Salvador Ventura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7014292/publications.pdf

Version: 2024-02-01

256 papers 15,351 citations

53 h-index 21474 114 g-index

269 all docs

269 docs citations

times ranked

269

23294 citing authors

#	Article	IF	CITATIONS
1	One ring is sufficient to inhibit α-synuclein aggregation. Neural Regeneration Research, 2022, 17, 508.	1.6	18
2	DisProt in 2022: improved quality and accessibility of protein intrinsic disorder annotation. Nucleic Acids Research, 2022, 50, D480-D487.	6.5	117
3	A3D 2.0 Update for the Prediction and Optimization of Protein Solubility. Methods in Molecular Biology, 2022, 2406, 65-84.	0.4	7
4	Protocols for Rational Design of Protein Solubility and Aggregation Properties Using Aggrescan3D Standalone. Methods in Molecular Biology, 2022, 2340, 17-40.	0.4	0
5	Discovery of Neuroprotective Agents Based on a 5-(4-Pyridinyl)-1,2,4-triazole Scaffold. ACS Chemical Neuroscience, 2022, 13, 581-586.	1.7	9
6	Is a cure for Parkinson's disease hiding inside us?. Trends in Biochemical Sciences, 2022, 47, 641-644.	3.7	7
7	The small aromatic compound SynuClean-D inhibits theÂaggregation and seeded polymerization of multiple α-synuclein strains. Journal of Biological Chemistry, 2022, 298, 101902.	1.6	6
8	Computational methods to predict protein aggregation. Current Opinion in Structural Biology, 2022, 73, 102343.	2.6	24
9	A3D database: structure-based predictions of protein aggregation for the human proteome. Bioinformatics, 2022, 38, 3121-3123.	1.8	4
10	Prediction of the Effect of pH on the Aggregation and Conditional Folding of Intrinsically Disordered Proteins with SolupHred and DispHred. Methods in Molecular Biology, 2022, 2449, 197-211.	0.4	3
11	In-Silico Analysis of pH-Dependent Liquid-Liquid Phase Separation in Intrinsically Disordered Proteins. Biomolecules, 2022, 12, 974.	1.8	8
12	SolupHred: a server to predict the pH-dependent aggregation of intrinsically disordered proteins. Bioinformatics, 2021, 37, 1602-1603.	1.8	10
13	Tolcapone, a potent aggregation inhibitor for the treatment of familial leptomeningeal amyloidosis. FEBS Journal, 2021, 288, 310-324.	2.2	37
14	Functional Amyloids Germinate in Plants. Trends in Plant Science, 2021, 26, 7-10.	4.3	11
15	Decoding the role of coiled-coil motifs in human prion-like proteins. Prion, 2021, 15, 143-154.	0.9	5
16	Pathological ATX3 Expression Induces Cell Perturbations in E. coli as Revealed by Biochemical and Biophysical Investigations. International Journal of Molecular Sciences, 2021, 22, 943.	1.8	6
17	MED15 prion-like domain forms a coiled-coil responsible for its amyloid conversion and propagation. Communications Biology, 2021, 4, 414.	2.0	12
18	Dual Antibody-Conjugated Amyloid Nanorods to Promote Selective Cell–Cell Interactions. ACS Applied Materials & Contractions (2021), 13, 14875-14884.	4.0	8

#	Article	IF	Citations
19	Critical assessment of protein intrinsic disorder prediction. Nature Methods, 2021, 18, 472-481.	9.0	187
20	AlphaFold and the amyloid landscape. Journal of Molecular Biology, 2021, 433, 167059.	2.0	42
21	\hat{l}_{\pm} -Helical peptidic scaffolds to target \hat{l}_{\pm} -synuclein toxic species with nanomolar affinity. Nature Communications, 2021, 12, 3752.	5.8	40
22	Prionâ€like proteins: from computational approaches to proteomeâ€wide analysis. FEBS Open Bio, 2021, 11, 2400-2417.	1.0	17
23	Functionalized Prion-Inspired Amyloids for Biosensor Applications. Biomacromolecules, 2021, 22, 2822-2833.	2.6	12
24	SGnn: A Web Server for the Prediction of Prion-Like Domains Recruitment to Stress Granules Upon Heat Stress. Frontiers in Molecular Biosciences, 2021, 8, 718301.	1.6	8
25	Coiled-Coil Based Inclusion Bodies and Their Potential Applications. Frontiers in Bioengineering and Biotechnology, 2021, 9, 734068.	2.0	5
26	Disease-associated mutations impacting BC-loop flexibility trigger long-range transthyretin tetramer destabilization and aggregation. Journal of Biological Chemistry, 2021, 297, 101039.	1.6	8
27	Multifunctional antibody-conjugated coiled-coil protein nanoparticles for selective cell targeting. Acta Biomaterialia, 2021, 131, 472-482.	4.1	12
28	Cryptic amyloidogenic regions in intrinsically disordered proteins: Function and disease association. Computational and Structural Biotechnology Journal, 2021, 19, 4192-4206.	1.9	9
29	pH-Responsive Self-Assembly of Amyloid Fibrils for Dual Hydrolase-Oxidase Reactions. ACS Catalysis, 2021, 11, 595-607.	5.5	49
30	DispHScan: A Multi-Sequence Web Tool for Predicting Protein Disorder as a Function of pH. Biomolecules, 2021, 11, 1596.	1.8	4
31	Design, synthesis and structure-activity evaluation of novel 2-pyridone-based inhibitors of \hat{l}_{\pm} -synuclein aggregation with potentially improved BBB permeability. Bioorganic Chemistry, 2021, 117, 105472.	2.0	11
32	DisProt: intrinsic protein disorder annotation in 2020. Nucleic Acids Research, 2020, 48, D269-D276.	6.5	141
33	Computational prediction and redesign of aberrant protein oligomerization. Progress in Molecular Biology and Translational Science, 2020, 169, 43-83.	0.9	10
34	MIRRAGGE – Minimum Information Required for Reproducible AGGregation Experiments. Frontiers in Molecular Neuroscience, 2020, 13, 582488.	1.4	19
35	Inhibition of $\hat{l}\pm$ -Synuclein Aggregation and Mature Fibril Disassembling With a Minimalistic Compound, ZPDm. Frontiers in Bioengineering and Biotechnology, 2020, 8, 588947.	2.0	13
36	Reply to Comment on "N-terminal Protein Tail Acts as Aggregation Protective Entropic Bristles: The SUMO Case― Biomacromolecules, 2020, 21, 3483-3484.	2.6	0

