoxyphenyl)amino]phenyl}Phosphonium Salt:  One-Step vs Two-Step Mechanism. Journal of Physical Chemistry A, 2001, 105, 7751-7758.	2.5	38
75	Synthesis and Spectroscopic Properties of a Hexapyrenylbenzene Derivativeâ€. Organic Letters, 2006, 8, 5037-5040.	4.6	38
76	Conducting Polymers Based on Alkylthiopyrroles. Macromolecules, 2006, 39, 2049-2055.	4.8	38
77	Charge-Transfer Interactions in a Multichromophoric Hexaarylbenzene Containing Pyrene and Triarylamines. Journal of Organic Chemistry, 2012, 77, 6147-6154.	3.2	38
78	Long-Lived Singlet and Triplet Charge Separated States in Small Cyclophane-Bridged Triarylamine–Naphthalene Diimide Dyads. Journal of Physical Chemistry C, 2012, 116, 15265-15280.	3.1	38
79	From wavelike to sub-diffusive motion: exciton dynamics and interaction in squaraine copolymers of varying length. Chemical Science, 2020, 11, 456-466.	7.4	38
80	Substituent-dependent absorption and fluorescence properties of perylene bisimide radical anions and dianions. Materials Horizons, 2022, 9, 350-359.	12.2	38
81	Linear and non-linear optical properties of areneî—,Feî—,Cp complexes. Journal of Organometallic Chemistry, 1999, 592, 109-114.	1.8	37
82	Regioselective Catalytic and Stepwise Routes to Bulky, Functionalâ€Groupâ€Appended, and Luminescent 1,2â€Azaborinines. Chemistry - A European Journal, 2016, 22, 8603-8609.	3.3	37
83	Synthesis and Structure of a Ferrocenylboron Dication. Inorganic Chemistry, 2008, 47, 7456-7458.	4.0	36
84	The first solid-state structure of a mixed-anion ROLi/LiOH compound: (tBuOLi)10 · (LiOH)6. Journal of Organometallic Chemistry, 1995, 487, 139-141.	1.8	35
85	Synthesis and Electron Transfer Characteristics of a Neutral, Low-Band-Gap, Mixed-Valence Polyradical. Chemistry of Materials, 2010, 22, 6641-6655.	6.7	35
86	Exciton Coupling Effects in Polymeric <i>cis</i> -Indolenine Squaraine Dyes. Chemistry of Materials, 2012, 24, 2541-2553.	6.7	35
87	Mechanism of Anionic [3 + 2] Cycloadditions. An ab Initio Computational Study on the Cycloaddition of Allyl-, 2-Borylallyl-, and 2-Azaallyllithium to Ethylene. Journal of the American Chemical Society, 1998, 120, 3357-3370.	13.7	34
88	Near-Infrared Luminescence and Inner Filter Effects of Lanthanide Coordination Polymers with 1,2-Di(4-pyridyl)ethylene. Inorganic Chemistry, 2016, 55, 7396-7406.	4.0	34
89	Fullereneâ€Filled Liquidâ€Crystal Stars: A Supramolecular Click Mechanism for the Generation of Tailored Donor–Acceptor Assemblies. Angewandte Chemie - International Edition, 2019, 58, 3610-3615.	13.8	34
90	A Water-Complexed Organolithium Compound:[LiCH(CN)2· H2O· TMEDA]â^ž. Angewandte Chemie International Edition in English, 1992, 31, 77-79.	4.4	33

#	Article	IF	CITATIONS
91	Design and synthesis of Raman reporter molecules for tissue imaging by immunoâ€&ERS microscopy. Journal of Biophotonics, 2011, 4, 453-463.	2.3	33
92	Luminescent Monoâ€, Diâ€, and Triradicals: Bridging Polychlorinated Triarylmethyl Radicals by Triarylamines and Triarylboranes. Chemistry - A European Journal, 2019, 25, 15463-15471.	3.3	33
93	Synthesis, Photophysical and Electronic Properties of New Redâ€ŧoâ€NIR Emitting Donor–Acceptor Pyrene Derivatives. Chemistry - A European Journal, 2020, 26, 438-453.	3.3	33
94	Organic mixed valence compounds with N,N-dihydrodimethylphenazine redox centres. Perkin Transactions II RSC, 2002, , 1553-1561.	1.1	32
95	Anionic Boron- and Carbon-Based Hetero-Diradicaloids Spanned by a <i>p</i> -Phenylene Bridge. Journal of the American Chemical Society, 2021, 143, 3687-3692.	13.7	31
96	Two-Photon Absorption of Bis[4-(N,N-diphenylamino)phenylethynyl]arenes. ChemPhysChem, 2005, 6, 893-896.	2.1	30
