Mark T Swihart

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7014319/mark-t-swihart-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

67 118 16,689 320 h-index g-index citations papers 18,662 7.07 342 9.1 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
320	Palladium Nanosheet-Based Dual Gas Sensors for Sensitive Room-Temperature Hydrogen and Carbon Monoxide Detection <i>ACS Sensors</i> , 2022 ,	9.2	5
319	Progress and potential of electrospinning-derived substrate-free and binder-free lithium-ion battery electrodes. <i>Chemical Engineering Journal</i> , 2022 , 430, 132876	14.7	13
318	Flame aerosol synthesis of hollow alumina nanoshells for application in thermal insulation. <i>Chemical Engineering Journal</i> , 2022 , 428, 131273	14.7	2
317	On the Fokker B lanck approximation in the kinetic equation of multicomponent classical nucleation theory. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2022 , 585, 126375	3.3	0
316	Surface-rare-earth-rich upconversion nanoparticles induced by heterovalent cation exchange with superior loading capacity. <i>Journal of Materials Science and Technology</i> , 2022 , 97, 223-228	9.1	O
315	Functional Spinel Oxide Nanomaterials: Tailored Synthesis and Applications 2022, 176-191		
314	Functional Spinel Oxide Nanomaterials: Tailored Synthesis and Applications 2022 , 137-175		
313	Mechanical characterization and adhesive properties of a dental adhesive modified with a polymer antibiotic conjugate <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2022 , 129, 105153	4.1	
312	Review of recent progress in electrospinning-derived freestanding and binder-free electrodes for supercapacitors. <i>Coordination Chemistry Reviews</i> , 2022 , 460, 214466	23.2	6
311	Tuning Materials-Binding Peptide Sequences toward Gold- and Silver-Binding Selectivity with Bayesian Optimization. <i>ACS Nano</i> , 2021 ,	16.7	6
310	Magnetically Controllable Flowerlike, Polyhedral Ag-Cu-CoO for Surface-Enhanced Raman Scattering. <i>ACS Applied Materials & Scattering (Scattering ACS ACS Applied Materials & Scattering (Scattering ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	3
309	Single-Step Flame Aerosol Synthesis of Active and Stable Nanocatalysts for the Dry Reforming of Methane. <i>ACS Applied Materials & Description</i> (2015) 13, 17618-17628	9.5	7
308	Bimetallic zeolitic imidazolate framework-derived substrate-free anode with superior cyclability for high-capacity lithium-ion batteries. <i>Journal of Materials Science and Technology</i> , 2021 , 67, 116-126	9.1	9
307	Fundamentals and recent applications of catalyst synthesis using flame aerosol technology. <i>Chemical Engineering Journal</i> , 2021 , 405, 126958	14.7	6
306	Nickel ferrite beehive-like nanosheets for binder-free and high-energy-storage supercapacitor electrodes. <i>Journal of Alloys and Compounds</i> , 2021 , 852, 156929	5.7	11
305	Biocompatibility, mechanical, and bonding properties of a dental adhesive modified with antibacterial monomer and cross-linker. <i>Clinical Oral Investigations</i> , 2021 , 25, 2877-2889	4.2	0
304	Vapor-phase production of nanomaterials. <i>Chemical Society Reviews</i> , 2021 , 50, 7132-7249	58.5	15

(2020-2021)

303	Synthesis and antibacterial activity of polymer-antibiotic conjugates incorporated into a resin-based dental adhesive. <i>Biomaterials Science</i> , 2021 , 9, 2043-2052	7.4	3
302	Electrostatically Sprayed Nanostructured Electrodes for Energy Conversion and Storage Devices. <i>Advanced Functional Materials</i> , 2021 , 31, 2008181	15.6	10
301	A cannabidiol-loaded Mg-gallate metal-organic framework-based potential therapeutic for glioblastomas. <i>Journal of Materials Chemistry B</i> , 2021 , 9, 2505-2514	7.3	9
300	Anion exchange induced formation of kesterite copper zinc tin sulphide-copper zinc tin selenide nanoheterostructures. <i>Nanoscale</i> , 2021 , 13, 4828-4834	7.7	1
299	Binary and Ternary Colloidal Cu-Sn-Te Nanocrystals for Thermoelectric Thin Films. <i>Small</i> , 2021 , 17, e200	67/29	3
298	Shape Control of Cu/ZnO CoreBhell Nanocubes and Related Structures for Localized Surface Plasmon Resonance. <i>ACS Applied Nano Materials</i> , 2021 , 4, 995-999	5.6	1
297	Scalable Polymeric Few-Nanometer Organosilica Membranes with Hydrothermal Stability for Selective Hydrogen Separation. <i>ACS Nano</i> , 2021 ,	16.7	5
296	Reduced graphene oxide supersonically sprayed on wearable fabric and decorated with iron oxide for supercapacitor applications. <i>Journal of Materials Science and Technology</i> , 2021 , 82, 47-56	9.1	6
295	Reduced Graphene Oxide-Wrapped Palladium Nanowires Coated with a Layer of Zeolitic Imidazolate Framework-8 for Hydrogen Sensing. <i>ACS Applied Nano Materials</i> , 2021 , 4, 8081-8093	5.6	4
294	Flexible metallized carbon nanofibers decorated with two-dimensional NiGa2S4 nanosheets as supercapacitor electrodes. <i>Chemical Engineering Journal</i> , 2021 , 420, 130497	14.7	9
293	The effect of cathodic voltage-controlled electrical stimulation of titanium on the surrounding microenvironment pH: An experimental and computational study. <i>Electrochimica Acta</i> , 2021 , 393, 13885	3 .7	0
292	Cotton fabric decorated with manganese oxide nanorods as a supercapacitive flexible electrode for wearable electronics. <i>Applied Surface Science</i> , 2021 , 568, 150968	6.7	3
291	Recent advances of luminogens with aggregation-induced emission in multi-photon theranostics. <i>Applied Physics Reviews</i> , 2021 , 8, 041328	17.3	1
290	Graph Theory Model of Dry Reforming of Methane Using Rh(111). <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 4917-4922	6.4	8
289	Galvanic replacement synthesis of multi-branched gold nanocrystals for photothermal cancer therapy. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 5491-5499	7.3	9
288	Supersonically sprayed Zn2SnO4/SnO2/carbon nanotube films for high-efficiency water splitting photoanodes. <i>Journal of Alloys and Compounds</i> , 2020 , 828, 154374	5.7	6
287	ZnO/MnOx Nanoflowers for High-Performance Supercapacitor Electrodes. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 3697-3708	8.3	50
286	Morphology engineering of photoelectrodes for efficient photoelectrochemical water splitting. <i>Nano Energy</i> , 2020 , 72, 104648	17.1	46

285	Electrosprayed MnO2 on ZnO nanorods with atomic layer deposited TiO2 layer for photoelectrocatalytic water splitting. <i>Applied Catalysis B: Environmental</i> , 2020 , 271, 118928	21.8	32
284	Supersonically sprayed Fe2O3/C/CNT composites for highly stable Li-ion battery anodes. <i>Chemical Engineering Journal</i> , 2020 , 395, 125018	14.7	23
283	Dodecahedral ZnO/C framework on reduced graphene oxide sheets for high-performance Li-ion battery anodes. <i>Journal of Alloys and Compounds</i> , 2020 , 834, 155208	5.7	13
282	Supersonic Cold Spraying for Energy and Environmental Applications: One-Step Scalable Coating Technology for Advanced Micro- and Nanotextured Materials. <i>Advanced Materials</i> , 2020 , 32, e1905028	24	27
281	Microencapsulated UV filter@ZIF-8 based sunscreens for broad spectrum UV protection <i>RSC Advances</i> , 2020 , 10, 34254-34260	3.7	4
280	Laser pyrolysis synthesis of zinc-containing nanomaterials using low-cost ultrasonic spray delivery of precursors. <i>Powder Technology</i> , 2020 , 376, 104-112	5.2	6
279	Supersonically sprayed rGO/ZIF8 on nickel nanocone substrate for highly stable supercapacitor electrodes. <i>Electrochimica Acta</i> , 2020 , 362, 137154	6.7	6
278	Boron-hyperdoped silicon for the selective oxidative dehydrogenation of propane to propylene. <i>Chemical Communications</i> , 2020 , 56, 9882-9885	5.8	18
277	Hydrogen Sensing at Room Temperature Using Flame-Synthesized Palladium-Decorated Crumpled Reduced Graphene Oxide Nanocomposites. <i>ACS Sensors</i> , 2020 , 5, 2344-2350	9.2	18
276	A general hierarchical flower-shaped cobalt oxide spinel template: facile method, morphology control, and enhanced saturation magnetization. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 14056-14065	57.1	2
275	Formation and manipulation of ferrofluid droplets with magnetic fields in a microdevice: a numerical parametric study. <i>Soft Matter</i> , 2020 , 16, 9506-9518	3.6	3
274	Copper@ZIF-8 Core-Shell Nanowires for Reusable Antimicrobial Face Masks. <i>Advanced Functional Materials</i> , 2020 , 31, 2008054	15.6	35
273	Laser-Processed Nanosilicon: A Multifunctional Nanomaterial for Energy and Healthcare. <i>ACS Nano</i> , 2019 , 13, 9841-9867	16.7	60
272	Recent advances in copper sulphide-based nanoheterostructures. <i>Chemical Society Reviews</i> , 2019 , 48, 4950-4965	58.5	45
271	Synthesis and characterization of silver nanoparticle-loaded amorphous calcium phosphate microspheres for dental applications. <i>Nanoscale Advances</i> , 2019 , 1, 627-635	5.1	17
270	Comparing Semiconductor Nanocrystal Toxicity in Pregnant Mice and Non-Human Primates. <i>Nanotheranostics</i> , 2019 , 3, 54-65	5.6	11
269	Highly flexible transparent substrate-free photoanodes using ZnO nanowires on nickel microfibers. <i>Chemical Engineering Journal</i> , 2019 , 363, 13-22	14.7	8
268	Improved Performance of Silicon Nanowire-Based Solar Cells with Diallyl Disulfide Passivation. Journal of Physical Chemistry C, 2019 , 123, 4664-4673	3.8	7

