Federico Pecora

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7014360/publications.pdf Version: 2024-02-01

FEDERICO PECORA

#	Article	IF	CITATIONS
1	Development of a Socially Believable Multi-Robot Solution from Town to Home. Cognitive Computation, 2014, 6, 954-967.	3.6	85
2	Autonomous Transport Vehicles: Where We Are and What Is Missing. IEEE Robotics and Automation Magazine, 2015, 22, 64-75.	2.2	62
3	MONITORING ELDERLY PEOPLE WITH THE <scp>ROBOCARE</scp> DOMESTIC ENVIRONMENT: INTERACTION SYNTHESIS AND USER EVALUATION. Computational Intelligence, 2011, 27, 60-82.	2.1	40
4	Paving the way for culturally competent robots: A position paper. , 2017, , .		40
5	DCOP FOR SMART HOMES: A CASE STUDY. Computational Intelligence, 2007, 23, 395-419.	2.1	38
6	A constraint-based approach for proactive, context-aware human support. Journal of Ambient Intelligence and Smart Environments, 2012, 4, 347-367.	0.8	34
7	Culturally aware Planning and Execution of Robot Actions. , 2018, , .		21
8	On mission-dependent coordination of multiple vehicles under spatial and temporal constraints. , 2012, , .		20
9	The RACE Project. KI - Kunstliche Intelligenz, 2014, 28, 297-304.	2.2	18
10	Online task merging with a hierarchical hybrid task planner for mobile service robots. , 2015, , .		18
11	Combining Task and Motion Planning: Challenges and Guidelines. Frontiers in Robotics and Al, 2021, 8, 637888.	2.0	17
12	Robotic UBIquitous COgnitive Network. Advances in Intelligent and Soft Computing, 2012, , 191-195.	0.2	16
13	Proactive Assistive Technology: An Empirical Study. Lecture Notes in Computer Science, 2007, , 255-268.	1.0	15
14	When robots are late: Configuration planning for multiple robots with dynamic goals. , 2013, , .		14
15	Provably Safe Multi-Robot Coordination With Unreliable Communication. IEEE Robotics and Automation Letters, 2019, 4, 3232-3239.	3.3	14
16	Inexpensive, reliable and localization-free navigation using an RFID floor. , 2015, , .		11
17	More knowledge on the table: Planning with space, time and resources for robots. , 2014, , .		10
18	Al Reasoning Methods for Robotics. Springer Handbooks, 2016, , 329-356.	0.3	10

Federico Pecora

#	Article	IF	CITATIONS
19	Online Task Assignment and Coordination in Multi-Robot Fleets. IEEE Robotics and Automation Letters, 2021, 6, 4584-4591.	3.3	10
20	Multi-Robot Planning Under Uncertain Travel Times and Safety Constraints. , 2019, , .		10
21	A robot sets a table: a case for hybrid reasoning with different types of knowledge. Journal of Experimental and Theoretical Artificial Intelligence, 2016, 28, 801-821.	1.8	9
22	Online Sequential Task Assignment With Execution Uncertainties for Multiple Robot Manipulators. IEEE Robotics and Automation Letters, 2021, 6, 6993-7000.	3.3	8
23	A framework for culture-aware robots based on fuzzy logic. , 2017, , .		7
24	The CARESSES EU-Japan Project: Making Assistive Robots Culturally Competent. Lecture Notes in Electrical Engineering, 2019, , 151-169.	0.3	7
25	HYBRID REASONING FOR MULTI-ROBOT DRILL PLANNING IN OPEN-PIT MINES. Acta Polytechnica, 2016, 56, 47.	0.3	7
26	Integrating physics-based prediction with Semantic plan Execution Monitoring. , 2015, , .		6
27	On Provably Safe and Live Multirobot Coordination With Online Goal Posting. IEEE Transactions on Robotics, 2021, 37, 1973-1991.	7.3	6
28	Inferring Context and Goals for Online Human-Aware Planning. , 2015, , .		5
29	Multi vehicle routing with nonholonomic constraints and dense dynamic obstacles. , 2017, , .		5
30	A Customizable Approach for Monitoring Activities of Elderly Users in Their Homes. Lecture Notes in Computer Science, 2014, , 13-25.	1.0	5
31	User-oriented problem abstractions in scheduling. Innovations in Systems and Software Engineering, 2006, 2, 1-16.	1.6	4
32	Point-to-point safe navigation of a mobile robot using stigmergy and RFID technology. , 2016, , .		4
33	Collaborative Development Within a Social Robotic, Multi-Disciplinary Effort: the CARESSES Case Study. , 2018, , .		4
34	Priority-Based Distributed Coordination for Heterogeneous Multi-Robot Systems With Realistic Assumptions. IEEE Robotics and Automation Letters, 2021, 6, 6131-6138.	3.3	4
35	Is Model-Based Robot Programming a Mirage? A Brief Survey of Al Reasoning in Robotics. Kl - Kunstliche Intelligenz, 2014, 28, 255-261.	2.2	3
36	Multi-modal sensing for human activity recognition. , 2015, , .		3

Multi-modal sensing for human activity recognition. , 2015, , . 36

Federico Pecora

#	Article	IF	CITATIONS
37	Robots that maintain equilibrium: Proactivity by reasoning about user intentions and preferences. Pattern Recognition Letters, 2019, 118, 85-93.	2.6	3
38	Hybrid Reasoning in Perception: A Case Study. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 90-95.	0.4	2
39	Children Playing with Robots Using Stigmergy on a Smart Floor. , 2016, , .		2
40	Towards Norm Realization in Institutions Mediating Human-Robot Societies. , 2018, , .		2
41	Combining Multi-Robot Motion Planning and Goal Allocation using Roadmaps. , 2021, , .		2
42	CARESSES:The Flower that Taught Robots about Culture. , 2019, , .		1
43	Planning with Multiple-Components in Omps. Lecture Notes in Computer Science, 2008, , 435-445.	1.0	1
44	Scaling up ubiquitous robotic systems from home to town (and beyond). , 2013, , .		0
45	An experience-based approach for cognitive service robot system. , 2014, , .		0
46	Proactivity through equilibrium maintenance with fuzzy desirability. , 2017, , .		0
47	Context Recognition: Towards Automatic Query Generation. Lecture Notes in Computer Science, 2015, , 205-218	1.0	0