97	Stepwise versus pseudo-concerted two-electron-transfer in a triarylamine–iridium dipyrrin–naphthalene diimide triad. Physical Chemistry Chemical Physics, 2013, 15, 16024.	2.8	30
98	Coherently and fluorescence-detected two-dimensional electronic spectroscopy: direct comparison on squaraine dimers. Physical Chemistry Chemical Physics, 2020, 22, 21222-21237.	2.8	30
99	A photoinduced mixed-valence state in an organic bis-triarylamine mixed-valence compound with an iridium-metal-bridge. Chemical Communications, 2014, 50, 11350.	4.1	29
100	Push–Pullâ€Type Polychlorotriphenylmethyl Radicals: New Twoâ€Photon Absorbers and Dyes for Generation of Photoâ€Charges. Chemistry - A European Journal, 2017, 23, 7698-7702.	3.3	28
101	Ultraâ€High to Ultraâ€Low Drugâ€Loaded Micelles: Probing Host–Guest Interactions by Fluorescence Spectroscopy. Chemistry - A European Journal, 2019, 25, 12601-12610.	3.3	28
102	Ultrafast Resonance Energy Transfer in Ethylene-Bridged BODIPY Heterooligomers: From Frenkel to Förster Coupling Limit. Journal of the American Chemical Society, 2021, 143, 7414-7425.	13.7	28
103	Electronic Structure and Properties of Poly- and Oligoazulenes. Journal of Physical Chemistry C, 2008, 112, 2156-2164.	3.1	27
104	Rapid multiple-quantum three-dimensional fluorescence spectroscopy disentangles quantum pathways. Nature Communications, 2019, 10, 4735.	12.8	27
105	Triarylboraneâ€Based Helical Donor–Acceptor Compounds: Synthesis, Photophysical, and Electronic Properties. Chemistry - A European Journal, 2019, 25, 10845-10857.	3.3	27
106	Solid-State and Electronic Structure of Benzoxazol-2-ylideneâ^'triphenylborane Complex. Organometallics, 1996, 15, 452-455.	2.3	26
107	Self-Assembled Monolayers of Chromophores on Gold Surfaces. , 0, , 257-313.		26
108	Energy transfer and formation of long-lived 3MLCT states in multimetallic complexes with extended highly conjugated bis-terpyridyl ligands. Physical Chemistry Chemical Physics, 2016, 18, 2350-2360.	2.8	26

#	Article	IF	CITATIONS
109	Large Stokes shift fluorescence activation in an RNA aptamer by intermolecular proton transfer to guanine. Nature Communications, 2021, 12, 3549.	12.8	26
110	Reduction of the Fluorescence Transition Dipole Moment by Excitation Localization in a Vibronically Coupled Squaraine Dimer. Journal of Physical Chemistry C, 2019, 123, 3426-3432.	3.1	25
111	Readout of spin quantum beats in a charge-separated radical pair by pump-push spectroscopy. Science, 2021, 374, 1470-1474.	12.6	25
112	Photoinduced Charge Separation and Recombination in Acridineâ^'Triarylamine-Based Redox Cascades. Journal of Physical Chemistry C, 2008, 112, 1227-1243.	3.1	24
113	Electrochemical and Optical Characterization of Triarylamine Functionalized Gold Nanoparticles. Langmuir, 2011, 27, 5029-5039.	3.5	24
114	Synthesis, electrochemical, and optical properties of low band gap homo- and copolymers based on squaraine dyes. Journal of Polymer Science Part A, 2014, 52, 890-911.	2.3	24
115	<i>>J</i> -Resonance Line Shape of Magnetic Field-Affected Reaction Yield Spectrum from Charge Recombination in a Linked Donor–Acceptor Dyad. Journal of Physical Chemistry C, 2018, 122, 11701-11708.	3.1	24
116	Photoinduced Dynamics of Bis-dipyrrinato-palladium(II) and Porphodimethenato-palladium(II) Complexes: Governing Near Infrared Phosphorescence by Structural Restriction. Inorganic Chemistry, 2018, 57, 12480-12488.	4.0	23
117	Signatures of exciton dynamics and interaction in coherently and fluorescence-detected four- and six-wave-mixing two-dimensional electronic spectroscopy. Journal of Chemical Physics, 2020, 153, 144204.	3.0	23