(2018-2019)

Supersonically sprayed iron oxide nanoparticles with atomic-layer-deposited ZnO/TiO2 layers for solar water splitting. <i>Journal of Alloys and Compounds</i> , 2019 , 798, 35-44	5.7	22
Flame-synthesized nickel-silver nanoparticle inks provide high conductivity without sintering. <i>Chemical Engineering Journal</i> , 2019 , 372, 648-655	14.7	16
Biocompatible and biodegradable inorganic nanostructures for nanomedicine: Silicon and black phosphorus. <i>Nano Today</i> , 2019 , 25, 135-155	17.9	189
Highly transparent, conducting, body-attachable metallized fibers as a flexible and stretchable film. <i>Journal of Alloys and Compounds</i> , 2019 , 790, 1127-1136	5.7	12
Hierarchical zeolitic imidazolate framework-derived manganese-doped zinc oxide decorated carbon nanofiber electrodes for high performance flexible supercapacitors. <i>Chemical Engineering Journal</i> , 2019 , 371, 657-665	14.7	51
Synthesis, growth mechanisms, and applications of palladium-based nanowires and other one-dimensional nanostructures. <i>Nanoscale</i> , 2019 , 11, 19058-19085	7.7	40
Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation. <i>Nature Catalysis</i> , 2019 , 2, 578-589	36.5	429
Sorption-Enhanced Mixed Matrix Membranes with Facilitated Hydrogen Transport for Hydrogen Purification and CO2 Capture. <i>Advanced Functional Materials</i> , 2019 , 29, 1904357	15.6	26
Supersonically Sprayed Zn2SnO4/SnO2/CNT Nanocomposites for High-Performance Supercapacitor Electrodes. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 14031-14040	8.3	47
Can the Morphology of Biconcave Metal Sulfide Nanoplatelets Be Preserved during Cation Exchange?. <i>Chemistry of Materials</i> , 2019 , 31, 5706-5712	9.6	10
Boron-Nanoparticle-Loaded Folic-Acid-Functionalized Liposomes to Achieve Optimum Boron Concentration for Boron Neutron Capture Therapy of Cancer. <i>Journal of Biomedical Nanotechnology</i> , 2019 , 15, 1714-1723	4	15
A general approach to multicomponent metal-decorated crumpled reduced graphene oxide nanocomposites using a flame-based process. <i>Nanoscale</i> , 2019 , 11, 19571-19578	7.7	11
Unexpectedly Strong Size-Sieving Ability in Carbonized Polybenzimidazole for Membrane H/CO Separation. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 47365-47372	9.5	32
Electrosprayed graphene films decorated with bimetallic (zinc-iron) oxide for lithium-ion battery anodes. <i>Journal of Alloys and Compounds</i> , 2019 , 782, 699-708	5.7	16
Synthesis and Properties of Plasmonic Boron-Hyperdoped Silicon Nanoparticles. <i>Advanced Functional Materials</i> , 2019 , 29, 1807788	15.6	17
Core-shell quantum dots coated with molecularly imprinted polymer for selective photoluminescence sensing of perfluorooctanoic acid. <i>Talanta</i> , 2019 , 194, 1-6	6.2	29
A general and rapid room-temperature synthesis approach for metal sulphide nanocrystals with tunable properties. <i>Nanoscale</i> , 2018 , 11, 136-144	7.7	6
Polymer-antibiotic conjugates as antibacterial additives in dental resins. <i>Biomaterials Science</i> , 2018 , 7, 287-295	7.4	19
	Flame-synthesized nickel-silver nanoparticle inks provide high conductivity without sintering. Chemical Engineering Journal, 2019, 372, 648-655 Biocompatible and biodegradable inorganic nanostructures for nanomedicine: Silicon and black phosphorus. Nano Today, 2019, 25, 135-155 Highly transparent, conducting, body-attachable metallized fibers as a flexible and stretchable film. Journal of Alloys and Compounds, 2019, 790, 1127-1136 Hierarchical zeolitic imidazolate framework-derived manganese-doped zinc oxide decorated carbon nanofiber electrodes for high performance flexible supercapacitors. Chemical Engineering Journal, 2019, 371, 657-665 Synthesis, growth mechanisms, and applications of palladium-based nanowires and other one-dimensional nanostructures. Nanoscale, 2019, 11, 19058-19085 Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation. Nature Catalysis, 2019, 2, 578-589 Sorption-Enhanced Mixed Matrix Membranes with Facilitated Hydrogen Transport for Hydrogen Purification and CO2 Capture. Advanced Functional Materials, 2019, 29, 1904357 Supersonically Sprayed Zn2SnO4/SnO2/CNT Nanocomposites for High-Performance Supercapacitor Electrodes. ACS Sustainable Chemistry and Engineering, 2019, 7, 14031-14040 Can the Morphology of Biconcave Metal Sulfide Nanoplatelets Be Preserved during Cation Exchange?. Chemistry of Materials, 2019, 31, 5706-5712 Boron-Nanoparticle-Loaded Folic-Acid-Functionalized Liposomes to Achieve Optimum Boron Concentration for Boron Neutron Capture Therapy of Cancer. Journal of Biomedical Nanotechnology, 2019, 15, 1714-1723 A general approach to multicomponent metal-decorated crumpled reduced graphene oxide nanocomposites using a flame-based process. Nanoscale, 2019, 11, 19571-19578 Unexpectedly Strong Size-Sieving Ability in Carbonized Polybenzimidazole for Membrane H/CO Separation. ACS Applied Materials & Amprilaed Polybenzimidazole for Membrane H/CO Separation. ACS Applied Materials Science, 2019, 182, 699-708	Flame-synthesized nickel-silver nanoparticle inks provide high conductivity without sintering. Flame-synthesized nickel-silver nanoparticle inks provide high conductivity without sintering. Leminal Engineering Journal, 2019, 372, 648-655 Flame-synthesized nickel-silver nanoparticle inks provide high conductivity without sintering. Leminal Engineering Journal, 2019, 372, 648-655 Flighly transparent, conducting, body-attachable metallized fibers as a flexible and stretchable film. Journal of Alloys and Compounds, 2019, 790, 1127-1136 Hierarchical zeolitic imidazolate framework-derived manganese-doped zinc oxide decorated carbon nanofiber electrodes for high performance flexible supercapacitors. Chemical Engineering Journal, 2019, 371, 657-665 Synthesis, growth mechanisms, and applications of palladium-based nanowires and other one-dimensional nanostructures. Nanoscale, 2019, 11, 19058-19085 Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation. Nature Catalysis, 2019, 2, 578-589 Sorption-Enhanced Mixed Matrix Membranes with Facilitated Hydrogen Transport for Hydrogen Purification and Co2 Capture. Advanced Functional Materials, 2019, 29, 1904357 Supersonically Sprayed Zn2SnO4/SnO2/CNT Nanocomposites for High-Performance Supercapacitor Electrodes. ACS Sustainable Chemistry and Engineering, 2019, 7, 14031-14040 Can the Morphology of Biconcave Metal Sulfide Nanoplatelets Be Preserved during Cation Exchange?. Chemistry of Materials, 2019, 31, 5706-5712 Boron-Nanoparticle-Loaded Folic-Acid-Functionalized Liposomes to Achieve Optimum Boron Concentration for Boron Neutron Capture Therapy of Cancer. Journal of Biomedical Manocchnology, 2019, 15, 1714-1723 A general approach to multicomponent metal-decorated crumpled reduced graphene oxide nanocomposites using a flame-based process. Nanoscale, 2019, 11, 19571-19578 Unexpectedly Strong Size-Sieving Ability in Carbonized Polybenzimidazole for Membrane H/CO Separation. ACS Applied Materials & Sa