#	Article	IF	Citations
37	Amyloidogenicity as a driving force for the formation of functional oligomers. Journal of Structural Biology, 2020, 212, 107604.	1.3	3
38	DispHred: A Server to Predict pH-Dependent Order–Disorder Transitions in Intrinsically Disordered Proteins. International Journal of Molecular Sciences, 2020, 21, 5814.	1.8	15
39	Multifunctional Amyloid Oligomeric Nanoparticles for Specific Cell Targeting and Drug Delivery. Biomacromolecules, 2020, 21, 4302-4312.	2.6	10
40	Rational design of small molecules able to inhibit α-synuclein amyloid aggregation for the treatment of Parkinson's disease. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 1727-1735.	2.5	20
41	Editorial: Protein Aggregation and Solubility in Microorganisms (Archaea, Bacteria and Unicellular) Tj ETQq $1\ 1\ 0.$	784 <u>3</u> 14 rg	:BT ₁ /Overlock
42	Atomistic fibrillar architectures of polar prion-inspired heptapeptides. Chemical Science, 2020, 11, 13143-13151.	3.7	9
43	Detection of Protein Aggregation in Live <i>Plasmodium</i> Parasites. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	6
44	Coiled-coil inspired functional inclusion bodies. Microbial Cell Factories, 2020, 19, 117.	1.9	15
45	Soluble Assemblies in the Fibrillation Pathway of Prion-Inspired Artificial Functional Amyloids are Highly Cytotoxic. Biomacromolecules, 2020, 21, 2334-2345.	2.6	10
46	Prion domains as a driving force for the assembly of functional nanomaterials. Prion, 2020, 14, 170-179.	0.9	6
47	Computational prediction of protein aggregation: Advances in proteomics, conformation-specific algorithms and biotechnological applications. Computational and Structural Biotechnology Journal, 2020, 18, 1403-1413.	1.9	45
48	Chemical Chaperones as Novel Drugs for Parkinson's Disease. Trends in Molecular Medicine, 2020, 26, 408-421.	3.5	43
49	pH-Dependent Aggregation in Intrinsically Disordered Proteins Is Determined by Charge and Lipophilicity. Cells, 2020, 9, 145.	1.8	37
50	hnRNPDL Phase Separation Is Regulated by Alternative Splicing and Disease-Causing Mutations Accelerate Its Aggregation. Cell Reports, 2020, 30, 1117-1128.e5.	2.9	47
51	The biofilm-associated surface protein Esp of Enterococcus faecalis forms amyloid-like fibers. Npj Biofilms and Microbiomes, 2020, 6, 15.	2.9	40
52	Small molecules to prevent the neurodegeneration caused by \hat{l}_{\pm} -synuclein aggregation. Neural Regeneration Research, 2020, 15, 2260.	1.6	12
53	Prion-like domain disease-causing mutations and misregulation of alternative splicing relevance in limb-girdle muscular dystrophy (LGMD) 1G. Neural Regeneration Research, 2020, 15, 2239.	1.6	6
54	Dual Binding Mode of Metallacarborane Produces a Robust Shield on Proteins. Chemistry - A European Journal, 2019, 25, 12820-12829.	1.7	29