118	Femtosecond probing of the excited state absorption and structural relaxation in biphenyl derivatives. Chemical Physics Letters, 2003, 376, 201-206.	2.6	22
119	Decoupling Charge Transport and Electroluminescence in a High Mobility Polymer Semiconductor. Advanced Materials, 2016, 28, 6378-6385.	21.0	22
120	Perylene Ï€â€Bridges Equally Delocalize Anions and Cations: Proportioned Quinoidal and Aromatic Content. Angewandte Chemie - International Edition, 2019, 58, 14467-14471.	13.8	21
121	X-ray diffraction studies of polymeric lithiobenzotriazole · DMSO and lithiotetrazole · DMSO: From β-sheet to wash-board structures. Journal of Organometallic Chemistry, 1993, 455, 29-35.	1.8	20
122	Concerted Two-Electron-Transfer Processes in Mixed-Valence Species with Square Topology. ChemPhysChem, 2003, 4, 877-880.	2.1	20
123	Electron-Rich Tetrathiafulvalene-Triarylamine Conjugates: Synthesis and Redox Properties. Chemistry - A European Journal, 2006, 12, 1144-1155.	3.3	20
124	Solvent Controlled Energy Transfer Processes in Triarylamine-Triazole Based Dendrimers. Journal of Physical Chemistry C, 2013, 117, 19816-19831.	3.1	20
125	Photoluminescent Oneâ€Ðimensional Coordination Polymers from Suitable Pyridine Antenna and LnCl ₃ for Visible and Nearâ€IR Emission. European Journal of Inorganic Chemistry, 2015, 2015, 826-836.	2.0	20
126	Thermodynamic equilibrium between locally excited and charge-transfer states through thermally activated charge transfer in 1-(pyren-2â€2-yl)- <i>o</i>	7.4	20

#	Article	IF	CITATIONS
127	Charge transfer dynamics in squaraine–naphthalene diimide copolymers. Physical Chemistry Chemical Physics, 2013, 15, 19831.	2.8	19
128	On the relation of energy and electron transfer in multidimensional chromophores based on polychlorinated triphenylmethyl radicals and triarylamines. Physical Chemistry Chemical Physics, 2015, 17, 11848-11867.	2.8	19
129	Macrocyclic Donor–Acceptor Dyads Composed of a Perylene Bisimide Dye Surrounded by Oligothiophene Bridges. Angewandte Chemie - International Edition, 2022, 61, .	13.8	19
130	Polarisierte Ï€â€Elektronensysteme in einem chemisch erzeugten elektrischen Feld: nichtlineare optische Eigenschaften zweiter Ordnung von Ammoniumâ€Boratâ€Zwitterionen. Angewandte Chemie, 1996, 108, 710-712.	2.0	18
131	Heterogeneous Electron Transfer Processes in Self-Assembled Monolayers of Amine Terminated Conjugated Molecular Wires. Langmuir, 2006, 22, 8807-8812.	3.5	18
132	A Novel Six-Center Deprotonation-Lithiation Reaction Mechanism Supported by the X-Ray Structure Analysis of a Lithium Carbazolide. Angewandte Chemie International Edition in English, 1992, 31, 1209-1210.	4.4	17
133	Wasser als Ligand in lithiierten organischen Verbindungen: [LiCH(CN) ₂ · H ₂ O · TMEDA]â^ž. Angewandte Chemie, 1992, 104, 78-79.	2.0	17
134	Synthesis and ligand properties of thianthrenophane. Organic and Biomolecular Chemistry, 2004, 2, 2897.	2.8	17
135	A Combined Experimental and Theoretical Study on the Isomers of 2,3,4,5â€Tetracarbaâ€ <i>nido</i> â€Hexaborane(6) Derivatives and Their Photophysical Properties. Chemistry - A European Journal, 2015, 21, 210-218.	3.3	17
136	Exciton coupling effects on the two-photon absorption of squaraine homodimers with varying bridge units. Physical Chemistry Chemical Physics, 2020, 22, 18340-18350.	2.8	17
137	Annihilation Dynamics of Molecular Excitons Measured at a Single Perturbative Excitation Energy. Journal of Physical Chemistry Letters, 2020, 11, 7776-7781.	4.6	17
138	On the photophysical properties of IrIII, PtII, and PdII (phenylpyrazole) (phenyldipyrrin) complexes. Physical Chemistry Chemical Physics, 2020, 22, 3217-3233.	2.8	17