249	Zeolitic imidazolate framework-7 textile-derived nanocomposite fibers as freestanding supercapacitor electrodes. <i>Journal of Electroanalytical Chemistry</i> , 2018 , 810, 239-247	4.1	26
248	Valence Selectivity of Cation Incorporation into Covellite CuS Nanoplatelets. <i>Chemistry of Materials</i> , 2018 , 30, 1399-1407	9.6	40
247	Electrosprayed graphene decorated with ZnO nanoparticles for supercapacitors. <i>Journal of Alloys and Compounds</i> , 2018 , 741, 781-791	5.7	20
246	Controllable colloidal synthesis of anisotropic tin dichalcogenide nanocrystals for thin film thermoelectrics. <i>Nanoscale</i> , 2018 , 10, 2533-2541	7.7	15
245	Atomic-layer-deposited TiO2-SnZnO/carbon nanofiber composite as a highly stable, flexible and freestanding anode material for lithium-ion batteries. <i>Chemical Engineering Journal</i> , 2018 , 338, 72-81	14.7	17
244	Ni-core CuO-shell fibers produced by electrospinning and electroplating as efficient photocathode materials for solar water splitting. <i>Nanoscale</i> , 2018 , 10, 9720-9728	7.7	16
243	Peptide-Mediated Growth and Dispersion of Au Nanoparticles in Water via Sequence Engineering. Journal of Physical Chemistry C, 2018 , 122, 11532-11542	3.8	16
242	Improved plasmon-assisted photoelectric conversion efficiency across entire ultraviolet\(\mathbb{U} \) isible region based on antenna-on zinc oxide/silver three-dimensional nanostructured films. <i>Nano Research</i> , 2018 , 11, 520-529	10	5
241	Electrosprayed BiVO4 nanopillars coated with atomic-layer-deposited ZnO/TiO2 as highly efficient photoanodes for solar water splitting. <i>Chemical Engineering Journal</i> , 2018 , 333, 721-729	14.7	51
240	Oxidation-resistant metallized nanofibers as transparent conducting films and heaters. <i>Acta Materialia</i> , 2018 , 143, 174-180	8.4	22
239	Flame-based synthesis and in situ functionalization of palladium alloy nanoparticles. <i>AICHE Journal</i> , 2018 , 64, 3826-3834	3.6	6
238	Supersonically sprayed rGOIn2SnO4 composites as flexible, binder-free, scalable, and high-capacity lithium ion battery anodes. <i>Journal of Alloys and Compounds</i> , 2018 , 766, 331-340	5.7	18
237	Highly efficient electrodes for supercapacitors using silver-plated carbon nanofibers with enhanced mechanical flexibility and long-term stability. <i>Chemical Engineering Journal</i> , 2018 , 353, 189-196	14.7	31
236	Selective Cation Incorporation into Copper Sulfide Based Nanoheterostructures. <i>ACS Nano</i> , 2018 , 12, 7803-7811	16.7	34
235	Understanding the Effects of NaCl, NaBr and Their Mixtures on Silver Nanowire Nucleation and Growth in Terms of the Distribution of Electron Traps in Silver Halide Crystals. <i>Nanomaterials</i> , 2018 , 8,	5.4	13
234	Tuning the morphology of electrosprayed BiVO4 from nanopillars to nanoferns via pH control for solar water splitting. <i>Journal of Alloys and Compounds</i> , 2018 , 769, 193-200	5.7	20
233	Controllable Colloidal Synthesis of Tin(II) Chalcogenide Nanocrystals and Their Solution-Processed Flexible Thermoelectric Thin Films. <i>Small</i> , 2018 , 14, e1801949	11	15
232	Highly nanotextured EBi2O3 pillars by electrostatic spray deposition as photoanodes for solar water splitting. <i>Journal of Alloys and Compounds</i> , 2018 , 764, 881-889	5.7	23

231	Zeolitic imidazolate framework-8 derived zinc oxide/ carbon nanofiber as freestanding electrodes for lithium storage in lithium-ion batteries. <i>Journal of Power Sources</i> , 2018 , 395, 349-357	8.9	39
230	Enhanced fatigue resistance of suppressed hysteresis in perovskite solar cells by an organic crosslinker. <i>Solar Energy Materials and Solar Cells</i> , 2018 , 176, 30-35	6.4	13
229	Unprecedented size-sieving ability in polybenzimidazole doped with polyprotic acids for membrane H2/CO2 separation. <i>Energy and Environmental Science</i> , 2018 , 11, 94-100	35.4	73
228	Synthesis and Anisotropic Electrocatalytic Activity of Covellite Nanoplatelets with Fixed Thickness and Tunable Diameter. <i>ACS Applied Materials & Samp; Interfaces</i> , 2018 , 10, 42417-42426	9.5	8
227	Optical Control of Biomimetic Nanoparticle Catalysts Based upon the Metal Component. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 28055-28064	3.8	5
226	Controlled Synthesis of CuSe Nanoparticles as Near-Infrared Photothermal Agents and Irradiation Wavelength Dependence of Their Photothermal Conversion Efficiency. <i>Langmuir</i> , 2018 , 34, 13905-1390	91	15
225	Ag+-Induced Shape and Composition Evolution of Covellite CuS Nanoplatelets To Produce PlateBatellite and BiconcaveBarticle Heterostructures. <i>Chemistry of Materials</i> , 2018 , 30, 8089-8098	9.6	12
224	Optical Control of Nanoparticle Catalysis Influenced by Photoswitch Positioning in Hybrid Peptide Capping Ligands. <i>ACS Applied Materials & Samp; Interfaces</i> , 2018 , 10, 33640-33651	9.5	11
223	Hierarchically designed ZIF-8-derived Ni@ZnO/carbon nanofiber freestanding composite for stable Li storage. <i>Chemical Engineering Journal</i> , 2018 , 351, 127-134	14.7	41
222	Dramatic Enhancement of Quantum Cutting in Lanthanide-Doped Nanocrystals Photosensitized with an Aggregation-Induced Enhanced Emission Dye. <i>Nano Letters</i> , 2018 , 18, 4922-4926	11.5	32
221	Supersonically spray-coated zinc ferrite/graphitic-carbon nitride composite as a stable high-capacity anode material for lithium-ion batteries. <i>Journal of Alloys and Compounds</i> , 2018 , 768, 525-	5⁄3⁄4	15
220	Solution-phase synthesis of transition metal oxide nanocrystals: Morphologies, formulae, and mechanisms. <i>Advances in Colloid and Interface Science</i> , 2017 , 244, 199-266	14.3	58
219	ZnO decorated germanium nanoparticles as anode materials in Li-ion batteries. <i>Nanotechnology</i> , 2017 , 28, 095402	3.4	4
218	One-Pot Hydrothermal Synthesis of Carbon Dots with Efficient Up- and Down-Converted Photoluminescence for the Sensitive Detection of Morin in a Dual-Readout Assay. <i>Langmuir</i> , 2017 , 33, 1043-1050	4	110
217	Flexible freestanding Fe2O3-SnO -carbon nanofiber composites for Li ion battery anodes. <i>Journal of Alloys and Compounds</i> , 2017 , 700, 259-266	5.7	27
216	Stable High-Capacity Lithium Ion Battery Anodes Produced by Supersonic Spray Deposition of Hematite Nanoparticles and Self-Healing Reduced Graphene Oxide. <i>Electrochimica Acta</i> , 2017 , 228, 604-	670	21
215	Decoration of MnO Nanocrystals on Flexible Freestanding Carbon Nanofibers for Lithium Ion Battery Anodes. <i>Electrochimica Acta</i> , 2017 , 231, 582-589	6.7	39
214	Nonstoichiometric copper chalcogenides for photo-activated alkyne/azide cycloaddition. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 6964-6968	3.6	6