#	Article	IF	CITATIONS
55	Computational Assessment of Bacterial Protein Structures Indicates a Selection Against Aggregation. Cells, 2019, 8, 856.	1.8	9
56	Computational re-design of protein structures to improve solubility. Expert Opinion on Drug Discovery, 2019, 14, 1077-1088.	2.5	14
57	AMYCO: evaluation of mutational impact on prion-like proteins aggregation propensity. BMC Bioinformatics, 2019, 20, 24.	1.2	24
58	Aggrescan3D (A3D) 2.0: prediction and engineering of protein solubility. Nucleic Acids Research, 2019, 47, W300-W307.	6.5	91
59	Prion soft amyloid core driven self-assembly of globular proteins into bioactive nanofibrils. Nanoscale, 2019, 11, 12680-12694.	2.8	16
60	Aggrescan3D standalone package for structure-based prediction of protein aggregation properties. Bioinformatics, 2019, 35, 3834-3835.	1.8	22
61	In silico Characterization of Human Prion-Like Proteins: Beyond Neurological Diseases. Frontiers in Physiology, 2019, 10, 314.	1.3	17
62	The fitness cost and benefit of phaseâ€separated protein deposits. Molecular Systems Biology, 2019, 15, e8075.	3.2	10
63	Formation of Cross-Beta Supersecondary Structure by Soft-Amyloid Cores: Strategies for Their Prediction and Characterization. Methods in Molecular Biology, 2019, 1958, 237-261.	0.4	1
64	Biasing the native \hat{l}_{\pm} -synuclein conformational ensemble towards compact states abolishes aggregation and neurotoxicity. Redox Biology, 2019, 22, 101135.	3.9	34
65	ZPD-2, a Small Compound That Inhibits α-Synuclein Amyloid Aggregation and Its Seeded Polymerization. Frontiers in Molecular Neuroscience, 2019, 12, 306.	1.4	32
66	Insight into the specificity and severity of pathogenic mechanisms associated with missense mutations through experimental and structural perturbation analyses. Human Molecular Genetics, 2019, 28, 1-15.	1.4	29
67	A pyrene-inhibitor fluorescent probe with large Stokes shift for the staining of Al̂21–42, α-synuclein, and amylin amyloid fibrils as well as amyloid-containing Staphylococcus aureus biofilms. Analytical and Bioanalytical Chemistry, 2019, 411, 251-265.	1.9	2
68	Screening Protein Aggregation in Cells Using Fluorescent Labels Coupled to Flow Cytometry. Methods in Molecular Biology, 2019, 1873, 195-212.	0.4	3
69	Advances in the Prediction of Protein Aggregation Propensity. Current Medicinal Chemistry, 2019, 26, 3911-3920.	1.2	25
70	Inducing \hat{l}_{\pm} -synuclein compaction: a new strategy for inhibiting \hat{l}_{\pm} -synuclein aggregation?. Neural Regeneration Research, 2019, 14, 1897.	1.6	8
71	C-mannosylation supports folding and enhances stability of thrombospondin repeats. ELife, 2019, 8, .	2.8	62
72	AGGRESCAN3D: Toward the Prediction of the Aggregation Propensities of Protein Structures. Methods in Molecular Biology, 2018, 1762, 427-443.	0.4	14

#	Article	IF	Citations
73	Molecular and Clinical Aspects of Protein Aggregation Assays in Neurodegenerative Diseases. Molecular Neurobiology, 2018, 55, 7588-7605.	1.9	17
74	A single cysteine post-translational oxidation suffices to compromise globular proteins kinetic stability and promote amyloid formation. Redox Biology, 2018, 14, 566-575.	3.9	25
75	Small molecule inhibits \hat{l} ±-synuclein aggregation, disrupts amyloid fibrils, and prevents degeneration of dopaminergic neurons. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10481-10486.	3.3	166
76	Prion-based nanomaterials and their emerging applications. Prion, 2018, 12, 266-272.	0.9	21
77	Minimalist Prion-Inspired Polar Self-Assembling Peptides. ACS Nano, 2018, 12, 5394-5407.	7.3	37
78	Evaluation of the Impact of Protein Aggregation on Cellular Oxidative Stress in Yeast. Journal of Visualized Experiments, $2018, , .$	0.2	0
79	Global Protein Stabilization Does Not Suffice to Prevent Amyloid Fibril Formation. ACS Chemical Biology, 2018, 13, 2094-2105.	1.6	10
80	Combining Structural Aggregation Propensity and Stability Predictions To Redesign Protein Solubility. Molecular Pharmaceutics, 2018, 15, 3846-3859.	2.3	45
81	The Disordered C-Terminus of Yeast Hsf1 Contains a Cryptic Low-Complexity Amyloidogenic Region. International Journal of Molecular Sciences, 2018, 19, 1384.	1.8	7
82	Discovering Putative Prion-Like Proteins in Plasmodium falciparum: A Computational and Experimental Analysis. Frontiers in Microbiology, 2018, 9, 1737.	1.5	42
83	Protein Environment: A Crucial Triggering Factor in Josephin Domain Aggregation: The Role of 2,2,2-Trifluoroethanol. International Journal of Molecular Sciences, 2018, 19, 2151.	1.8	3
84	Amyloid Formation in Bacteria., 2018,, 1-3.		0
85	Prion-like proteins and their computational identification in proteomes. Expert Review of Proteomics, 2017, 14, 335-350.	1.3	24
86	Amyloid cores in prion domains: Key regulators for prion conformational conversion. Prion, 2017, 11, 31-39.	0.9	20
87	Prediction of Protein Aggregation and Amyloid Formation. , 2017, , 205-263.		4
88	DisProt 7.0: a major update of the database of disordered proteins. Nucleic Acids Research, 2017, 45, D219-D227.	6.5	242
89	Perfecting prediction of mutational impact on the aggregation propensity of the <scp>ALS</scp> â€associated hn <scp>RNPA</scp> 2 prionâ€like protein. FEBS Letters, 2017, 591, 1966-1971.	1.3	13
90	Cavity filling mutations at the thyroxine-binding site dramatically increase transthyretin stability and prevent its aggregation. Scientific Reports, 2017, 7, 44709.	1.6	16