139	Femtosecond dynamics of electron transfer in a neutral organic mixed-valence compound. Chemical Physics, 2008, 347, 436-445.	1.9	16
140	Paracyclophanes as Model Compounds for Strongly Interacting π-Systems, Part 3: Influence of the Substitution Pattern on Photoabsorption Properties. Journal of Physical Chemistry A, 2011, 115, 3583-3591.	2.5	16
141	Identification of effective exciton–exciton annihilation in squaraine–squaraine copolymers. Physical Chemistry Chemical Physics, 2016, 18, 13368-13374.	2.8	16
142	Tetrabromtetraazapentacen: erhöhte Elektronenbeweglichkeit. Angewandte Chemie, 2018, 130, 9688-9692.	2.0	16
143	Dications of Bis-triarylamino-[2.2]paracyclophanes:Â Evaluation of Excited State Couplings by GMH Analysis. Journal of Physical Chemistry A, 2006, 110, 3495-3504.	2.5	15
144	Investigations of the Degenerate Intramolecular Charge Exchange in Symmetric Organic Mixed Valence Compounds: Solvent Dynamics of Bis(triarylamine)paracyclophane Redox Systems. Journal of Physical Chemistry C, 2015, 119, 8547-8553.	3.1	15

#	Article	IF	CITATIONS
145	Electron transfer pathways in mixedâ€valence paracyclophaneâ€bridged bisâ€triarylamine radical cations. Journal of Computational Chemistry, 2016, 37, 93-102.	3.3	15
146	Energy redistribution dynamics in triarylamine–triarylborane containing hexaarylbenzenes. Physical Chemistry Chemical Physics, 2016, 18, 13403-13412.	2.8	15
147	Fine tuning of electron transfer and spin chemistry parameters in triarylamine–bridge–naphthalene diimide dyads by bridge substituents. Physical Chemistry Chemical Physics, 2018, 20, 27093-27104.	2.8	15
148	Heterogeneous electron transfer processes in triarylamine- and ferrocene-based self-assembled monolayers. Journal of Electroanalytical Chemistry, 2006, 590, 32-36.	3.8	14
149	Photoinduced Electron Transfer Dynamics in Triarylamine–Naphthalene Diimide Cascades. Journal of Physical Chemistry C, 2014, 118, 27698-27714.	3.1	14
150	Localised and delocalised excitons in star-like squaraine homo- and heterotrimers. Physical Chemistry Chemical Physics, 2016, 18, 2646-2657.	2.8	14
151	Quantum Study of the Absorption Spectroscopy of Bis(triarylamine) Radical Cations. Journal of Physical Chemistry A, 2008, 112, 10178-10184.	2.5	13
152	How fast is optically induced electron transfer in organic mixed valence systems?. Physical Chemistry Chemical Physics, 2016, 18, 19405-19411.	2.8	13
153	Dynamic exciton localisation in a pyrene–BODIPY–pyrene dye conjugate. Physical Chemistry Chemical Physics, 2019, 21, 9013-9025.	2.8	13
154	Positive electronic exchange interaction and predominance of minor triplet channel in CIDNP formation in short lived charge separated states of D-X-A dyads. Journal of Chemical Physics, 2020, 152, 014203.	3.0	13
155	Zincâ€{7]helicenocyanine and Its Discrete π‣tacked Homochiral Dimer. Angewandte Chemie - International Edition, 2021, 60, 23656-23660.	13.8	13
156	Charge localization by the gegenion: the electronic structure and energies of the alkali metal acetaldehyde enolates. Journal of the Chemical Society Chemical Communications, 1993, , 255.	2.0	12
157	Excited-state dynamics in a neutral organic mixed-valence compound. Chemical Physics Letters, 2005, 408, 264-268.	2.6	12
158	Bis(aminoaryl) Carbonâ€Bridged Oligo(phenylenevinylene)s Expand the Limits of Electronic Couplings. Angewandte Chemie, 2017, 129, 2944-2948.	2.0	12
159	Charge Resonance Excitations in 1,3-Bis[di(4-methoxyphenyl)amino]azulene Radical Cations. Journal of Physical Chemistry C, 2007, 111, 3512-3516.	3.1	11
160	The Quantum Dynamical Basis of a Classical Kinetic Scheme Describing Coherent and Incoherent Regimes of Radical Pair Recombination. Zeitschrift Fur Physikalische Chemie, 2017, 231, 197-223.	2.8	11