213	Facile processes for producing robust, transparent, conductive platinum nanofiber mats. <i>Nanoscale</i> , 2017 , 9, 6076-6084	7.7	13
212	. IEEE Journal of Selected Topics in Quantum Electronics, 2017 , 23, 1-6	3.8	2
211	Supersonic cold spraying of titania nanoparticles on reduced graphene oxide for lithium ion battery anodes. <i>Journal of Alloys and Compounds</i> , 2017 , 715, 161-169	5.7	12
210	Elucidating the influence of materials-binding peptide sequence on Au surface interactions and colloidal stability of Au nanoparticles. <i>Nanoscale</i> , 2017 , 9, 421-432	7.7	24
209	High-performance supercapacitors using flexible and freestanding MnOx/carbamide carbon nanofibers. <i>Applied Surface Science</i> , 2017 , 423, 210-218	6.7	21
208	Reversible Crystal Phase Interconversion between Covellite CuS and High Chalcocite Cu2S Nanocrystals. <i>Chemistry of Materials</i> , 2017 , 29, 4783-4791	9.6	61
207	Plasmonic Copper Sulfide-Based Materials: A Brief Introduction to Their Synthesis, Doping, Alloying, and Applications. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 13435-13447	3.8	100
206	Standardizing Size- and Shape-Controlled Synthesis of Monodisperse Magnetite (FeO) Nanocrystals by Identifying and Exploiting Effects of Organic Impurities. <i>ACS Nano</i> , 2017 , 11, 6370-6381	16.7	80
205	Au-CuSe heterogeneous nanocrystals for efficient photothermal heating for cancer therapy. Journal of Materials Chemistry B, 2017 , 5, 4934-4942	7.3	28
204	Kuramite Cu3SnS4 and Mohite Cu2SnS3 Nanoplatelet Synthesis Using Covellite CuS Templates with Sn(II) and Sn(IV) Sources. <i>Chemistry of Materials</i> , 2017 , 29, 3555-3562	9.6	43
203	Dual-Recognition FEster Resonance Energy Transfer Based Platform for One-Step Sensitive Detection of Pathogenic Bacteria Using Fluorescent Vancomycin-Gold Nanoclusters and Aptamer-Gold Nanoparticles. <i>Analytical Chemistry</i> , 2017 , 89, 4085-4090	7.8	88
202	Carbon Nanofibers Loaded with Carbon Nanotubes and Iron Oxide as Flexible Freestanding Lithium-Ion Battery Anodes. <i>Electrochimica Acta</i> , 2017 , 253, 479-488	6.7	26
201	Self-Cleaning Anticondensing Glass via Supersonic Spraying of Silver Nanowires, Silica, and Polystyrene Nanoparticles. <i>ACS Applied Materials & District Research</i> , 9, 35325-35332	9.5	19
200	Effects of Cd-based Quantum Dot Exposure on the Reproduction and Offspring of Kunming Mice over Multiple Generations. <i>Nanotheranostics</i> , 2017 , 1, 23-37	5.6	15
199	Tightening polybenzimidazole (PBI) nanostructure via chemical cross-linking for membrane H2/CO2 separation. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 19914-19923	13	62
198	Flexible and freestanding core-shell SnOx/carbon nanofiber mats for high-performance supercapacitors. <i>Journal of Alloys and Compounds</i> , 2017 , 728, 1362-1371	5.7	24
197	Supersonically blown reduced graphene oxide loaded FeHe3C nanofibers for lithium ion battery anodes. <i>Journal of Alloys and Compounds</i> , 2017 , 726, 114-120	5.7	22
196	Mo-doped BiVO4 nanotextured pillars as efficient photoanodes for solar water splitting. <i>Journal of Alloys and Compounds</i> , 2017 , 726, 1138-1146	5.7	21

(2016-2017)

195	Shape Evolution of Biconcave Djurleite CuS Nanoplatelets Produced from CuInS Nanoplatelets by Cation Exchange. <i>Journal of the American Chemical Society</i> , 2017 , 139, 18598-18606	16.4	22
194	Engineering reduced graphene oxides with enhanced electrochemical properties through multiple-step reductions. <i>Electrochimica Acta</i> , 2017 , 258, 735-743	6.7	28
193	Supersonically sprayed gas- and water-sensing MIL-100(Fe) films. <i>Journal of Alloys and Compounds</i> , 2017 , 722, 996-1001	5.7	15
192	Carbon nanofibers decorated with FeO nanoparticles as a flexible electrode material for symmetric supercapacitors. <i>Chemical Engineering Journal</i> , 2017 , 328, 776-784	14.7	49
191	Production of Flexible Transparent Conducting Films of Self-Fused Nanowires via One-Step Supersonic Spraying. <i>Advanced Functional Materials</i> , 2017 , 27, 1602548	15.6	43
190	Rapid supersonic spraying of Cu(In,Ga)(S,Se)2 nanoparticles to fabricate a solar cell with 5.49% conversion efficiency. <i>Acta Materialia</i> , 2017 , 123, 44-54	8.4	13
189	Nanotextured cupric oxide nanofibers coated with atomic layer deposited ZnO-TiO2 as highly efficient photocathodes. <i>Applied Catalysis B: Environmental</i> , 2017 , 201, 479-485	21.8	33
188	Silicon Nanoparticles for Biophotonics 2017 , 307-334		
187	Silicon Nanoparticles for Biophotonics 2017 , 307-334		
186	Highly Active and Stable Graphene Tubes Decorated with FeCoNi Alloy Nanoparticles via a Template-Free Graphitization for Bifunctional Oxygen Reduction and Evolution. <i>Advanced Energy Materials</i> , 2016 , 6, 1601198	21.8	183
185	Manipulating Magneto-Optic Properties of a Chiral Polymer by Doping with Stable Organic Biradicals. <i>Nano Letters</i> , 2016 , 16, 5451-5	11.5	25
184	Synthesis of Zn-In-S Quantum Dots with Tunable Composition and Optical Properties. <i>ChemPhysChem</i> , 2016 , 17, 687-91	3.2	11
183	Scalable Binder-Free Supersonic Cold Spraying of Nanotextured Cupric Oxide (CuO) Films as Efficient Photocathodes. <i>ACS Applied Materials & Distriction (Cuo)</i> Films as Efficient Photocathodes. <i>ACS Applied Materials & Distriction (Cuo)</i> Films as Efficient Photocathodes. <i>ACS Applied Materials & Distriction (Cuo)</i> Films as Efficient Photocathodes. <i>ACS Applied Materials & Distriction (Cuo)</i> Films as Efficient Photocathodes. <i>ACS Applied Materials & Distriction (Cuo)</i> Films as Efficient Photocathodes. <i>ACS Applied Materials & Distriction (Cuo)</i> Films as Efficient Photocathodes. <i>ACS Applied Materials & Distriction (Cuo)</i> Films as Efficient Photocathodes. <i>ACS Applied Materials & Distriction (Cuo)</i> Films as Efficient Photocathodes. <i>ACS Applied Materials & Distriction (Cuo)</i> Films as Efficient Photocathodes. <i>ACS Applied Materials & Distriction (Cuo)</i> Films as Efficient Photocathodes.	9.5	31
182	Sequence-Dependent Structure/Function Relationships of Catalytic Peptide-Enabled Gold Nanoparticles Generated under Ambient Synthetic Conditions. <i>Journal of the American Chemical Society</i> , 2016 , 138, 540-8	16.4	69
181	Dual Recognition Strategy for Specific and Sensitive Detection of Bacteria Using Aptamer-Coated Magnetic Beads and Antibiotic-Capped Gold Nanoclusters. <i>Analytical Chemistry</i> , 2016 , 88, 820-5	7.8	122
180	Plasmon-enhanced two-photon-induced isomerization for highly-localized light-based actuation of inorganic/organic interfaces. <i>Nanoscale</i> , 2016 , 8, 4194-202	7.7	14
179	Near-IR responsive nanostructures for nanobiophotonics: emerging impacts on nanomedicine. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2016 , 12, 771-788	6	35
178	Optical Actuation of Inorganic/Organic Interfaces: Comparing Peptide-Azobenzene Ligand Reconfiguration on Gold and Silver Nanoparticles. <i>ACS Applied Materials & Description on Gold and Silver Nanoparticles</i> . <i>ACS Applied Materials & Description on Gold and Silver Nanoparticles</i> .	o-g <u>a</u>	22