#	Article	IF	CITATIONS
91	Protein aggregation into insoluble deposits protects from oxidative stress. Redox Biology, 2017, 12, 699-711.	3.9	32
92	The Transcription Terminator Rho: A First Bacterial Prion. Trends in Microbiology, 2017, 25, 434-437.	3.5	24
93	Copper(II) and the pathological H50Q α-synuclein mutant: Environment meets genetics. Communicative and Integrative Biology, 2017, 10, e1270484.	0.6	22
94	Characterization of Soft Amyloid Cores in Human Prion-Like Proteins. Scientific Reports, 2017, 7, 12134.	1.6	38
95	Plasticity in the Oxidative Folding Pathway of the High Affinity Nerita Versicolor Carboxypeptidase Inhibitor (NvCI). Scientific Reports, 2017, 7, 5457.	1.6	5
96	Disulfide driven folding for a conditionally disordered protein. Scientific Reports, 2017, 7, 16994.	1.6	14
97	High-Throughput Screening Methodology to Identify Alpha-Synuclein Aggregation Inhibitors. International Journal of Molecular Sciences, 2017, 18, 478.	1.8	66
98	Editorial: Protein Solubility and Aggregation in Bacteria. Frontiers in Microbiology, 2016, 7, 1178.	1.5	3
99	Benzbromarone, Quercetin, and Folic Acid Inhibit Amylin Aggregation. International Journal of Molecular Sciences, 2016, 17, 964.	1.8	38
100	Amyloid properties of the leader peptide of variant B cystatin C: implications for Alzheimer and macular degeneration. FEBS Letters, 2016, 590, 644-654.	1.3	11
101	Repositioning tolcapone as a potent inhibitor of transthyretin amyloidogenesis and associated cellular toxicity. Nature Communications, 2016, 7, 10787.	5.8	139
102	Curing bacterial infections with protein aggregates. Molecular Microbiology, 2016, 99, 827-830.	1.2	5
103	Environmental and genetic factors support the dissociation between $\hat{l}\pm$ -synuclein aggregation and toxicity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6506-E6515.	3.3	75
104	Understanding and predicting protein misfolding and aggregation: Insights from proteomics. Proteomics, 2016, 16, 2570-2581.	1.3	25
105	In vivo amyloid aggregation kinetics tracked by timeâ€lapse confocal microscopy in realâ€time. Biotechnology Journal, 2016, 11, 172-177.	1.8	14
106	Characterization of Amyloid Cores in Prion Domains. Scientific Reports, 2016, 6, 34274.	1.6	56
107	Dissecting the contribution of Staphylococcus aureus \hat{l}_{\pm} -phenol-soluble modulins to biofilm amyloid structure. Scientific Reports, 2016, 6, 34552.	1.6	57
108	The effects of the novel A53E alpha-synuclein mutation on its oligomerization and aggregation. Acta Neuropathologica Communications, 2016, 4, 128.	2.4	35

#	Article	IF	Citations
109	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
110	Data on correlation between $\hat{Al^2}42$ structural aggregation propensity and toxicity in bacteria. Data in Brief, 2016, 7, 143-147.	0.5	1
111	Mammalian prion amyloid formation in bacteria. Prion, 2016, 10, 112-118.	0.9	2
112	A fast and specific method to screen for intracellular amyloid inhibitors using bacterial model systems. European Journal of Medicinal Chemistry, 2016, 121, 785-792.	2.6	9
113	Specific Hsp100 Chaperones Determine the Fate of the First Enzyme of the Plastidial Isoprenoid Pathway for Either Refolding or Degradation by the Stromal Clp Protease in Arabidopsis. PLoS Genetics, 2016, 12, e1005824.	1.5	100
114	Staphylococcal Bap Proteins Build Amyloid Scaffold Biofilm Matrices in Response to Environmental Signals. PLoS Pathogens, 2016, 12, e1005711.	2.1	135
115	The prion-like RNA-processing protein HNRPDL forms inherently toxic amyloid-like inclusion bodies in bacteria. Microbial Cell Factories, 2015, 14, 102.	1.9	12
116	Mammalian prion protein (PrP) forms conformationally different amyloid intracellular aggregates in bacteria. Microbial Cell Factories, 2015, 14, 174.	1.9	18
117	Aggregation propensity of neuronal receptors: potential implications in neurodegenerative disorders. Future Science OA, 2015, 1, FSO39.	0.9	1
118	Possible roles of amyloids in malaria pathophysiology. Future Science OA, 2015, 1, FSO43.	0.9	4
119	Protein misfolding diseases. Future Science OA, 2015, 1, FSO38.	0.9	6
120	Computational analysis of candidate prion-like proteins in bacteria and their role. Frontiers in Microbiology, 2015, 6, 1123.	1.5	37
121	SOM0226, a repositioned compound for the treatment of TTR amyloidosis. Orphanet Journal of Rare Diseases, 2015, 10 , .	1.2	4
122	Intradomain Confinement of Disulfides in the Folding of Two Consecutive Modules of the LDL Receptor. PLoS ONE, 2015, 10, e0132141.	1.1	3
123	Histone H1 Favors Folding and Parallel Fibrillar Aggregation of the 1–42 Amyloid-β Peptide. Langmuir, 2015, 31, 6782-6790.	1.6	13
124	Amyloids or prions? That is the question. Prion, 2015, 9, 200-206.	0.9	47
125	What Makes a Protein Sequence a Prion?. PLoS Computational Biology, 2015, 11, e1004013.	1.5	88
126	PrionW: a server to identify proteins containing glutamine/asparagine rich prion-like domains and their amyloid cores. Nucleic Acids Research, 2015, 43, W331-W337.	6.5	74

