Songqi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7014046/publications.pdf

Version: 2024-02-01

		76294	91828
67	5,267	40	69
papers	citations	h-index	g-index
60	60	60	2027
69	69	69	2937
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Vanillin-Derived High-Performance Flame Retardant Epoxy Resins: Facile Synthesis and Properties. Macromolecules, 2017, 50, 1892-1901.	2.2	343
2	Facile <i>in situ</i> preparation of high-performance epoxy vitrimer from renewable resources and its application in nondestructive recyclable carbon fiber composite. Green Chemistry, 2019, 21, 1484-1497.	4.6	333
3	Bio-based epoxy resin from itaconic acid and its thermosets cured with anhydride and comonomers. Green Chemistry, 2013, 15, 245-254.	4.6	261
4	Degradable thermosets based on labile bonds or linkages: A review. Progress in Polymer Science, 2018, 76, 65-110.	11.8	257
5	Robust, Fire-Safe, Monomer-Recovery, Highly Malleable Thermosets from Renewable Bioresources. Macromolecules, 2018, 51, 8001-8012.	2.2	244
6	High-performance, command-degradable, antibacterial Schiff base epoxy thermosets: synthesis and properties. Journal of Materials Chemistry A, 2019, 7, 15420-15431.	5.2	180
7	Research progress on bioâ€based thermosetting resins. Polymer International, 2016, 65, 164-173.	1.6	173
8	Naturally Occurring Acids as Cross-Linkers To Yield VOC-Free, High-Performance, Fully Bio-Based, Degradable Thermosets. Macromolecules, 2015, 48, 7127-7137.	2.2	160
9	Readily recyclable carbon fiber reinforced composites based on degradable thermosets: a review. Green Chemistry, 2019, 21, 5781-5796.	4.6	148
10	Synthesis and Properties of a Bioâ€Based Epoxy Resin with High Epoxy Value and Low Viscosity. ChemSusChem, 2014, 7, 555-562.	3.6	147
11	Hard and Flexible, Degradable Thermosets from Renewable Bioresources with the Assistance of Water and Ethanol. Macromolecules, 2016, 49, 3780-3788.	2.2	146
12	Polyesters derived from itaconic acid for the properties and bio-based content enhancement of soybean oil-based thermosets. Green Chemistry, 2015, 17, 2383-2392.	4.6	144
13	Readily recyclable, high-performance thermosetting materials based on a lignin-derived spiro diacetal trigger. Journal of Materials Chemistry A, 2019, 7, 1233-1243.	5.2	142
14	Synthesis of bio-based unsaturated polyester resins and their application in waterborne UV-curable coatings. Progress in Organic Coatings, 2015, 78, 49-54.	1.9	124
15	Facile Preparation of Polyimine Vitrimers with Enhanced Creep Resistance and Thermal and Mechanical Properties via Metal Coordination. Macromolecules, 2020, 53, 2919-2931.	2.2	120
16	The properties of poly(lactic acid)/starch blends with a functionalized plant oil: Tung oil anhydride. Carbohydrate Polymers, 2013, 95, 77-84.	5.1	105
17	Itaconic Acid as a Green Alternative to Acrylic Acid for Producing a Soybean Oil-Based Thermoset: Synthesis and Properties. ACS Sustainable Chemistry and Engineering, 2017, 5, 1228-1236.	3.2	94
18	Bio-based tetrafunctional crosslink agent from gallic acid and its enhanced soybean oil-based UV-cured coatings with high performance. RSC Advances, 2014, 4, 23036.	1.7	92