177	Core-satellite ZnS-Ag nanoassemblies: Synthesis, structure, and optical properties. <i>Journal of Colloid and Interface Science</i> , 2016 , 463, 207-13	9.3	7
176	Self-Junctioned Copper Nanofiber Transparent Flexible Conducting Film via Electrospinning and Electroplating. <i>Advanced Materials</i> , 2016 , 28, 7149-54	24	120
175	Controlled Growth of a Hierarchical Nickel Carbide Dandelion Nanostructure. <i>Angewandte Chemie</i> , 2016 , 128, 8155-8158	3.6	8
174	Controlled Growth of a Hierarchical Nickel Carbide "Dandelion" Nanostructure. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 8023-6	16.4	8
173	Boron Nanoparticles for Room-Temperature Hydrogen Generation from Water. <i>Advanced Energy Materials</i> , 2016 , 6, 1502550	21.8	35
172	Manganese-doped near-infrared emitting nanocrystals for in vivo biomedical imaging. <i>Optics Express</i> , 2016 , 24, 17553-61	3.3	8
171	Toward a modular multi-material nanoparticle synthesis and assembly strategy via bionanocombinatorics: bifunctional peptides for linking Au and Ag nanomaterials. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 30845-30856	3.6	7
170	Flame synthesis of mixed tin-silver-copper nanopowders and conductive coatings. <i>AICHE Journal</i> , 2016 , 62, 408-414	3.6	3
169	Twisted Thiophene-Based Chromophores with Enhanced Intramolecular Charge Transfer for Cooperative Amplification of Third-Order Optical Nonlinearity. <i>Journal of the American Chemical Society</i> , 2016 , 138, 6975-84	16.4	81
168	New Generation Cadmium-Free Quantum Dots for Biophotonics and Nanomedicine. <i>Chemical Reviews</i> , 2016 , 116, 12234-12327	68.1	369
167	Remote Optically Controlled Modulation of Catalytic Properties of Nanoparticles through Reconfiguration of the Inorganic/Organic Interface. <i>ACS Nano</i> , 2016 , 10, 9470-9477	16.7	43
166	Triggering nanoparticle surface ligand rearrangement via external stimuli: light-based actuation of biointerfaces. <i>Nanoscale</i> , 2015 , 7, 13638-45	7.7	24
165	Production of pristine, sulfur-coated and silicon-alloyed germanium nanoparticles via laser pyrolysis. <i>Nanotechnology</i> , 2015 , 26, 305703	3.4	9
164	Size-, Shape-, and Composition-Controlled Synthesis and Localized Surface Plasmon Resonance of Copper Tin Selenide Nanocrystals. <i>Chemistry of Materials</i> , 2015 , 27, 3378-3388	9.6	48
163	Multi-color quantum dot-based fluorescence immunoassay array for simultaneous visual detection of multiple antibiotic residues in milk. <i>Biosensors and Bioelectronics</i> , 2015 , 72, 320-5	11.8	139
162	Cu-Deficient Plasmonic Cu2\(\mathbb{U}\)S Nanoplate Electrocatalysts for Oxygen Reduction. <i>ACS Catalysis</i> , 2015 , 5, 2534-2540	13.1	78
161	Room-Temperature Synthesis of Covellite Nanoplatelets with Broadly Tunable Localized Surface Plasmon Resonance. <i>Chemistry of Materials</i> , 2015 , 27, 2584-2590	9.6	73
160	Cooperative coupling of cyanine and tictoid twisted Esystems to amplify organic chromophore cubic nonlinearities. <i>Journal of the American Chemical Society</i> , 2015 , 137, 4622-5	16.4	47

159	Reductant and sequence effects on the morphology and catalytic activity of peptide-capped Au nanoparticles. <i>ACS Applied Materials & Distriction</i> , Interfaces, 2015 , 7, 8843-51	9.5	39
158	Identifying Affinity Classes of Inorganic Materials Binding Sequences via a Graph-Based Model. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2015, 12, 193-204	3	8
157	Supersonically blown nylon-6 nanofibers entangled with graphene flakes for water purification. <i>Nanoscale</i> , 2015 , 7, 19027-35	7.7	28
156	Size-controlled large-diameter and few-walled carbon nanotube catalysts for oxygen reduction. <i>Nanoscale</i> , 2015 , 7, 20290-8	7.7	98
155	Synthesis of iron-doped zinc oxide nanoparticles by simple heating: influence of precursor composition and temperature. <i>International Journal of Materials Engineering Innovation</i> , 2015 , 6, 18	0.9	6
154	Electrosprayed heterojunction WO3/BiVO4 films with nanotextured pillar structure for enhanced photoelectrochemical water splitting. <i>Applied Physics Letters</i> , 2015 , 106, 151603	3.4	45
153	Nanotextured pillars of electrosprayed bismuth vanadate for efficient photoelectrochemical water splitting. <i>Langmuir</i> , 2015 , 31, 3727-37	4	54
152	Identifying inorganic material affinity classes for peptide sequences based on context learning 2015 ,		4
151	Polymer and surfactant-templated synthesis of hollow and porous ZnS nano- and microspheres in a spray pyrolysis reactor. <i>Langmuir</i> , 2015 , 31, 413-23	4	21
150	Controlling the Size, Shape, Phase, Band Gap, and Localized Surface Plasmon Resonance of Cu2\subseteq Sand CuxInyS Nanocrystals. <i>Chemistry of Materials</i> , 2015 , 27, 1786-1791	9.6	61
149	Composition-Dependent Crystal Phase, Optical Properties, and Self-Assembly of CuBnB Colloidal Nanocrystals. <i>Chemistry of Materials</i> , 2015 , 27, 1342-1348	9.6	50
148	Heavily-doped colloidal semiconductor and metal oxide nanocrystals: an emerging new class of plasmonic nanomaterials. <i>Chemical Society Reviews</i> , 2014 , 43, 3908-20	58.5	297
147	Magnetically encoded luminescent composite nanoparticles through layer-by-layer self-assembly. <i>Chemistry - A European Journal</i> , 2014 , 20, 14642-9	4.8	14
146	Controllable conversion of plasmonic Cu2-xS nanoparticles to Au2S by cation exchange and electron beam induced transformation of Cu2-xS-Au2S core/shell nanostructures. <i>Nanoscale</i> , 2014 , 6, 8852-7	7.7	37
145	Supersonic aerosol-deposited TiO2 photoelectrodes for photoelectrochemical solar water splitting. <i>RSC Advances</i> , 2014 , 4, 8661-8670	3.7	19
144	Gravity-driven hybrid membrane for oleophobic-superhydrophilic oil-water separation and water purification by graphene. <i>Langmuir</i> , 2014 , 30, 11761-9	4	76
143	Comparative Study of Materials-Binding Peptide Interactions with Gold and Silver Surfaces and Nanostructures: A Thermodynamic Basis for Biological Selectivity of Inorganic Materials. <i>Chemistry of Materials</i> , 2014 , 26, 4960-4969	9.6	96
142	Shape-Controlled Synthesis of SnE (E = S, Se) Semiconductor Nanocrystals for Optoelectronics. <i>Chemistry of Materials</i> , 2014 , 26, 3515-3521	9.6	88