#	Article	IF	CITATIONS
127	Proteome response at the edge of protein aggregation. Open Biology, 2015, 5, 140221.	1.5	9
128	AGGRESCAN3D (A3D): server for prediction of aggregation properties of protein structures. Nucleic Acids Research, 2015, 43, W306-W313.	6.5	201
129	The Rho Termination Factor of Clostridium botulinum Contains a Prion-Like Domain with a Highly Amyloidogenic Core. Frontiers in Microbiology, 2015, 6, 1516.	1.5	44
130	Characterization of Amyloid-Like Properties in Bacterial Intracellular Aggregates. Methods in Molecular Biology, 2015, 1258, 99-122.	0.4	4
131	Protein Aggregation and Its Prediction. NATO Science for Peace and Security Series A: Chemistry and Biology, 2015, , 115-127.	0.5	1
132	Influence of Cytoplasmatic Folding on Mitochondrial Import. Current Medicinal Chemistry, 2015, 22, 2349-2359.	1.2	3
133	Structural and Computational Insights into Conformational Diseases: A Review. , 2015, , 134-182.		0
134	Human Stefin B Role in Cell's Response to Misfolded Proteins and Autophagy. PLoS ONE, 2014, 9, e102500.	1.1	15
135	The Importance of a Gatekeeper Residue on the Aggregation of Transthyretin. Journal of Biological Chemistry, 2014, 289, 28324-28337.	1.6	35
136	The Mitochondrial Intermembrane Space Oxireductase Mia40 Funnels the Oxidative Folding Pathway of the Cytochrome c Oxidase Assembly Protein Cox19. Journal of Biological Chemistry, 2014, 289, 9852-9864.	1.6	16
137	Amyloid Formation by Human Carboxypeptidase D Transthyretin-like Domain under Physiological Conditions. Journal of Biological Chemistry, 2014, 289, 33783-33796.	1.6	18
138	PrionScan: an online database of predicted prion domains in complete proteomes. BMC Genomics, 2014, 15, 102.	1.2	42
139	Selection against toxic aggregation-prone protein sequences in bacteria. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 866-874.	1.9	16
140	Fluorescent dye ProteoStat to detect and discriminate intracellular amyloidâ€like aggregates in ⟨i⟩Escherichia coli⟨/i⟩. Biotechnology Journal, 2014, 9, 1259-1266.	1.8	46
141	The small GTPase Rab11 co-localizes with \hat{A} -synuclein in intracellular inclusions and modulates its aggregation, secretion and toxicity. Human Molecular Genetics, 2014, 23, 6732-6745.	1.4	73
142	N-Terminal Protein Tails Act as Aggregation Protective Entropic Bristles: The SUMO Case. Biomacromolecules, 2014, 15, 1194-1203.	2.6	32
143	Association Between Foldability and Aggregation Propensity in Small Disulfide-Rich Proteins. Antioxidants and Redox Signaling, 2014, 21, 368-383.	2.5	25
144	Thioflavin-S Staining of Bacterial Inclusion Bodies for the Fast, Simple, and Inexpensive Screening of Amyloid Aggregation Inhibitors. Current Medicinal Chemistry, 2014, 21, 1152-1159.	1.2	44

#	Article	IF	CITATIONS
145	Screening for Amyloid Aggregation: In-Silico, In-Vitro and In-Vivo Detection. Current Protein and Peptide Science, 2014, 15, 477-489.	0.7	9
146	Discovering putative prion sequences in complete proteomes using probabilistic representations of Q/N-rich domains. BMC Genomics, 2013, 14, 316.	1.2	73
147	Protein aggregation propensity is a crucial determinant of intracellular inclusion formation and quality control degradation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 2714-2724.	1.9	17
148	Thioflavin-T excimer formation upon interaction with amyloid fibers. Chemical Communications, 2013, 49, 5745.	2.2	56
149	Zinc induced folding is essential for TIM15 activity as an mtHsp70 chaperone. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 2139-2149.	1.1	11
150	Oxidative Folding in the Mitochondrial Intermembrane Space in Human Health and Disease. International Journal of Molecular Sciences, 2013, 14, 2916-2927.	1.8	7
151	Inhibition of Human Transthyretin Aggregation by Non-Steroidal Anti-Inflammatory Compounds: A Structural and Thermodynamic Analysis. International Journal of Molecular Sciences, 2013, 14, 5284-5311.	1.8	17
152	Trifluoroethanol Modulates Amyloid Formation by the All $\hat{I}\pm$ -Helical URN1 FF Domain. International Journal of Molecular Sciences, 2013, 14, 17830-17844.	1.8	9
153	About targets and causes in protein folding. Journal of Biomolecular Structure and Dynamics, 2013, 31, 970-972.	2.0	1
154	Structure-Based Analysis of A19D, a Variant of Transthyretin Involved in Familial Amyloid Cardiomyopathy. PLoS ONE, 2013, 8, e82484.	1.1	6
155	The N-terminal Helix Controls the Transition between the Soluble and Amyloid States of an FF Domain. PLoS ONE, 2013, 8, e58297.	1.1	16
156	Protein aggregation profile of the human kinome. Frontiers in Physiology, 2012, 3, 438.	1.3	6
157	Contribution of Disulfide Bonds to Stability, Folding, and Amyloid Fibril Formation: The PI3-SH3 Domain Case. Antioxidants and Redox Signaling, 2012, 16, 1-15.	2.5	32
158	Protein Oxidative Folding in the Intermembrane Mitochondrial Space: More than Protein Trafficking. Current Protein and Peptide Science, 2012, 13, 224-231.	0.7	3
159	AGGRESCAN: Method, Application, and Perspectives for Drug Design. Methods in Molecular Biology, 2012, 819, 199-220.	0.4	64
160	Multiple βâ€sheet molecular dynamics of amyloid formation from two ABlâ€6H3 domain peptides. Biopolymers, 2012, 98, 557-566.	1.2	3
161	Thioflavin-S staining coupled to flow cytometry. A screening tool to detect in vivo protein aggregation. Molecular BioSystems, 2012, 8, 2839.	2.9	47
162	Cross-Î ² -Sheet Supersecondary Structure in Amyloid Folds: Techniques for Detection and Characterization. Methods in Molecular Biology, 2012, 932, 237-257.	0.4	20