161	Magnetic field effects in rigidly linked D-A dyads: Extreme on-resonance quantum coherence effect on charge recombination. Journal of Chemical Physics, 2019, 151, 244308.	3.0	11
162	Nanoscale Columnar Bundles Based on Multistranded Core–Shell Liquid Crystals of Perylene Bisimide J-Aggregate Donor–Acceptor Dyads for Photoconductivity Devices with Enhanced Performance Through Macroscopic Alignment. ACS Applied Nano Materials, 2020, 3, 10234-10245.	5.0	11

#	Article	IF	CITATIONS
163	Exciton Coupling Enhancement in the Relaxed Excited State. Journal of Physical Chemistry C, 2018, 122, 11720-11729.	3.1	10
164	Perylene Ï€â€Bridges Equally Delocalize Anions and Cations: Proportioned Quinoidal and Aromatic Content. Angewandte Chemie, 2019, 131, 14609-14613.	2.0	10
165	fs–ps Exciton dynamics in a stretched tetraphenylsquaraine polymer. Physical Chemistry Chemical Physics, 2019, 21, 15346-15355.	2.8	10
166	One- and two-electron reduction of triarylborane-based helical donor–acceptor compounds. Chemical Science, 2021, 12, 11864-11872.	7.4	10
167	Fluorescence band exchange narrowing in a series of squaraine oligomers: energetic <i>vs.</i> structural disorder. Physical Chemistry Chemical Physics, 2021, 23, 18393-18403.	2.8	9
168	Synthesis and Linear Optical Properties of Tris(catecholato)metal(III,IV) Complexes with Acceptor-Substituted Ligands. European Journal of Inorganic Chemistry, 2005, 2005, 4509-4515.	2.0	8
169	Unexpected Generation of Diastereomers by Double Diboration of a Dialkyne. Chemistry - A European Journal, 2011, 17, 5230-5233.	3.3	8
170	Macrocyclic <i>cis</i> -Indolenine Squaraine Dyes as Efficient Near Infrared Emitters. Journal of Physical Chemistry C, 2015, 119, 6174-6180.	3.1	8
171	Synthesis, Photophysical and Electronic Properties of Monoâ€, Diâ€, and Triâ€Aminoâ€Substituted Orthoâ€Perylenes, and Comparison to the Tetraâ€Substituted Derivative. Chemistry - A European Journal, 2020, 26, 12050-12059.	3.3	8
172	Macrocyclic Donorâ€Acceptor Dyads Composed of a Perylene Bisimide Surrounded by Oligothiophene Bridges. Angewandte Chemie, 0, , .	2.0	8
173	Measuring Charge-Separation Dynamics via Oligomer Length Variation. Journal of Physical Chemistry C, 2014, 118, 23586-23598.	3.1	7
174	Optically Induced Electron Transfer in Mixed-Valence States: A Model Study on Electronic Transitions, Relaxation Dynamics, and Transient Absorption Spectroscopy. Journal of Physical Chemistry A, 2019, 123, 5463-5471.	2.5	7
175	Giant magnetic field effects in donor–acceptor triads: On the charge separation and recombination dynamics in triarylamine–naphthalenediimide triads with bis-diyprrinato-palladium(II), porphodimethenato-palladium(II), and palladium(II)–porphyrin photosensitizers. Journal of Chemical Physics. 2020. 153. 054306.	3.0	7
176	Macrocyclic Donorâ€Acceptor Dyads Composed of Oligothiophene Halfâ€Cycles and Perylene Bisimides. Chemistry - A European Journal, 2022, 28, .	3.3	7
177	Methyl Viologens of Bisâ€(4'â€Pyridylethynyl)Arenes – Structures, Photophysical and Electrochemical Studies, and their Potential Application in Biology. Chemistry - A European Journal, 2022, 28, .	3.3	7
178	A Selfâ€Assembled Unit Comprising 12 Squaraine Dyes Built Up from Two Starâ€Shaped Hexasquarainylâ€Benzene Molecules. Chemistry - A European Journal, 2019, 25, 2831-2839.	3.3	6
179	Nanoviscosity effect on the spin chemistry of an electron donor/Pt-complex /electron acceptor triad - classical and quantum kinetics interpretation. Molecular Physics, 2019, 117, 2632-2644.	1.7	6