141	Silicon nanoparticle size-dependent open circuit voltage in an organicIhorganic hybrid solar cell. <i>Current Applied Physics</i> , 2014 , 14, 127-131	2.6	12
140	Flame-driven aerosol synthesis of copper-nickel nanopowders and conductive nanoparticle films. <i>ACS Applied Materials & Distributed & Di</i>	9.5	19
139	Plasmonic Semiconductor Nanocrystals as Chemical Sensors: Pb2+ Quantitation via Aggregation-Induced Plasmon Resonance Shift. <i>Plasmonics</i> , 2014 , 9, 893-898	2.4	15
138	Manipulating nanoscale interactions in a polymer nanocomposite for chiral control of linear and nonlinear optical functions. <i>Advanced Materials</i> , 2014 , 26, 1607-11	24	12
137	Peptide-mediated synthesis of gold nanoparticles: effects of peptide sequence and nature of binding on physicochemical properties. <i>Nanoscale</i> , 2014 , 6, 3165-72	7.7	91
136	Carbon- and oxygen-free Cu(InGa)(SSe)Bolar cell with a 4.63% conversion efficiency by electrostatic spray deposition. <i>ACS Applied Materials & Emp; Interfaces</i> , 2014 , 6, 8369-77	9.5	20
135	Enhanced performance from a hybrid quenchometric deoxyribonucleic acid (DNA) silica xerogel gaseous oxygen sensing platform. <i>Applied Spectroscopy</i> , 2014 , 68, 1302-5	3.1	1
134	Graphene T itania Hybrid Photoanodes by Supersonic Kinetic Spraying for Solar Water Splitting. <i>Journal of the American Ceramic Society</i> , 2014 , 97, 3660-3668	3.8	9
133	A Solution-Processed UV-Sensitive Photodiode Produced Using a New Silicon Nanocrystal Ink. <i>Advanced Functional Materials</i> , 2014 , 24, 6016-6022	15.6	41
132	A general single-pot heating method for morphology, size and luminescence-controllable synthesis of colloidal ZnO nanocrystals. <i>Nanoscale</i> , 2013 , 5, 8029-36	7.7	31
131	Assessing clinical prospects of silicon quantum dots: studies in mice and monkeys. <i>ACS Nano</i> , 2013 , 7, 7303-10	16.7	167
130	Exploring the amphiphilicity of PEGylated gold nanorods: mechanical phase transfer and self-assembly. <i>Chemical Communications</i> , 2013 , 49, 9350-2	5.8	21
129	Cu2NS1NSey Alloy Nanocrystals with Broadly Tunable Near-Infrared Localized Surface Plasmon Resonance. <i>Chemistry of Materials</i> , 2013 , 25, 4402-4408	9.6	78
128	Formation of IVIVI Alloy Nanocrystals for Application in Solution-Processed Optoelectronic Devices: The Case of Pb1\(\text{LS}\) SnxS. Chemistry of Materials, 2013 , 25, 4409-4415	9.6	5
127	Strong energy-transfer-induced enhancement of Er3+ luminescence in In2O3 nanocrystal codoped silica films. <i>Applied Physics Letters</i> , 2013 , 103, 181906	3.4	23
126	Amorphous carbon encapsulation of metal aerosol nanoparticles for improved collection and prevention of oxidation. <i>AICHE Journal</i> , 2013 , 59, 4116-4123	3.6	3
125	Coupled plasmons induce broadband circular dichroism in patternable films of silver nanoparticles with chiral ligands. <i>Nanoscale</i> , 2013 , 5, 10550-5	7.7	14
124	On-demand hydrogen generation using nanosilicon: splitting water without light, heat, or electricity. <i>Nano Letters</i> , 2013 , 13, 451-6	11.5	125

123	Integration of a novel injectable nano calcium sulfate/alginate scaffold and BMP2 gene-modified mesenchymal stem cells for bone regeneration. <i>Tissue Engineering - Part A</i> , 2013 , 19, 508-18	3.9	38
122	Nanotoxicity assessment of quantum dots: from cellular to primate studies. <i>Chemical Society Reviews</i> , 2013 , 42, 1236-50	58.5	359
121	Size-Controlled Synthesis of Cu2-xE (E = S, Se) Nanocrystals with Strong Tunable Near-Infrared Localized Surface Plasmon Resonance and High Conductivity in Thin Films. <i>Advanced Functional Materials</i> , 2013 , 23, 1256-1264	15.6	228
120	Creating Conductive CopperBilver Bimetallic Nanostructured Coatings Using a High Temperature Reducing Jet Aerosol Reactor. <i>Aerosol Science and Technology</i> , 2013 , 47, 858-866	3.4	16
119	Cu2-x Se nanocrystals with localized surface plasmon resonance as sensitive contrast agents for in vivo photoacoustic imaging: demonstration of sentinel lymph node mapping. <i>Advanced Healthcare Materials</i> , 2013 , 2, 952-7	10.1	83
118	Thermally induced superhydrophilicity in TiO2 films prepared by supersonic aerosol deposition. <i>ACS Applied Materials & Distributed & Dist</i>	9.5	43
117	Nonlinear optical absorption and stimulated Mie scattering in metallic nanoparticle suspensions. Journal of Chemical Physics, 2013 , 138, 024202	3.9	20
116	Plasmonic gold and luminescent silicon nanoplatforms for multimode imaging of cancer cells. <i>Integrative Biology (United Kingdom)</i> , 2013 , 5, 144-50	3.7	15
115	Biomolecular recognition principles for bionanocombinatorics: an integrated approach to elucidate enthalpic and entropic factors. <i>ACS Nano</i> , 2013 , 7, 9632-46	16.7	121
114	Au-Cu(2-x)Se heterodimer nanoparticles with broad localized surface plasmon resonance as contrast agents for deep tissue imaging. <i>Nano Letters</i> , 2013 , 13, 4333-9	11.5	154
113	A Framework for Identifying Affinity Classes of Inorganic Materials Binding Peptide Sequences 2013 ,		1
112	Facile synthesis and potential bioimaging applications of hybrid upconverting and plasmonic NaGdF4: Yb3+, Er3+/silica/gold nanoparticles. <i>Theranostics</i> , 2013 , 3, 275-81	12.1	61
111	BMP2 genetically engineered MSCs and EPCs promote vascularized bone regeneration in rat critical-sized calvarial bone defects. <i>PLoS ONE</i> , 2013 , 8, e60473	3.7	74
110	Bioengineering silicon quantum dot theranostics using a network analysis of metabolomic and proteomic data in cardiac ischemia. <i>Theranostics</i> , 2013 , 3, 719-28	12.1	13
109	Core/shell NaGdF4:Nd(3+)/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications. <i>ACS Nano</i> , 2012 , 6, 2969-77	16.7	350
108	Enhanced Performance of a Polymer Solar Cell upon Addition of Free-Standing, Freshly Etched, Photoluminescent Silicon Nanocrystals. <i>Applied Physics Express</i> , 2012 , 5, 022302	2.4	13
107	Bioconjugation of luminescent silicon quantum dots to gadolinium ions for bioimaging applications. <i>Nanoscale</i> , 2012 , 4, 5483-9	7.7	70
106	Enhancing silicon quantum dot uptake by pancreatic cancer cells via pluronic encapsulation and antibody targeting. <i>Journal of Solid Tumors</i> , 2012 , 2,	0.3	17

105	Preparation of quantum dot/drug nanoparticle formulations for traceable targeted delivery and therapy. <i>Theranostics</i> , 2012 , 2, 681-94	12.1	84
104	Biodegradable Luminescent Silicon Quantum Dots for Two Photon Imaging Applications. <i>Nature Precedings</i> , 2012 ,		1
103	Energy transfer from a dye donor to enhance the luminescence of silicon quantum dots. <i>Nanoscale</i> , 2012 , 4, 5163-8	7.7	22
102	A pilot study in non-human primates shows no adverse response to intravenous injection of quantum dots. <i>Nature Nanotechnology</i> , 2012 , 7, 453-8	28.7	361
101	Dramatic Structural Enhancement of Chirality in Photopatternable Nanocomposites of Chiral Poly(fluorene-alt-benzothiadiazole) (PFBT) in Achiral SU-8 Photoresist. <i>Advanced Functional Materials</i> , 2012 , 22, 5074-5080	15.6	14
100	Creating ligand-free silicon germanium alloy nanocrystal inks. ACS Nano, 2011, 5, 7950-9	16.7	39
99	Bioconjugation of luminescent silicon quantum dots for selective uptake by cancer cells. <i>Bioconjugate Chemistry</i> , 2011 , 22, 1081-8	6.3	87
98	In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals. <i>ACS Nano</i> , 2011 , 5, 413-23	16.7	340
97	Synthesis of Monodisperse Au, Ag, and AuAg Alloy Nanoparticles with Tunable Size and Surface Plasmon Resonance Frequency. <i>Chemistry of Materials</i> , 2011 , 23, 4098-4101	9.6	172
96	Luminescence of colloidal CdSe/ZnS nanoparticles: high sensitivity to solvent phase transitions. <i>Nanoscale Research Letters</i> , 2011 , 6, 142	5	16
95	Subwavelength direct laser patterning of conductive gold nanostructures by simultaneous photopolymerization and photoreduction. <i>ACS Nano</i> , 2011 , 5, 1947-57	16.7	92
94	Photothermal-reaction-assisted two-photon lithography of silver nanocrystals capped with thermally cleavable ligands. <i>Applied Physics Letters</i> , 2011 , 98, 133110	3.4	6
93	Synthesis and characterization of nanocrystalline calcium sulfate for use in osseous regeneration. <i>Biomedical Materials (Bristol)</i> , 2011 , 6, 055007	3.5	28
92	A High-Temperature Reducing Jet Reactor for Flame-Based Metal Nanoparticle Production. <i>Aerosol Science and Technology</i> , 2010 , 44, 1083-1088	3.4	17
91	Biocompatible magnetofluorescent probes: luminescent silicon quantum dots coupled with superparamagnetic iron(III) oxide. <i>ACS Nano</i> , 2010 , 4, 5131-8	16.7	215
90	Additive controlled synthesis of gold nanorods (GNRs) for two-photon luminescence imaging of cancer cells. <i>Nanotechnology</i> , 2010 , 21, 285106	3.4	51
89	Chiral poly(fluorene-alt-benzothiadiazole) (PFBT) and nanocomposites with gold nanoparticles: plasmonically and structurally enhanced chirality. <i>Journal of the American Chemical Society</i> , 2010 , 132, 17346-8	16.4	114
88	Novel pathways for enhancing nonlinearity of organics utilizing metal clusters. <i>Journal of Physical Chemistry A</i> , 2010 , 114, 7590-4	2.8	17

