
Amalia Forte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7014148/publications.pdf Version: 2024-02-01

AMALIA FORTE

#	Article	IF	CITATIONS
1	Risk Stratification in Bicuspid Aortic Valve Aortopathy: Emerging Evidence and Future Perspectives. Current Problems in Cardiology, 2021, 46, 100428.	1.1	28
2	ls there a role for autophagy in ascending aortopathy associated with tricuspid or bicuspid aortic valve?. Clinical Science, 2019, 133, 805-819.	1.8	2
3	Locally different proteome in aortas from patients with stenotic tricuspid and bicuspid aortic valvesâ€. European Journal of Cardio-thoracic Surgery, 2019, 56, 458-469.	0.6	9
4	Polyamines and microbiota in bicuspid and tricuspid aortic valve aortopathy. Journal of Molecular and Cellular Cardiology, 2019, 129, 179-187.	0.9	9
5	Musing on cell therapy for aortic aneurysms. Journal of Thoracic and Cardiovascular Surgery, 2018, 155, 2314-2315.	0.4	0
6	Pro-inflammatory cytokines activate hypoxia-inducible factor 3α via epigenetic changes in mesenchymal stromal/stem cells. Scientific Reports, 2018, 8, 5842.	1.6	20
7	Polyamine concentration is increased in thoracic ascending aorta of patients with bicuspid aortic valve. Heart and Vessels, 2018, 33, 327-339.	0.5	4
8	Ascending aortas from heart donors and CABG patients are not equivalent as control in aortopathy studies. Scandinavian Cardiovascular Journal, 2018, 52, 281-286.	0.4	0
9	Patients with bicuspid and tricuspid aortic valve exhibit distinct regional microrna signatures in mildly dilated ascending aorta. Heart and Vessels, 2017, 32, 750-767.	O.5	36
10	A Possible Early Biomarker for Bicuspid Aortopathy. Circulation Research, 2017, 120, 1800-1811.	2.0	42
11	Regulation of microRNA expression in vascular smooth muscle by MRTF-A and actin polymerization. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 1088-1098.	1.9	13
12	Editorial: The Pathogenetic Mechanisms at the Basis of Aortopathy Associated with Bicuspid Aortic Valve: Insights from "Omicsâ€, Models of Disease and Emergent Technologies. Frontiers in Physiology, 2017, 8, 1002.	1.3	3
13	Inhibition of Polyamine Uptake Potentiates the Antiâ€Proliferative Effect of Polyamine Synthesis Inhibition and Preserves the Contractile Phenotype of Vascular Smooth Muscle Cells. Journal of Cellular Physiology, 2016, 231, 1334-1342.	2.0	26
14	Epigenetic regulation of TGF-β1 signalling in dilative aortopathy of the thoracic ascending aorta. Clinical Science, 2016, 130, 1389-1405.	1.8	30
15	Too thin a beam of light in thick fog. European Journal of Cardio-thoracic Surgery, 2016, 49, 762-763.	0.6	0
16	G SF contributes at the healing of tunica media of arteriotomyâ€injured rat carotids by promoting differentiation of vascular smooth muscle cells. Journal of Cellular Physiology, 2016, 231, 215-223.	2.0	5
17	Novel potential targets for prevention of arterial restenosis: insights from the pre-clinical research. Clinical Science, 2014, 127, 615-634.	1.8	25
18	Vascular smooth muscle cell proliferation depends on caveolin-1-regulated polyamine uptake. Bioscience Reports, 2014, 34, e00153.	1.1	11