#	Article	IF	Citations
19	High bio-based content waterborne UV-curable coatings with excellent adhesion and flexibility. Progress in Organic Coatings, 2015, 87, 197-203.	1.9	82
20	Facile catalyst-free synthesis, exchanging, and hydrolysis of an acetal motif for dynamic covalent networks. Journal of Materials Chemistry A, 2019, 7, 18039-18049.	5.2	81
21	Green and Facile Preparation of Readily Dual-Recyclable Thermosetting Polymers with Superior Stability Based on Asymmetric Acetal. Macromolecules, 2020, 53, 1474-1485.	2.2	80
22	Effect of castor oil enrichment layer produced by reaction on the properties of PLA/HDI-g-starch blends. Carbohydrate Polymers, 2013, 94, 235-243.	5.1	77
23	Dihydrazone-based dynamic covalent epoxy networks with high creep resistance, controlled degradability, and intrinsic antibacterial properties from bioresources. Journal of Materials Chemistry A, 2020, 8, 11261-11274.	5.2	72
24	Upcycling of Polyethylene Terephthalate to Continuously Reprocessable Vitrimers through Reactive Extrusion. Macromolecules, 2021, 54, 703-712.	2.2	71
25	Catalyst-free malleable, degradable, bio-based epoxy thermosets and its application in recyclable carbon fiber composites. Composites Part B: Engineering, 2021, 211, 108654.	5.9	70
26	Surface hydrophobic modification of starch with bio-based epoxy resins to fabricate high-performance polylactide composite materials. Composites Science and Technology, 2014, 94, 16-22.	3.8	68
27	Soybean oil-based UV-curable coatings strengthened by crosslink agent derived from itaconic acid together with 2-hydroxyethyl methacrylate phosphate. Progress in Organic Coatings, 2016, 97, 210-215.	1.9	67
28	Facile synthesis of "digestibleâ€; rigid-and-flexible, bio-based building block for high-performance degradable thermosetting plastics. Green Chemistry, 2020, 22, 1275-1290.	4.6	64
29	Biosourced Acetal and Diels–Alder Adduct Concurrent Polyurethane Covalent Adaptable Network. Macromolecules, 2021, 54, 1742-1753.	2.2	63
30	2,5-Furandicarboxylic Acid- and Itaconic Acid-Derived Fully Biobased Unsaturated Polyesters and Their Cross-Linked Networks. Industrial & Engineering Chemistry Research, 2017, 56, 2650-2657.	1.8	58
31	High-Performance, Biobased, Degradable Polyurethane Thermoset and Its Application in Readily Recyclable Carbon Fiber Composites. ACS Sustainable Chemistry and Engineering, 2020, 8, 11162-11170.	3.2	58
32	Hexahydro- <i>>s</i> -triazine: A Trial for Acid-Degradable Epoxy Resins with High Performance. ACS Sustainable Chemistry and Engineering, 2017, 5, 4683-4689.	3.2	57
33	Phosphate-based covalent adaptable networks with recyclability and flame retardancy from bioresources. European Polymer Journal, 2021, 144, 110236.	2.6	57
34	Closed-loop chemical recycling of thermosetting polymers and their applications: a review. Green Chemistry, 2022, 24, 5691-5708.	4.6	57
35	Fast Reprocessing of Acetal Covalent Adaptable Networks with High Performance Enabled by Neighboring Group Participation. Macromolecules, 2021, 54, 8423-8434.	2.2	56
36	Synthesis of fully bio-based diepoxy monomer with dicyclo diacetal for high-performance, readily degradable thermosets. European Polymer Journal, 2019, 117, 200-207.	2.6	54