(2008-2010)

87	Two-photon lithography of sub-wavelength metallic structures in a polymer matrix. <i>Advanced Materials</i> , 2010 , 22, 3695-9	24	54
86	Computational Modeling of Silicon Nanoparticle Synthesis: II. A Two-Dimensional Bivariate Model for Silicon Nanoparticle Synthesis in a Laser-Driven Reactor Including Finite-Rate Coalescence. <i>Aerosol Science and Technology</i> , 2009 , 43, 554-569	3.4	10
85	Computational Modeling of Silicon Nanoparticle Synthesis: I. A General Two-Dimensional Model. <i>Aerosol Science and Technology</i> , 2009 , 43, 250-263	3.4	10
84	Luminescent Colloidal Dispersion of Silicon Quantum Dots from Microwave Plasma Synthesis: Exploring the Photoluminescence Behavior Across the Visible Spectrum. <i>Advanced Functional Materials</i> , 2009 , 19, 696-703	15.6	204
83	Preparation of Gold Nanoparticles and their Applications in Anisotropic Nanoparticle Synthesis and Bioimaging. <i>Plasmonics</i> , 2009 , 4, 79-93	2.4	81
82	Spray pyrolysis synthesis of ZnS nanoparticles from a single-source precursor. <i>Nanotechnology</i> , 2009 , 20, 235603	3.4	48
81	Multifunctional Nanoparticles as Biocompatible Targeted Probes for Human Cancer Diagnosis and Therapy. <i>Journal of Materials Chemistry</i> , 2009 , 19, 4655-4672		175
80	Bifunctional Magneto-Optical FePttdS Hybrid Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 87-90	3.8	59
79	Nanoporous polymeric photonic crystals by emulsion holography. <i>Journal of Materials Chemistry</i> , 2009 , 19, 3998		14
78	Room temperature ferromagnetism in Mn-doped CdS nanorods. <i>Applied Physics Letters</i> , 2008 , 93, 1325	03.4	57
77	Templated Synthesis of Gold Nanorods (NRs): The Effects of Cosurfactants and Electrolytes on the Shape and Optical Properties. <i>Topics in Catalysis</i> , 2008 , 47, 49-60	2.3	39
76	Synthesis of monodisperse CdS nanorods catalyzed by Au nanoparticles. <i>Nano Research</i> , 2008 , 1, 314-3	20 0	19
75	Thermochemistry of Species Potentially Formed During NTO/MMH Hypergolic Ignition. <i>Propellants, Explosives, Pyrotechnics</i> , 2008 , 33, 209-212	1.7	25
74	Multiplex Imaging of Pancreatic Cancer Cells by Using Functionalized Quantum Rods. <i>Advanced Materials</i> , 2008 , 20, 1412-1417	24	67
73	Enhanced oxygen detection using porous polymeric gratings with integrated recognition elements. <i>Sensors and Actuators B: Chemical</i> , 2008 , 130, 758-764	8.5	6
72	Thermochemistry of CO, (CO)O, and (CO)C bond breaking in fatty acid methyl esters. <i>Combustion and Flame</i> , 2008 , 155, 334-342	5.3	26
71	Biocompatible luminescent silicon quantum dots for imaging of cancer cells. ACS Nano, 2008, 2, 873-8	16.7	581
70	Two- and three-photon absorption and frequency upconverted emission of silicon quantum dots. Nano Letters, 2008 , 8, 2688-92	11.5	87

69	Formation of ZnTe Nanowires by Oriented Attachment. <i>Chemistry of Materials</i> , 2007 , 19, 4108-4110	9.6	78
68	Quantum rod bioconjugates as targeted probes for confocal and two-photon fluorescence imaging of cancer cells. <i>Nano Letters</i> , 2007 , 7, 761-5	11.5	173
67	Thermochemistry of Ct and C⊞ Bond Breaking in Fatty Acid Methyl Esters. <i>Energy & Company Fuels</i> , 2007 , 21, 2027-2032	4.1	41
66	Energetically competitive growth patterns of silicon clusters: Quasi-one-dimensional clusters versus diamond-like clusters. <i>Physical Review B</i> , 2007 , 76,	3.3	11
65	Chapter 5 Constructing Reaction Mechanisms. <i>Comprehensive Chemical Kinetics</i> , 2007 , 42, 185-242	0.7	4
64	Functionalized Photonic Crystal Sensor Elements based on Nanoporous Polymers. <i>Materials Research Society Symposia Proceedings</i> , 2007 , 1056, 1		
63	Nanostructured porous polymeric photonic bandgap structures for sensing 2007 ,		1
62	Synthesis of Tellurium Dioxide Nanoparticles by Spray Pyrolysis. <i>Chemistry of Materials</i> , 2007 , 19, 1290-	13.61	36
61	Shape Control of CdS Nanocrystals in One-Pot Synthesis. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 244	1 <i>7</i> 5 28 45	8137
60	Growth of CdSe Quantum Rods and Multipods Seeded by Noble-Metal Nanoparticles. <i>Advanced Materials</i> , 2006 , 18, 1978-1982	24	72
59	Anisotropic Growth of PbSe Nanocrystals on Auffe3O4 Hybrid Nanoparticles. <i>Advanced Materials</i> , 2006 , 18, 1889-1894	24	86
58	Photoluminescent Silicon Nanocrystals with Mixed Surface Functionalization for Biophotonics. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 958, 1		
57	Control of the Morphology and Size of PbS Nanowires Using Gold Nanoparticles. <i>Chemistry of Materials</i> , 2006 , 18, 5965-5972	9.6	52
56	Organically capped silicon nanoparticles with blue photoluminescence prepared by hydrosilylation followed by oxidation. <i>Langmuir</i> , 2006 , 22, 4363-70	4	139
55	Propionic-Acid-Terminated Silicon Nanoparticles: Synthesis and Optical Characterization. <i>Chemistry of Materials</i> , 2006 , 18, 4083-4088	9.6	160
54	Shape control of PbSe nanocrystals using noble metal seed particles. <i>Nano Letters</i> , 2006 , 6, 709-14	11.5	99
53	Tunable porous photonic bandgap structures for chemical and biological sensing 2006,		1
52	Synthesis and plasmonic properties of silver and gold nanoshells on polystyrene cores of different size and of goldBilver coreBhell nanostructures. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2006 , 290, 89-105	5.1	129