#	Article	IF	Citations
163	Discovery of Novel Inhibitors of Amyloid \hat{l}^2 -Peptide $1\hat{a}\in$ 42 Aggregation. Journal of Medicinal Chemistry, 2012, 55, 9521-9530.	2.9	39
164	The Effect of Amyloidogenic Peptides on Bacterial Aging Correlates with Their Intrinsic Aggregation Propensity. Journal of Molecular Biology, 2012, 421, 270-281.	2.0	27
165	Protein aggregation: Mechanisms and functional consequences. International Journal of Biochemistry and Cell Biology, 2012, 44, 1541-1554.	1.2	139
166	Modeling amyloids in bacteria. Microbial Cell Factories, 2012, 11, 166.	1.9	24
167	Using bacterial inclusion bodies to screen for amyloid aggregation inhibitors. Microbial Cell Factories, 2012, 11, 55.	1.9	33
168	Yeast prions form infectious amyloid inclusion bodies in bacteria. Microbial Cell Factories, 2012, 11, 89.	1.9	26
169	Temperature Dependence of the Aggregation Kinetics of Sup35 and Ure2p Yeast Prions. Biomacromolecules, 2012, 13, 474-483.	2.6	18
170	Native Structure Protects SUMO Proteins from Aggregation into Amyloid Fibrils. Biomacromolecules, 2012, 13, 1916-1926.	2.6	28
171	Protein Aggregation Acts as Strong Constraint During Evolution. , 2012, , 103-120.		4
172	Evolutionary selection for protein aggregation. Biochemical Society Transactions, 2012, 40, 1032-1037.	1.6	32
173	Effect of the surface charge of artificial model membranes on the aggregation of amyloid \hat{l}^2 -peptide. Biochimie, 2012, 94, 1730-1738.	1.3	40
174	Self-assembly of human amylin-derived peptides studied by atomic force microscopy and single molecule force spectroscopy. Soft Matter, 2012, 8, 1234-1242.	1.2	5
175	Does Stoichiometry Drive Protein Folding?. Journal of Biomolecular Structure and Dynamics, 2011, 28, 655-656.	2.0	3
176	Protease Inhibitors as Models for the Study of Oxidative Folding. Antioxidants and Redox Signaling, 2011, 14, 97-112.	2.5	9
177	Linking amyloid protein aggregation and yeast survival. Molecular BioSystems, 2011, 7, 1121.	2.9	26
178	Folding of Disulfide Proteins. , 2011, , .		5
179	Biological role of bacterial inclusion bodies: a model for amyloid aggregation. FEBS Journal, 2011, 278, 2419-2427.	2.2	68
180	Prediction of the aggregation propensity of proteins from the primary sequence: Aggregation properties of proteomes. Biotechnology Journal, 2011, 6, 674-685.	1.8	68

#	Article	IF	Citations
181	The aggregation properties of <i>Escherichia coli</i> proteins associated with their cellular abundance. Biotechnology Journal, 2011, 6, 752-760.	1.8	30
182	Aggregation of the neuroblastoma-associated mutant (S120G) of the human nucleoside diphosphate kinase-A/NM23-H1 into amyloid fibrils. Naunyn-Schmiedeberg's Archives of Pharmacology, 2011, 384, 373-381.	1.4	5
183	Bacterial Inclusion Bodies of Alzheimer's Disease βâ€Amyloid Peptides Can Be Employed To Study Native‣ike Aggregation Intermediate States. ChemBioChem, 2011, 12, 407-423.	1.3	90
184	Bimolecular Fluorescence Complementation: Illuminating Cellular Protein Interactions. Current Molecular Medicine, 2011, 11, 582-598.	0.6	14
185	Oxidative Folding: Coupling Conformational Folding and Disulfide Formation., 2011,, 1-22.		3
186	Protein folding and aggregation in bacteria. Cellular and Molecular Life Sciences, 2010, 67, 2695-2715.	2.4	76
187	Deciphering the role of the thermodynamic and kinetic stabilities of SH3 domains on their aggregation inside bacteria. Proteomics, 2010, 10, 4172-4185.	1.3	23
188	Protein Aggregation Profile of the Bacterial Cytosol. PLoS ONE, 2010, 5, e9383.	1.1	53
189	Amyloid-Like Protein Inclusions in Tobacco Transgenic Plants. PLoS ONE, 2010, 5, e13625.	1.1	44
190	Modulation of Aβ ₄₂ fìbrillogenesis by glycosaminoglycan structure. FASEB Journal, 2010, 24, 4250-4261.	0.2	66
191	The Role of Protein Sequence and Amino Acid Composition in Amyloid Formation: Scrambling and Backward Reading of IAPP Amyloid Fibrils. Journal of Molecular Biology, 2010, 404, 337-352.	2.0	38
192	Deciphering the Structural Basis That Guides the Oxidative Folding of Leech-derived Tryptase Inhibitor. Journal of Biological Chemistry, 2009, 284, 35612-35620.	1.6	15
193	Detecting and Interfering Protein Interactions: Towards the Control of Biochemical Pathways. Current Medicinal Chemistry, 2009, 16, 362-379.	1.2	8
194	Amyloidogenic Regions and Interaction Surfaces Overlap in Globular Proteins Related to Conformational Diseases. PLoS Computational Biology, 2009, 5, e1000476.	1.5	70
195	Amyloids in bacterial inclusion bodies. Trends in Biochemical Sciences, 2009, 34, 408-416.	3.7	137
196	Protein complementation assays: Approaches for the in vivo analysis of protein interactions. FEBS Letters, 2009, 583, 1684-1691.	1.3	60
197	Energy barriers for HETâ€s prion forming domain amyloid formation. FEBS Journal, 2009, 276, 5053-5064.	2.2	23
198	Designing Out Disulfide Bonds of Leech Carboxypeptidase Inhibitor: Implications for Its Folding, Stability and Function. Journal of Molecular Biology, 2009, 392, 529-546.	2.0	16