#	Article	IF	CITATIONS
37	UV-thermal dual cured anti-bacterial thiol-ene networks with superior performance from renewable resources. Polymer, 2017, 108, 215-222.	1.8	48
38	Syntheses of Metallic Cyclodextrins and Their Use as Synergists in a Poly(Vinyl Alcohol)/Intumescent Flame Retardant System. Industrial & Engineering Chemistry Research, 2013, 52, 2784-2792.	1.8	47
39	Green Synthesis of a Bioâ€Based Epoxy Curing Agent from Isosorbide in Aqueous Condition and Shape Memory Properties Investigation of the Cured Resin. Macromolecular Chemistry and Physics, 2016, 217, 1439-1447.	1.1	43
40	Sustainable valorization of lignin with levulinic acid and its application in polyimine thermosets. Green Chemistry, 2019, 21, 4964-4970.	4.6	43
41	Synthesis of UV-curable polysiloxanes containing methacryloxy/fluorinated side groups and the performances of their cured composite coatings. Progress in Organic Coatings, 2010, 69, 359-365.	1.9	40
42	Vanillinâ€derived phosphorusâ€containing compounds and ammonium polyphosphate as green fireâ€resistant systems for epoxy resins with balanced properties. Polymers for Advanced Technologies, 2019, 30, 264-278.	1.6	40
43	Upcycling of post-consumer polyolefin plastics to covalent adaptable networks <i>via in situ</i> continuous extrusion cross-linking. Green Chemistry, 2021, 23, 2931-2937.	4.6	39
44	Dynamic transfer auto-catalysis of epoxy vitrimers enabled by the carboxylic acid/epoxy ratio based on facilely synthesized trifunctional monoesterified cyclic anhydrides. European Polymer Journal, 2020, 135, 109881.	2.6	38
45	High-performance bio-based epoxies from ferulic acid and furfuryl alcohol: synthesis and properties. Green Chemistry, 2021, 23, 1772-1781.	4.6	38
46	Modification of epoxy resin with polyether-grafted-polysiloxane and epoxy-miscible polysiloxane particles. Macromolecular Research, 2010, 18, 22-28.	1.0	36
47	Origin of highly recoverable shape memory polyurethanes (SMPUs) with non-planar ring structures: a single molecule force spectroscopy investigation. Journal of Materials Chemistry A, 2014, 2, 2010-20016.	5.2	36
48	Concurrent thiol–ene competitive reactions provide reprocessable, degradable and creep-resistant dynamic–permanent hybrid covalent networks. Green Chemistry, 2020, 22, 7769-7777.	4.6	34
49	Toughening of epoxy resin system using a novel dendritic polysiloxane. Macromolecular Research, 2010, 18, 392-398.	1.0	33
50	Morphologies and mechanical and thermal properties of highly epoxidized polysiloxane toughened epoxy resin composites. Macromolecular Research, 2010, 18, 853-861.	1.0	31
51	Bio-based shape memory epoxy resin synthesized from rosin acid. Iranian Polymer Journal (English) Tj ETQq $1\ 1$	0.784314 r	gBŢ <i>[</i> Overloc
52	Diisocyanate free and melt polycondensation preparation of bio-based unsaturated poly(ester-urethane)s and their properties as UV curable coating materials. RSC Advances, 2014, 4, 49471-49477.	1.7	30
53	Degradable benzyl cyclic acetal epoxy monomers with low viscosity: Synthesis, structure-property relationships, application in recyclable carbon fiber composite. Composites Science and Technology, 2022, 219, 109243.	3.8	30
54	Fabricating Highly Reactive Bio-based Compatibilizers of Epoxidized Citric Acid To Improve the Flexural Properties of Polylactide/Microcrystalline Cellulose Blends. Industrial & Engineering Chemistry Research, 2015, 54, 3806-3812.	1.8	27

#	Article	IF	CITATIONS
55	Amino acids as latent curing agents and their application in fully bio-based epoxy resins. Green Chemistry, 2021, 23, 6566-6575.	4.6	24
56	Fastâ€Reprocessing, Postadjustable, Selfâ€Healing Covalent Adaptable Networks with Schiff Base and Diels–Alder Adduct. Macromolecular Rapid Communications, 2022, 43, e2100777.	2.0	23
57	Comparison of Hydrogenated Bisphenol A and Bisphenol A Epoxies: Curing Behavior, Thermal and Mechanical Properties, Shape Memory Properties. Macromolecular Research, 2018, 26, 529-538.	1.0	22
58	Synthesis and properties of LED-packaging epoxy resin toughened by a novel polysiloxane from hydrolysis and condensation. Macromolecular Research, 2011, 19, 972-979.	1.0	21
59	Dissociate transfer exchange of tandem dynamic bonds endows covalent adaptable networks with fast reprocessability and high performance. Polymer Chemistry, 2021, 12, 5217-5228.	1.9	19
60	Facile synthesis of hemiacetal ester-based dynamic covalent polymer networks combining fast reprocessability and high performance. Green Chemistry, 2021, 23, 9061-9070.	4.6	14
61	Facile synthesis of bio-based latent curing agent and its high-Tg epoxy network. European Polymer Journal, 2022, 164, 110965.	2.6	14
62	Preparation of Non-Planar-Ring Epoxy Thermosets Combining Ultra-Strong Shape Memory Effects and High Performance. Macromolecular Research, 2020, 28, 480-493.	1.0	12
63	Conductive vitrimer nanocomposites enable advanced and recyclable thermo-sensitive materials. Journal of Materials Chemistry C, 2020, 8, 11681-11686.	2.7	12
64	Scalable and facile synthesis of acetal covalent adaptable networks with readily adjustable properties. European Polymer Journal, 2021, 147, 110291.	2.6	11
65	Study on the modification of epoxy resin by a phosphorusâ€and silicaâ€containing hybrid. Journal of Applied Polymer Science, 2011, 121, 2213-2219.	1.3	10
66	Research Progress on Vanillin-based Thermosets. Current Green Chemistry, 2018, 5, 138-149.	0.7	8
67	Crystallizable Aliphatic Chains Enhanced Covalent Adaptable Networks: Fast Reprocessing and Improved Performance. Macromolecular Rapid Communications, 2022, 43, .	2.0	6