51	A general approach to binary and ternary hybrid nanocrystals. <i>Nano Letters</i> , 2006 , 6, 875-81	11.5	568
50	Laser-driven synthesis and magnetic properties of iron nanoparticles. <i>Journal of Nanoparticle Research</i> , 2006 , 8, 335-342	2.3	33
49	Aqueous ferrofluid of magnetite nanoparticles: Fluorescence labeling and magnetophoretic control. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 3879-85	3.4	347
48	Quasi-reversible photoluminescence quenching of stable dispersions of silicon nanoparticles. <i>Journal of Materials Chemistry</i> , 2005 , 15, 2028		26
47	Efficient surface grafting of luminescent silicon quantum dots by photoinitiated hydrosilylation. <i>Langmuir</i> , 2005 , 21, 6054-62	4	254
46	Nonconventional tight-binding method for the calculation of the total energy and spectroscopic energies of atomic clusters: Transferable parameters for silicon. <i>Physical Review B</i> , 2005 , 72,	3.3	12
45	Laser-Driven Aerosol Synthesis of Nickel Nanoparticles. <i>Chemistry of Materials</i> , 2005 , 17, 1017-1026	9.6	55
44	Gold nanoshells on polystyrene cores for control of surface plasmon resonance. <i>Langmuir</i> , 2005 , 21, 16	51 <u>Q</u> -7	221
43	Assembling gas-phase reaction mechanisms for high temperature inorganic systems based on quantum chemistry calculations and reaction rate theories. <i>Journal of Physics and Chemistry of Solids</i> , 2005 , 66, 364-371	3.9	3
42	Sensitivity, principal component and flux analysis applied to signal transduction: the case of epidermal growth factor mediated signaling. <i>Bioinformatics</i> , 2005 , 21, 1194-202	7.2	52
41	An aerosol-mediated magnetic colloid: Study of nickel nanoparticles. <i>Journal of Applied Physics</i> , 2005 , 98, 054308	2.5	24
40	Preparation of luminescent silicon nanoparticles by photothermal aerosol synthesis followed by acid etching. <i>Phase Transitions</i> , 2004 , 77, 131-137	1.3	9
39	Gold nanoparticles surface-terminated with bifunctional ligands. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2004 , 246, 109-113	5.1	62
38	Luminescent Silicon Nanoparticles Capped by Conductive Polyaniline through the Self-Assembly Method. <i>Langmuir</i> , 2004 , 20, 1963-1971	4	85
37	Detailed Kinetic Modeling of Silicon Nanoparticle Formation Chemistry via Automated Mechanism Generation. <i>Journal of Physical Chemistry A</i> , 2004 , 108, 10122-10132	2.8	38
36	Surface functionalization of silicon nanoparticles produced by laser-driven pyrolysis of silane followed by HF-HNO3 etching. <i>Langmuir</i> , 2004 , 20, 4720-7	4	256
35	Thermochemistry of Silicon Hydrogen Compounds Generalized from Quantum Chemical Calculations. <i>Journal of Physical Chemistry A</i> , 2004 , 108, 874-897	2.8	48
34	Aerosol dynamics modeling of silicon nanoparticle formation during silane pyrolysis: a comparison of three solution methods. <i>Journal of Aerosol Science</i> , 2004 , 35, 889-908	4.3	50

33	Aqueous Ferrofluid of Citric Acid Coated Magnetite Particles. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 789, 23		25
32	Ultrafast dynamics in nanostructured materials 2003 ,		1
31	High-rate synthesis and characterization of brightly luminescent silicon nanoparticles with applications in hybrid materials for photonics and biophotonics 2003 ,		1
30	Process for Preparing Macroscopic Quantities of Brightly Photoluminescent Silicon Nanoparticles with Emission Spanning the Visible Spectrum. <i>Langmuir</i> , 2003 , 19, 8490-8496		295
29	Anharmonic thermochemistry of cyclopentadiene derivatives. <i>International Journal of Chemical Kinetics</i> , 2003 , 35, 453-463	·4	15
28	Rate constants for the homogeneous gas-phase Al/HCl combustion chemistry. <i>Combustion and Flame</i> , 2003 , 132, 91-101	:-3	26
27	Vapor-phase synthesis of nanoparticles. <i>Current Opinion in Colloid and Interface Science</i> , 2003 , 8, 127-1337	'.6	506
26	Encoding of polycyclic Si-containing molecules for determining species uniqueness in automated mechanism generation. <i>Journal of Chemical Information and Computer Sciences</i> , 2003 , 43, 735-42		6
25	An experimental and numerical study of particle nucleation and growth during low-pressure thermal decomposition of silane. <i>Journal of Aerosol Science</i> , 2003 , 34, 691-711	3	42
24	An Improved Data Inversion Program for Obtaining Aerosol Size Distributions from Scanning Differential Mobility Analyzer Data. <i>Aerosol Science and Technology</i> , 2003 , 37, 145-161	·4	32
23	Optical Properties of Polymer-Embedded Silicon Nanoparticles. <i>Materials Research Society Symposia Proceedings</i> , 2003 , 789, 168		1
22	High-Temperature Kinetics of AlCl[sub 3] Decomposition in the Presence of Additives for Chemical Vapor Deposition. <i>Journal of the Electrochemical Society</i> , 2002 , 149, C261	.9	22
21	Thermochemistry of Species Produced from Monomethylhydrazine in Propulsion and Space-Related Applications. <i>Journal of Propulsion and Power</i> , 2002 , 18, 1242-1253	.8	12
20	Reactions in the Almal System Studied by ab Initio Molecular Orbital and Density Functional Methods. <i>Journal of Physical Chemistry A</i> , 2001 , 105, 264-273	8	20
19	Thermochemistry of aluminum species for combustion modeling from Ab Initio molecular orbital calculations. <i>Combustion and Flame</i> , 2000 , 121, 210-222	:.3	71
18	Modelling of silicon hydride clustering in a low-pressure silane plasma. <i>Journal Physics D: Applied Physics</i> , 2000 , 33, 2731-2746		97
17	Numerical Modeling of Gas-Phase Nucleation and Particle Growth during Chemical Vapor Deposition of Silicon. <i>Journal of the Electrochemical Society</i> , 2000 , 147, 2303	.9	42
16	Electron Affinities of Selected Hydrogenated Silicon Clusters (SixHy, x = 11, y = 0115) from Density Functional Theory Calculations. <i>Journal of Physical Chemistry A</i> , 2000 , 104, 6083-6087	8	32

LIST OF PUBLICATIONS

15	Ab initio structures and energetics of selected hydrogenated silicon clusters containing six to ten silicon atoms. <i>Chemical Physics Letters</i> , 1999 , 307, 527-532	2.5	42	
14	Characterization of the near-surface gas-phase chemical environment in atmospheric-pressure plasma chemical vapor deposition of diamond. <i>Diamond and Related Materials</i> , 1999 , 8, 1863-1874	3.5	13	
13	Thermochemistry and Kinetics of Silicon Hydride Cluster Formation during Thermal Decomposition of Silane. <i>Journal of Physical Chemistry B</i> , 1999 , 103, 64-76	3.4	158	
12	Generation and growth of nanoparticles in low-pressure plasmas. <i>Pure and Applied Chemistry</i> , 1999 , 71, 1871-1877	2.1	23	
11	An analysis of flow, temperature, and chemical composition distortion in gas sampling through an orifice during chemical vapor deposition. <i>Physics of Fluids</i> , 1999 , 11, 821-832	4.4	4	
10	Ab Initio Molecular Orbital Study of the Thermochemistry and Reactions of the Chlorinated Disilenes and Their Isomers (Si2HnCl4-n). <i>Journal of Physical Chemistry A</i> , 1998 , 102, 785-792	2.8	27	
9	On the Mechanism of Homogeneous Decomposition of the Chlorinated Silanes. Chain Reactions Propagated by Divalent Silicon Species. <i>Journal of Physical Chemistry A</i> , 1998 , 102, 1542-1549	2.8	51	
8	Thermal Decomposition of Dichlorosilane Investigated by Pulsed Laser Powered Homogeneous Pyrolysis. <i>Journal of the Electrochemical Society</i> , 1997 , 144, 4357-4361	3.9	7	
7	Thermochemistry and Thermal Decomposition of the Chlorinated Disilanes (Si2HnCl6-n, n = 0 B) Studied by ab Initio Molecular Orbital Methods. <i>Journal of Physical Chemistry A</i> , 1997 , 101, 7434-7445	2.8	37	
6	Pulsed laser powered homogenous pyrolysis for reaction kinetics studies: Probe laser measurement of reaction time and temperature. <i>International Journal of Chemical Kinetics</i> , 1996 , 28, 817-828	1.4	6	
5	Pulsed laser powered homogeneous pyrolysis: A computational analysis. <i>International Journal of Chemical Kinetics</i> , 1994 , 26, 779-799	1.4	4	
4	Chapter 3:Modeling CVD Processes93-157		2	
3	Facile one-pot synthesis of PdM ($M = Ag$, Ni, Cu, Y) nanowires for use in mixed matrix membranes for efficient hydrogen separation. <i>Journal of Materials Chemistry A</i> ,	13	6	
2	Ultrathin Palladium Nanowires for Fast and Hysteresis-Free H2 Sensing. ACS Applied Nano Materials,	5.6	3	
1	Pd Alloy Nanosheet Inks for Inkjet-Printable H 2 Sensors on Paper. <i>Advanced Materials Interfaces</i> ,22003	3 63 .6	1	