#	Article	IF	CITATIONS
199	Characterization of the amyloid bacterial inclusion bodies of the HET-s fungal prion. Microbial Cell Factories, 2009, 8, 56.	1.9	37
200	Design, Selection, and Characterization of Thioflavin-Based Intercalation Compounds with Metal Chelating Properties for Application in Alzheimer's Disease. Journal of the American Chemical Society, 2009, 131, 1436-1451.	6.6	196
201	Dynamics study on single and multiple \hat{l}^2 -sheets. Advances in Experimental Medicine and Biology, 2009, 611, 293-294.	0.8	O
202	Direct interaction between a human digestive protease and the mucoadhesive poly(acrylic acid). Acta Crystallographica Section D: Biological Crystallography, 2008, 64, 784-791.	2.5	14
203	Monitoring the interference of proteinâ€protein interactions <i>in vivo</i> by bimolecular fluorescence complementation: the DnaK case. Proteomics, 2008, 8, 3433-3442.	1.3	27
204	Study and selection of in vivo protein interactions by coupling bimolecular fluorescence complementation and flow cytometry. Nature Protocols, 2008, 3, 22-33.	5 . 5	51
205	Kinetic and thermodynamic stability of bacterial intracellular aggregates. FEBS Letters, 2008, 582, 3669-3673.	1.3	24
206	Inclusion bodies: Specificity in their aggregation process and amyloid-like structure. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 1815-1825.	1.9	131
207	Studies on bacterial inclusion bodies. Future Microbiology, 2008, 3, 423-435.	1.0	34
208	The in Vivo and in Vitro Aggregation Properties of Globular Proteins Correlate With Their Conformational Stability: The SH3 Case. Journal of Molecular Biology, 2008, 378, 1116-1131.	2.0	56
209	Oxidative Protein Folding: From the Test Tube to In Vivo Insights. Antioxidants and Redox Signaling, 2008, 10, 51-54.	2.5	3
210	The NMR Structures of the Major Intermediates of the Two-domain Tick Carboxypeptidase Inhibitor Reveal Symmetry in Its Folding and Unfolding Pathways. Journal of Biological Chemistry, 2008, 283, 27110-27120.	1.6	9
211	Sulfated Polysaccharides Promote the Assembly of Amyloid β1–42 Peptide into Stable Fibrils of Reduced Cytotoxicity. Journal of Biological Chemistry, 2008, 283, 32471-32483.	1.6	70
212	Scrambled Isomers as Key Intermediates in the Oxidative Folding of Ligand Binding Module 5 of the Low Density Lipoprotein Receptor. Journal of Biological Chemistry, 2008, 283, 13627-13637.	1.6	21
213	Recent Structural and Computational Insights into Conformational Diseases. Current Medicinal Chemistry, 2008, 15, 1336-1349.	1.2	62
214	Oxidative Folding of Leech-Derived Tryptase Inhibitor Via Native Disulfide-Bonded Intermediates. Antioxidants and Redox Signaling, 2008, 10, 77-86.	2.5	11
215	Prion and Non-prion Amyloids of the HET-s Prion forming Domain. Journal of Molecular Biology, 2007, 370, 768-783.	2.0	68
216	lle-Phe Dipeptide Self-Assembly: Clues to Amyloid Formation. Biophysical Journal, 2007, 92, 1732-1741.	0.2	129