Amalia Forte

#	Article	IF	CITATIONS
19	Inhibition of Polyamine Formation Antagonizes Vascular Smooth Muscle Cell Proliferation and Preserves the Contractile Phenotype. Basic and Clinical Pharmacology and Toxicology, 2014, 115, 379-388.	1.2	5
20	The aortic wall with bicuspid aortic valve: Immature or prematurely aging?. Journal of Thoracic and Cardiovascular Surgery, 2014, 148, 2439-2440.	0.4	7
21	Genetic, epigenetic and stem cell alterations in endometriosis: new insights and potential therapeutic perspectives. Clinical Science, 2014, 126, 123-138.	1.8	64
22	Local inhibition of ornithine decarboxylase reduces vascular stenosis in a murine model of carotid injury. International Journal of Cardiology, 2013, 168, 3370-3380.	0.8	12
23	Early cell changes and TGFβ pathway alterations in the aortopathy associated with bicuspid aortic valve stenosis. Clinical Science, 2013, 124, 97-108.	1.8	53
24	Differential expression of proteins related to smooth muscle cells and myofibroblasts in human thoracic aortic aneurysm. Histology and Histopathology, 2013, 28, 795-803.	0.5	14
25	Missing link between aortic wall pathology and aortic diameter: methodological bias or worrisome finding?. European Journal of Cardio-thoracic Surgery, 2012, 42, 195-196.	0.6	5
26	Stem Cell Therapy for Arterial Restenosis: Potential Parameters Contributing to the Success of Bone Marrow-Derived Mesenchymal Stromal Cells. Cardiovascular Drugs and Therapy, 2012, 26, 9-21.	1.3	24
27	Morphological and molecular characterization of healthy human ascending aorta. Histology and Histopathology, 2012, 27, 103-12.	0.5	2
28	The Polyamine Pathway as a Potential Target for Vascular Diseases: Focus on Restenosis. Current Vascular Pharmacology, 2011, 9, 706-714.	0.8	7
29	DNA damage and repair in a model of rat vascular injury. Clinical Science, 2010, 118, 473-485.	1.8	10
30	Role of myofibroblasts in vascular remodelling: focus on restenosis and aneurysm. Cardiovascular Research, 2010, 88, 395-405.	1.8	85
31	Cell Cycle and Differentiation in Vessels. , 2010, , 203-228.		0
32	Expression Pattern of Stemness-Related Genes in Human Endometrial and Endometriotic Tissues. Molecular Medicine, 2009, 15, 392-401.	1.9	71
33	Injury to rat carotid arteries causes time-dependent changes in gene expression in contralateral uninjured arteries. Clinical Science, 2009, 116, 125-136.	1.8	2
34	Mesenchymal Stem Cells: A Good Candidate for Restenosis Therapy?. Current Vascular Pharmacology, 2009, 7, 381-393.	0.8	8
35	Mesenchymal stem cells effectively reduce surgically induced stenosis in rat carotids. Journal of Cellular Physiology, 2008, 217, 789-799.	2.0	42
36	Expression profiles in surgicallyâ€induced carotid stenosis: a combined transcriptomic and proteomic investigation. Journal of Cellular and Molecular Medicine, 2008, 12, 1956-1973.	1.6	14

Amalia Forte

#	Article	IF	CITATIONS
37	Hypertension Induces Compensatory Arterial Remodeling Following Arteriotomy. Journal of Surgical Research, 2007, 143, 300-310.	0.8	1
38	An effective method for adenoviral-mediated delivery of small interfering RNA into mesenchymal stem cells. Journal of Cellular Biochemistry, 2007, 100, 293-302.	1.2	7
39	Rat carotid arteriotomy: c-myc is involved in negative remodelling and apoptosis. Journal of Cardiovascular Medicine, 2006, 7, 61-67.	0.6	4
40	Upregulated TRPC1 Channel in Vascular Injury In Vivo and Its Role in Human Neointimal Hyperplasia. Circulation Research, 2006, 98, 557-563.	2.0	195
41	Small Interfering RNAs and Antisense Oligonucleotides for Treatment of Neurological Diseases. Current Drug Targets, 2005, 6, 21-29.	1.0	28
42	c-Myc Antisense Oligonucleotides Preserve Smooth Muscle Differentiation and Reduce Negative Remodelling following Rat Carotid Arteriotomy. Journal of Vascular Research, 2005, 42, 214-225.	0.6	21
43	Carotid arteriotomy induces different temporal gene expression profiles in normotensive and hypertensive rat strains. International Journal of Molecular Medicine, 2005, 16, 1057.	1.8	1
44	Carotid arteriotomy induces different temporal gene expression profiles in normotensive and hypertensive rat strains. International Journal of Molecular Medicine, 2005, 16, 1057-64.	1.8	1
45	Stenosis progression after surgical injury in Milan hypertensive rat carotid arteries. Cardiovascular Research, 2003, 60, 654-663.	1.8	9
46	Gene Expression and Morphological Changes in Surgically Injured Carotids of Spontaneously Hypertensive Rats. Journal of Vascular Research, 2002, 39, 114-121.	0.6	8
47	Surgical injury of rat arteries: genetic control of the remodelling process. European Journal of Cardio-thoracic Surgery, 2002, 22, 266-270.	0.6	5
48	Detection of DNA in Ancient Bones Using Histochemical Methods. Biotechnic and Histochemistry, 2000, 75, 110-117.	0.7	22
49	The S.//.A.IG amino acid motif is present in a replication dependent late H3 histone variant of P. lividus sea urchin 1. FEBS Letters, 1997, 407, 101-104.	1.3	4