180	Enhanced Two–Photon Absorption and Promising Broad Energy Range Optical Power Limiting Properties of <i>Transoid</i> and <i>Cisoid</i> Benzodipyrrolenine-Fused Squaraine Dimers. Chemistry of Materials, 2021, 33, 3121-3131.	6.7	6

#	Article	IF	CITATIONS
181	Solvent Induced Helix Folding of Defined Indolenine Squaraine Oligomers. Chemistry - A European Journal, 2021, 27, 8380-8389.	3.3	6
182	Mono―and Dianion of a Bis(benzobuta)tetraazapentacene Derivative. Chemistry - A European Journal, 2019, 25, 9840-9845.	3.3	5
183	Chiroptical Properties of Indolenine Squaraines with a Stereogenic Center at Close Proximity. Journal of Organic Chemistry, 2020, 85, 12227-12242.	3.2	5
184	Polymeric Indolenine–Squaraine Foldamers with a Preferred Helix Twist Sense and Their Chiroptical Absorption and Emission Properties. Macromolecules, 2022, 55, 421-436.	4.8	5
185	Electronâ€Rich EDOT Linkers in Tetracationic bisâ€Triarylborane Chromophores: Influence on Water Stability, Biomacromolecule Sensing, and Photoinduced Cytotoxicity. Chemistry - A European Journal, 2022, 28, .	3.3	5
186	Mixed-valence interactions in triarylamine–gold–nanoparticle conjugates. Chemical Communications, 2009, , 6213.	4.1	4
187	Ultrafast Energy Transfer Dynamics in a Squaraine Heterotriad. Journal of Physical Chemistry A, 2021, 125, 2504-2511.	2.5	4
188	Zincâ€{7]helicenocyanin und sein diskretes Ï€â€gestapeltes homochirales Dimer. Angewandte Chemie, 2021, 133, 23848-23852.	2.0	4
189	Polymeric [N-Lithio-benzimidazole(DMSO) ₂]â^ž The Crystal Structure and ab initio Calculations. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1992, 47, 869-876.	0.7	3
190	Thienyl-bridged oligomeric squaraines of the indole series: synthesis and optical properties. , 2001, 4461, 33.		3
191	Ultrafast charge-transfer dynamics of donor-substituted truxenones. Physical Chemistry Chemical Physics, 2012, 14, 11081.	2.8	3
192	The sesquimetallated lithium cluster resulting from the reaction of a diprotonic NH/OH acid with n-butyllithium. Journal of the Chemical Society Chemical Communications, 1993, , 1773.	2.0	2
193	3,4-Methylenedithiopyrrole: convenient synthesis and application as a novel monomer for electroactive polymers. Journal of Materials Chemistry, 2005, , .	6.7	2
194	Optically Induced Charge Transfer in Organic Mixed-Valence Systems: Wave Packet Dynamics and Femtosecond Transient Spectroscopy. Journal of Physical Chemistry A, 2021, 125, 4114-4125.	2.5	2
195	Mapping 13C hyperfine couplings and exchange interactions in short-lived charge separated states of rigid donor–bridge–acceptor dyads. Journal of Chemical Physics, 2021, 155, 224201.	3.0	2
196	Diethynylarene-linked bis(triarylborane)cations as theranostic agents for tumor cell and virus-targeted photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 2022, 234, 112523.	3.8	2
197	Highly Substituted Azulene Dyes as Multifunctional NLO and Electron-Transfer Compounds ChemInform, 2003, 34, no.	0.0	0
198	Frontispiece: Triarylboraneâ€Based Helical Donor–Acceptor Compounds: Synthesis, Photophysical, and Electronic Properties. Chemistry - A European Journal, 2019, 25, .	3.3	0

#	Article	IF	CITATIONS
199	Probing Exciton Transport in Squaraine Polymers Using Fifth-Order Two-Dimensional Spectroscopy. , 2020, , .		0
200	Coherently and Fluorescence-Detected Four- and Six-Wave-Mixing Two-Dimensional Electronic Spectroscopy: Measuring Multi-Exciton Dynamics and Delocalization. , 2020, , .		0
201	Supramolecular p/nâ€heterojunction of C ₆₀ â€functionalized bis(merocyanine) quadruple stack: A model system for charge carrier separation and recombination in organic solar cells. Natural Sciences, 2022, 2, .	2.1	0