#	Article	IF	CITATIONS
217	Self-assembly of human latexin into amyloid-like oligomers. BMC Structural Biology, 2007, 7, 75.	2.3	6
218	Detection of transient protein–protein interactions by bimolecular fluorescence complementation: The Abl-SH3 case. Proteomics, 2007, 7, 1023-1036.	1.3	85
219	AGGRESCAN: a server for the prediction and evaluation of "hot spots" of aggregation in polypeptides. BMC Bioinformatics, 2007, 8, 65.	1.2	845
220	Protein aggregation into bacterial inclusion bodies is a specific kinetically driven process. Microbial Cell Factories, 2006, 5, S9.	1.9	0
221	Protein activity in bacterial inclusion bodies correlates with predicted aggregation rates. Journal of Biotechnology, 2006, 125, 110-113.	1.9	64
222	The chaperone DnaK controls the fractioning of functional protein between soluble and insoluble cell fractions in inclusion body-forming cells. Microbial Cell Factories, 2006, 5, 26.	1.9	38
223	Effect of temperature on protein quality in bacterial inclusion bodies. FEBS Letters, 2006, 580, 6471-6476.	1.3	133
224	Molecular dynamics study of amyloid formation of two Abl-SH3 domain peptides. Journal of Peptide Science, 2006, 12, 780-789.	0.8	5
225	Mutagenesis of the central hydrophobic cluster in Abeta42 Alzheimer's peptide. Side-chain properties correlate with aggregation propensities. FEBS Journal, 2006, 273, 658-668.	2.2	164
226	Design and NMR conformational study of a \hat{l}^2 -sheet peptide based on Betanova and WW domains. Protein Science, 2006, 15, 2278-2289.	3.1	15
227	Folding of small disulfide-rich proteins: clarifying the puzzle. Trends in Biochemical Sciences, 2006, 31, 292-301.	3.7	154
228	Protein quality in bacterial inclusion bodies. Trends in Biotechnology, 2006, 24, 179-185.	4.9	310
229	Characterizing the Tick Carboxypeptidase Inhibitor. Journal of Biological Chemistry, 2006, 281, 22906-22916.	1.6	17
230	NMR Structural Characterization and Computational Predictions of the Major Intermediate in Oxidative Folding of Leech Carboxypeptidase Inhibitor. Structure, 2005, 13, 1193-1202.	1.6	18
231	Detailed molecular comparison between the inhibition mode of A/B-type carboxypeptidases in the zymogen state and by the endogenous inhibitor latexin. Cellular and Molecular Life Sciences, 2005, 62, 1996-2014.	2.4	19
232	Prediction of "hot spots" of aggregation in disease-linked polypeptides. BMC Structural Biology, 2005, 5, 18.	2.3	173
233	Amyloid fibril formation by bovine cytochrome <i>c</i>). Spectroscopy, 2005, 19, 199-205.	0.8	28
234	Structure of human carboxypeptidase A4 with its endogenous protein inhibitor, latexin. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3978-3983.	3.3	89

#	Article	IF	Citations
235	Amyloid-like Properties of Bacterial Inclusion Bodies. Journal of Molecular Biology, 2005, 347, 1025-1037.	2.0	217
236	Study of a Major Intermediate in the Oxidative Folding of Leech Carboxypeptidase Inhibitor: Contribution of the Fourth Disulfide Bond. Journal of Molecular Biology, 2005, 352, 961-975.	2.0	17
237	Sequence determinants of protein aggregation: tools to increase protein solubility. Microbial Cell Factories, 2005, 4, 11.	1.9	87
238	Aggregation as bacterial inclusion bodies does not imply inactivation of enzymes and fluorescent proteins. Microbial Cell Factories, 2005, 4, 27.	1.9	266
239	Human kallikrein 6 activity is regulated via an autoproteolytic mechanism of activation/inactivation. Biological Chemistry, 2004, 385, 517-24.	1.2	62
240	Short amino acid stretches can mediate amyloid formation in globular proteins: The Src homology 3 (SH3) case. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7258-7263.	3.3	241
241	Role of Kinetic Intermediates in the Folding of Leech Carboxypeptidase Inhibitor. Journal of Biological Chemistry, 2004, 279, 37261-37270.	1.6	26
242	Designing proteins from the inside out. Proteins: Structure, Function and Bioinformatics, 2004, 56, 1-10.	1.5	37
243	Secondary Binding Site of the Potato Carboxypeptidase Inhibitor. Contribution to Its Structure, Folding, and Biological Properties. Biochemistry, 2004, 43, 7973-7982.	1.2	18
244	Amyloid Fibril Formation by a Partially Structured Intermediate State of \hat{l}_{\pm} -Chymotrypsin. Journal of Molecular Biology, 2004, 342, 321-331.	2.0	206
245	Folding specificity induced by loop stiffness. Protein Science, 2003, 12, 1473-1482.	3.1	8
246	Structure and dynamics of the potato carboxypeptidase inhibitor by 1H and 15N NMR. Proteins: Structure, Function and Bioinformatics, 2003, 50, 410-422.	1.5	19
247	Spectroscopic Analysis of Amyloid Fibril Formation in SH3-Domains. Spectroscopy, 2003, 17, 647-652.	0.8	4
248	Insights into the Origin of the Tendency of the PI3-SH3 Domain to form Amyloid Fibrils. Journal of Molecular Biology, 2002, 322, 1147-1158.	2.0	40
249	Conformational strain in the hydrophobic core and its implications for protein folding and design. Nature Structural Biology, 2002, 9, 485-493.	9.7	100
250	Mapping the Pro-region of Carboxypeptidase B by Protein Engineering. Journal of Biological Chemistry, 1999, 274, 19925-19933.	1.6	45
251	Cutting at the right place. The importance of selective limited proteolysis in the activation of proproteinase E. FEBS Journal, 1998, 251, 839-844.	0.2	7
252	Overexpression of Human Procarboxypeptidase A2 in Pichia pastoris and Detailed Characterization of Its Activation Pathway. Journal of Biological Chemistry, 1998, 273, 3535-3541.	1.6	52

#	Article	IF	CITATIONS
253	Crystal structure of an oligomer of proteolytic zymogens: detailed conformational analysis of the bovine ternary complex and implications for their activation 1 1Edited by I. A. Wilson. Journal of Molecular Biology, 1997, 269, 861-880.	2.0	28
254	Crystallization and preliminary X-ray analysis of the ternary complex of procarboxypeptidase A from bovine pancreas. FEBS Letters, 1995, 367, 211-213.	1.3	1
255	Procarboxypeptidase in rat pancreas Overall characterization and comparison of the activation processes. FEBS Journal, 1994, 222, 55-64.	0.2	22
256	CARs-DB: A Database of Cryptic Amyloidogenic Regions in Intrinsically Disordered Proteins. Frontiers in Molecular Biosciences, 0, 9, .	1.6	4